Deciphering Soil Keystone Microbial Taxa: Structural Diversity and Co-Occurrence Patterns from Peri-Urban to Urban Landscapes
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Sites and Sample Collection
2.2. Determination of Abiotic Factors
2.3. DNA Extraction and Illumina Novaseq Sequencing
2.4. Definition of Keystone Bacterial and Fungal Taxa
2.5. Community Stability Index
2.6. Partial Least Squares Path Model (PLS-PM) Analysis
2.7. Statistical Analysis
3. Results
3.1. Soil Physicochemical and Climatic Characteristics
3.2. Identification and Co-Occurrence Networks of Potential Keystone Taxa
3.3. Community Composition and Niche Width of Potential Keystone Taxa
3.4. Community Diversity and Stability of Keystone Taxa
3.5. Functional Prediction of Keystone Taxa
3.6. Linkages Between Microbial Community Stability and Keystone Taxa and Environmental Factors
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [PubMed]
- Nugent, A.; Allison, S.D.A. framework for soil microbial ecology in urban ecosystems. Ecosphere 2022, 13, e3968. [Google Scholar] [CrossRef]
- Buczkowski, G.; Richmond, D.S. The effect of urbanization on ant abundance and diversity: A temporal examination of factors affecting biodiversity. PLoS ONE 2012, 7, e41729. [Google Scholar] [CrossRef] [PubMed]
- Yan, B.; Lu, Q.; Xia, S.; Li, J.S. An overview of advances in soil microbial diversity of urban environment. Biodivers. Sci. 2022, 30, 22186. [Google Scholar] [CrossRef]
- Chen, Y.; Martinez, A.; Cleavenger, S.; Rudolph, J.; Barberán, A. Changes in soil microbial communities across an urbanization gradient: A local-scale temporal study in the arid southwestern USA. Microorganisms 2021, 9, 1470. [Google Scholar] [CrossRef] [PubMed]
- LaMartina, E.L.; Mohaimani, A.A.; Newton, R.J. Urban wastewater bacterial communities assemble into seasonal steady states. Microbiome 2021, 9, 116. [Google Scholar] [CrossRef] [PubMed]
- Reese, A.T.A.; Savage, E.; Youngsteadt, K.L.; McGuire, A.; Koling, O.; Watkins, S.D.; Frank, R.R. Dunn Urban stress is associated with variation in microbial species composition—But not richness—In Manhattan. ISME J. 2016, 10, 751–760. [Google Scholar] [CrossRef] [PubMed]
- Gill, A.S.; Purnell, K.; Palmer, M.I.; Stein, J.; McGuire, K.L. McGuire. Microbial composition and functional diversity differ across urban green infrastructure types. Front. Microbiol. 2020, 11, 912. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, K.S.; Leff, J.W.; Barberan, A.; Bates, S.T.; Betley, J.; Crowther, T.W. Biogeographic patterns in below-ground diversity in New York City’s central park are similar to those observed globally. Proc. R. Soc. Lond. B Biol. Sci. 2014, 281, 20141988. [Google Scholar] [CrossRef] [PubMed]
- Huot, H.; Joyner, J.; Cordoba, A.; Shaw, R.K.; Wilson, M.A.; Walker, R.; Muth Theodore, R.; Cheng, Z.Q. Characterizing urban soils in New York City: Profile properties bacterial communities. J. Soil. Sediment. 2017, 17, 393–407. [Google Scholar] [CrossRef]
- Zhao, D.; Li, F.; Wang, R.S.; Yang, Q.R.; Ni, H.S. Effect of soil sealing on the microbial biomass Ntransformation related enzyme activities at various depths of soils in urban area of Beijing China. J. Soil. Sediment. 2012, 12, 519–530. [Google Scholar] [CrossRef]
- Ren, Y.L.; Shao, Q.Y.; Ge, W.; Li, X.; Wang, H.Y.; Dong, C.B.; Zhang, Y.W.; Deshmukh, S.K.; Han, Y.F. Assembly processes and biogeographical characteristics of soil bacterial sub-communities of different habitats in urban green spaces. Curr. Microbiol. 2023, 80, 309. [Google Scholar] [CrossRef] [PubMed]
- Rai, P.K.; Rai, A.; Singh, S. Change in soil microbial biomass along a rural-urban gradient in Varanasi (U.P., India). Geol. Ecol. Landsc. 2018, 2, 15–21. [Google Scholar] [CrossRef]
- Korneykova, M.V.; Vasenev, V.I.; Nikitin, D.A.; Soshina, A.S.; Dolgikh, A.V.; Sotnikova, Y.L. Urbanization affects soil microbiome profile distribution in the Russian Arctic region. Int. J. Environ. Res. Public Health 2021, 18, 11665. [Google Scholar] [CrossRef] [PubMed]
- Mawarda, P.C.; van der Kaaij, R.; Dini-Andreote, F.; Duijker, D.; Stech, M.; Speksnijder, A.G. Unveiling the ecological processes driving soil and lichen microbiome assembly along an urbanization gradient. Npj Biofilms Microbiomes 2025, 11, 99. [Google Scholar] [CrossRef] [PubMed]
- Yan, B.; Li, J.S.; Xiao, N.W.; Qi, Y.; Fu, G.; Liu, G.H.; Qiao, M.P. Urban-development-induced changes in the diversity and composition of the soil bacterial community in Beijing. Sci. Rep. 2016, 6, 38811. [Google Scholar] [CrossRef] [PubMed]
- Yan, B.; Li, J.S.; Lu, Q.; Xiong, J.H.; Xiao, N.W.; Fu, G. Soil microbial carbon metabolic activity of green-land of urban park in Beijing. Res. Environ. Sci. 2019, 32, 1567–1574. [Google Scholar] [CrossRef]
- Mouquet, N.; Gravel, D.; Massol, F.; Calcagno, V.; Blasius, B. Extending the concept of keystone species to communities and ecosystems. Ecol. Lett. 2013, 16, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Walder, F.; Büchi, L.; Meyer, M.; Held, A.Y.; Gattinger, A.; Keller, T.; Charles, R.; van der Heijden, M.G. Agricultural intensification reduces microbial network complexity the abundance of keystone taxa in roots. ISME J. 2019, 13, 1722–1736. [Google Scholar] [CrossRef] [PubMed]
- Berry, D.; Widder, S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front. Microbiol. 2014, 5, 219. [Google Scholar] [CrossRef] [PubMed]
- Coux, C.; Rader, R.; Bartomeus, I.; Tylianakis, J.M.; Mouillot, D. Linking species functional roles to their network roles. Ecol. Lett. 2016, 19, 762–770. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Chen, H.; Yang, J.R.; Liu, M.; Huang, B.; Yang, J. Distinct patterns processes of abundant rare eukaryotic plankton communities following a reservoir cyanobacterial bloom. ISME J. 2018, 12, 2263–2277. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.L.; Ge, W.; Dong, C.B.; Wang, H.Y.; Zhao, S.; Li, C.L.; Xu, J.H.; Liang, Z.Q.; Han, Y.F. Specialist species of fungi and bacteria are more important than the intermediate and generalist species in near-urban agricultural soils. Appl. Soil Ecol. 2023, 188, 104894. [Google Scholar] [CrossRef]
- Deng, L.; Taelman, S.; Olm, M.R.; Toe, L.C.; Balini, E.; Ouédraogo, L.O.; Bastos-Moreira, Y.; Argaw, A.; Tesfamariam, K.; Sonnenburg, E.D. Maternal balanced energy-protein supplementation reshapes the maternal gut microbiome and enhances carbohydrate metabolism in infants: A randomized controlled trial. Nat. Commun. 2025, 16, 2683. [Google Scholar] [CrossRef] [PubMed]
- Bremner, J.M.; Mulvaney, C.S. Nitrogen total. In Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy: Madison, WI, USA, 1982; pp. 595–624. [Google Scholar]
- Lu, M.; Ren, Y.L.; Wang, S.J.; Tian, K.; Sun, X.Y.; Peng, S.X. Contribution of soil variables to bacterial community composition following land use change in napahai plateau wetlands. J. Environ. Manag. 2019, 246, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Bao, S.D. Soil Agronomic Analysis; China Agriculture Press: Beijing, China, 2000; pp. 1–495. [Google Scholar]
- Olsen, S.R. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; United States Department of Agriculture: Washington, DC, USA, 1954; pp. 1–19.
- Dong, C.B.; Shao, Q.Y.; Ran, Q.S.; Li, X.; Han, Y.F. Interactions of rhizosphere microbiota–environmental factors–pharmacological active ingredients of Eucommia ulmoides. Planta 2024, 259, 59. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef] [PubMed]
- Lozupone, C.; Lladser, M.E.; Knights, D.; Stombaugh, J.; Knight, R. UniFrac: An effective distance metric for microbial community comparison. ISME J. 2011, 5, 169–172. [Google Scholar] [CrossRef] [PubMed]
- Xun, W.; Liu, Y.; Li, W.; Ren, Y.; Xiong, W.; Xu, Z.; Zhang, N.; Miao, Y.; Shen, Q.; Zhang, R. Specialized metabolic functions of keystone taxa sustain soil microbiome stability. Microbiome 2021, 9, 35. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Schlaeppi, K.; van der Heijden, M.G.A. Keystone taxa as drivers of microbiome structure and functioning. Nat. Rev. Microbiol. 2018, 16, 567–576. [Google Scholar] [CrossRef] [PubMed]
- Niu, B.; Paulson, J.N.; Zheng, X.; Kolter, R. Simplified representative bacterial community of maize roots. Proc. Natl. Acad. Sci. USA 2017, 114, 2450–2459. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Yu, H.; Yu, Y.; Huang, J.; Zhou, Z.; Zeng, J.; Yan, Q. Ecological stability of microbial communities in Lake Donghu regulated by keystone taxa. Ecol. Indic. 2022, 136, 108695. [Google Scholar] [CrossRef]
- Nguyen, N.H.; Song, Z.; Bates, S.T.; Branco, S.; Tedersoo, L.; Menke, J.; Schilling, J.S.; Kennedy, P.G. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 2016, 20, 241–248. [Google Scholar] [CrossRef]
- Levins, R. Evolution in Changing Environments: Some Theoretical Explorations (No. 2); Princeton University Press: Princeton, NJ, USA, 1968. [Google Scholar]
- D’Amen, M.; Mod, H.K.; Gotelli, N.J.; Guisan, A. Disentangling biotic interactions, environmental filters, and dispersal limitation as drivers of species co-occurrence. Ecography 2018, 41, 1233–1244. [Google Scholar] [CrossRef]
- Yuan, M.M.; Guo, X.; Wu, L.W.; Zhang, Y.; Xiao, N.J.; Ning, D.L.; Shi, Z.; Zhou, X.S.; Wu, L.Y.; Yang, Y.F.; et al. Climate warming enhances microbial network complexity and stability. Nat. Clim. Change 2021, 11, 343–348. [Google Scholar] [CrossRef]
- McKinney, M.L. Urbanization as a major cause of biotic homogenization. Biol. Conserv. 2006, 127, 247–260. [Google Scholar] [CrossRef]
- Baiser, B.; Olden, J.D.; Record, S.; Lockwood, J.L.; McKinney, M.L. Pattern and process of biotic homogenization in the New Pangaea. Proc. R. Soc. B Biol. Sci. 2012, 279, 4772–4777. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wang, L.; Ji, S.; Chang, M.; Wang, L.; Gan, Y.; Liu, J. The ecology of the plastisphere: Microbial composition, function, assembly, and network in the freshwater and seawater ecosystems. Water Res. 2021, 202, 117428. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Pujari, L.; Wu, C.; Huang, D.; Wei, Y.; Guo, C.; Sun, J. Assembly processes and co-occurrence patterns of abundant and rare bacterial community in the Eastern Indian Ocean. Front. Microbiol. 2021, 12, 616956. [Google Scholar] [CrossRef] [PubMed]
- Comte, J.; Lovejoy, C.; Crevecoeur, S.; Vincent, W.F. Co-occurrence patterns in aquatic bacterial communities across changing permafrost landscapes. Biogeosciences 2016, 13, 175–190. [Google Scholar] [CrossRef]
- Magle, S.B.; Hunt, V.M.; Vernon, M.; Crooks, K.R. Urban wildlife research: Past, present, and future. Biol. Conserv. 2012, 155, 23–32. [Google Scholar] [CrossRef]
- Russo, D.; Ancillotto, L. Sensitivity of bats to urbanization: A review. Mamm. Biol. 2015, 80, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Oshiki, M.; Satoh, H.; Okabe, S. Ecology and physiology of anaerobic ammonium oxidizing bacteria. Environ. Microbiol. 2016, 18, 2784–2796. [Google Scholar] [CrossRef] [PubMed]
- Foerstner, K.U.; Mering, C.V.; Bork, P. Comparative analysis of environmental sequences: Potential and challenges. Philos. Trans. R. Soc. B Biol. Sci. 2006, 361, 519–523. [Google Scholar] [CrossRef] [PubMed]
- Lurgi, M.; Thomas, T.; Wemheuer, B.; Webster, N.S.; Montoya, J.M. Modularity and predicted functions of the global sponge-microbiome network. Nat. Commun. 2019, 10, 992. [Google Scholar] [CrossRef] [PubMed]
- Lupatini, M.; Suleiman, A.K.A.; Jacques, R.J.S.; Antoniolli, Z.I.; de Siqueira, F.A.; Kuramae, E.E.; Roesch, L.F.W. Network topology reveals high connectance levels and few key microbial genera within soils. Front. Environ. Sci. 2014, 2, 10. [Google Scholar] [CrossRef]
- Ma, B.; Wang, H.; Dsouza, M.; Lou, J.; He, Y.; Dai, Z.; Brookes, P.C.; Xu, J.; Gilbert, J.A. Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China. ISME J. 2016, 10, 1891–1901. [Google Scholar] [CrossRef] [PubMed]
- Kits, K.D.; Sedlacek, C.J.; Lebedeva, E.V.; Han, P.; Bulaev, A.; Pjevac, P.; Daebeler, A.; Romano, S.; Albertsen, M.; Stein, L.Y.; et al. Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature 2017, 549, 269–272. [Google Scholar] [CrossRef] [PubMed]
- Alberti, M.; Correa, C.; Marzluff, J.M.; Hendry, A.P.; Palkovacs, E.P.; Gotanda, K.M.; Hunt, V.M.; Apgar, T.M.; Zhou, Y. Global urban signatures of phenotypic change in animal and plant populations. Proc. Natl. Acad. Sci. USA 2017, 114, 8951–8956. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Deane, D.C.; Xing, H.; Yang, J.; Chen, J.; Liu, X.; Dong, S.; He, F.; Liu, Y. Structure and functions of soil microbial communities and tree composition are more closely associated with keystone microbes than rare microbes in a subtropical forest. J. Plant Ecol. 2025, 18, rtae105. [Google Scholar] [CrossRef]
- van Velzen, R.; Holmer, R.; Bu, F.; Rutten, L.; van Zeijl, A.; Liu, W.; Santuari, L.; Cao, Q.; Sharma, T.; Shen, D.; et al. Comparative genomics of the nonlegume Parasponia reveals insights into evolution of nitrogen-fixing rhizobium symbioses. Proc. Natl. Acad. Sci. USA 2018, 115, E4700–E4709. [Google Scholar] [CrossRef] [PubMed]
- Porter, S.S.; Faber-Hammond, J.; Montoya, A.P.; Friesen, M.L.; Sackos, C. Dynamic genomic architecture of mutualistic cooperation in a wild population of Mesorhizobium. ISME J. 2019, 13, 301–315. [Google Scholar] [CrossRef] [PubMed]
- Hutchins, D.A.; Fu, F.X. Microorganisms and ocean global change. Nat. Microbiol. 2017, 25, 17508. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, A.A.; Sgrò, C.M. Climate change and evolutionary adaptation. Nature 2011, 470, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Frindte, K.; Pape, R.; Werner, K.; Löffler, J.; Knief, C. Temperature soil moisture control microbial community composition in an arctic–alpine ecosystem along elevational micro-topographic gradients. ISME J. 2019, 13, 2031–2043. [Google Scholar] [CrossRef] [PubMed]
- Bahram, M.; Hildebrand, F.; Forslund, S.K.; Anderson, J.L.; Soudzilovskaia, N.A.; Bodegom, P.M.; Bork, P. Structure and function of the global topsoil microbiome. Nature 2018, 560, 233–237. [Google Scholar] [CrossRef] [PubMed]
- Zhalnina, K.; Dias, R.; de Quadros, P.D.; Davis-Richardson, A.; Camargo, F.A.; Clark, I.M.; McGrath, S.P.; Hirsch, P.R.; Triplett, E.W. Soil pH determines microbial diversity and composition in the park grass experiment. Microb. Ecol. 2015, 69, 395–406. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Zheng, Y.Y.; Teng, J.H.; Song, J.X.; Wang, X.M.; Zhao, Q. The seasonal variation of microbial communities in drinking water sources in Shanghai. J. Clean. Prod. 2020, 265, 10. [Google Scholar] [CrossRef]
- Zhang, J.D.; Li, S.Y.; Sun, X.Y.; Tong, J.; Fu, Z.; Li, J. Sustainability of urban soil management: Analysis of soil physicochemical properties and bacterial community structure under different green space types. Sustainability 2019, 11, 1395. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iram, N.; Ren, Y.; Zhao, R.; Zhao, S.; Dong, C.; Han, Y.; Zhang, Y. Deciphering Soil Keystone Microbial Taxa: Structural Diversity and Co-Occurrence Patterns from Peri-Urban to Urban Landscapes. Microorganisms 2025, 13, 1726. https://doi.org/10.3390/microorganisms13081726
Iram N, Ren Y, Zhao R, Zhao S, Dong C, Han Y, Zhang Y. Deciphering Soil Keystone Microbial Taxa: Structural Diversity and Co-Occurrence Patterns from Peri-Urban to Urban Landscapes. Microorganisms. 2025; 13(8):1726. https://doi.org/10.3390/microorganisms13081726
Chicago/Turabian StyleIram, Naz, Yulian Ren, Run Zhao, Shui Zhao, Chunbo Dong, Yanfeng Han, and Yanwei Zhang. 2025. "Deciphering Soil Keystone Microbial Taxa: Structural Diversity and Co-Occurrence Patterns from Peri-Urban to Urban Landscapes" Microorganisms 13, no. 8: 1726. https://doi.org/10.3390/microorganisms13081726
APA StyleIram, N., Ren, Y., Zhao, R., Zhao, S., Dong, C., Han, Y., & Zhang, Y. (2025). Deciphering Soil Keystone Microbial Taxa: Structural Diversity and Co-Occurrence Patterns from Peri-Urban to Urban Landscapes. Microorganisms, 13(8), 1726. https://doi.org/10.3390/microorganisms13081726