Oral Dysbiosis Is Associated with the Pathogenesis of Aortic Valve Diseases
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Measurement of Serum Antibody Titer Against Periodontal Pathogenic Bacteria
2.3. DNA Extraction from the Aortic Valve or Oral Bacteria
2.4. Confirmation of Bacterial DNA in the Extracted Samples
2.5. 16S rRNA Gene Amplicon Sequencing Analysis
2.6. Microbial Population Analysis
2.7. Statistical Analysis
3. Results
3.1. Periodontitis and Aortic Valve Condition in Patients with Aortic Valve Disease
3.2. Measurement of Serum Antibody Titer Against Periodontal Pathogenic Bacteria in Patients with Aortic Valve Disease
3.3. Taxonomy Analysis
3.4. α-Diversity and β-Diversity
3.5. Characteristics of Bacteria Detected in the Tongue, Dental Plaque, and Resected Aortic Valve
3.6. Identification of the Same ASV in the V3 -V4 Region of the 16S rRNA Sequence in the Tongue, Dental Plaque, and Resected Aortic Valve
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Kumar, P.S. From focal sepsis to periodontal medicine: A century of exploring the role of the oral microbiome in systemic disease. J. Physiol. 2017, 595, 465–476. [Google Scholar] [CrossRef] [PubMed]
- Freire, K.; Nelson, K.E.; Edlund, A. The oral host–microbial interactome: An ecological chronometer of health? Trends Microbiol. 2021, 29, 551–561. [Google Scholar] [CrossRef] [PubMed]
- Sampaio-Maia, B.; Caldas, I.M.; Pereira, M.L.; Pérez-Mongiovi, D.; Araujo, R. The oral microbiome in health and its implication in oral and systemic diseases. Adv. Appl. Microbiol. 2016, 97, 171–210. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, S.; Nakagawa, H.; Kuwata, H.; Nabuchi, A.; Yaso, A.; Shirota, T. Metagenomic analysis of oral plaques and aortic valve tissues reveals oral bacteria associated with aortic stenosis. Clin. Oral Investig. 2023, 27, 4335–4344. [Google Scholar] [CrossRef] [PubMed]
- Pardo, A.; Signoriello, A.; Signoretto, C.; Messina, E.; Carelli, M.; Tessari, M.; De Manna, N.D.; Rossetti, C.; Albanese, M.; Lombardo, G. Detection of periodontal pathogens in oral samples and cardiac specimens in patients undergoing aortic valve replacement: A pilot study. J. Clin. Med. 2021, 10, 3874. [Google Scholar] [CrossRef] [PubMed]
- Joseph, J.; Naqvi, S.Y.; Giri, J.; Goldberg, S. Aortic stenosis: Pathophysiology, diagnosis, and therapy. Am. J. Med. 2017, 130, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Boskovski, M.T.; Gleason, T.G. Current therapeutic options in aortic stenosis. Circ. Res. 2021, 128, 1398–1417. [Google Scholar] [CrossRef] [PubMed]
- Hakata, K.; Kawamata, H.; Imai, Y. Implication of the oral bacteria on the onset of infective endocarditis. Dokkyo J. Med. Sci. 2014, 41, 103–113. [Google Scholar] [CrossRef]
- Caton, J.G.; Armitage, G.; Berglundh, T.; Chapple, I.L.C.; Jepsen, S.; Kornman, K.S.; Mealey, B.L.; Papapanou, P.N.; Sanz, M.; Tonetti, M.S. A new classification scheme for periodontal and peri-implant diseases and conditions–introduction and key changes from the 1999 classification. J. Clin. Periodontol. 2018, 45 (Suppl. 20), S1–S8. [Google Scholar] [CrossRef] [PubMed]
- Nishi, H.; Hosomi, N.; Ohta, K.; Aoki, S.; Nakamori, M.; Nezu, T.; Shigeishi, H.; Shintani, T.; Obayashi, T.; Ishikawa, K.; et al. Serum immunoglobulin G antibody titer to Fusobacterium nucleatum is associated with unfavorable outcome after stroke. Clin. Exp. Immunol. 2020, 200, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Aydin, S. A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA. Peptides 2015, 72, 4–15. [Google Scholar] [CrossRef] [PubMed]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef] [PubMed]
- Robeson, M.S.; O’Rourke, D.R.; Kaehler, B.D.; Ziemski, M.; Dillon, M.R.; Foster, J.T.; Bokulich, N.A. RESCRIPt: Reproducible sequence taxonomy reference database management. PLoS Comput. Biol. 2021, 17, e1009581. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 3 March 2022).
- Fan, C.; Zhang, D. A note on power and sample size calculations for the Kruskal-Wallis test for ordered categorical data. J Biopharm. Stat. 2012, 22, 1162–1173. [Google Scholar] [CrossRef] [PubMed]
- Lozupone, C.A.; Knight, R. Species divergence and the measurement of microbial diversity. FEMS Microbiol. Rev. 2008, 32, 557–578. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Sun, F.; Lin, W.; Zhang, S. AC-PCoA: Adjustment for confounding factors using principal coordinate analysis. PLoS Comput. Biol. 2022, 18, e1010184. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.; Hu, Y.J. Extension of PERMANOVA to Testing the Mediation Effect of the Microbiome. Genes 2022, 13, 940. [Google Scholar] [CrossRef] [PubMed]
- Oksanen, J.; Simpson, G.; Blanchet, F.; Kindt, R.; Legendre, P.; Minchin, P.; O’Hara, R.; Solymos, P.; Stevens, M.; Szoecs, E.; et al. Vegan: Community Ecology Package, R package version 2.6-4; 2022. Available online: https://cran.r-project.org/src/contrib/Archive/vegan/ (accessed on 26 June 2025).
- Japanese Ministry of Health, Labour and Welfare. Heisei 28 Nen Shikasikkanjittaityousa [Dental Disease Survey]; Japanese Ministry of Health, Labour and Welfare: Tokyo, Japan, 2016.
- Socransky, S.; Haffajee, A. Dental biofilms: Difficult therapeutic targets. Periodontol. 2000 2002, 28, 12–55. [Google Scholar] [CrossRef] [PubMed]
- Ziebolz, D.; Jahn, C.; Pegel, J.; Semper-Pinnecke, E.; Mausberg, R.F.; Waldmann-Beushausen, R.; Schöndube, F.A.; Danner, B.C. Periodontal bacteria DNA findings in human cardiac tissue—Is there a link of periodontitis to heart valve disease? Int. J. Cardiol. 2018, 251, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Bartova, J.; Sommerova, P.; Lyuya-Mi, Y.; Mysak, J.; Prochazkova, J.; Duskova, J.; Janatova, T.; Podzimek, S. Periodontitis as a risk factor of atherosclerosis. J. Immunol. Res. 2014, 2014, 636893. [Google Scholar] [CrossRef] [PubMed]
- Olsen, I.; Taubman, M.A.; Singhrao, S.K. Porphyromonas gingivalis suppresses adaptive immunity in periodontitis, atherosclerosis, and Alzheimer’s disease. J. Oral Microbiol. 2016, 8, 33029. [Google Scholar] [CrossRef] [PubMed]
- Schenkein, H.A.; Papapanou, P.N.; Genco, R.; Sanz, M. Mechanisms underlying the association between periodontitis and atherosclerotic disease. Periodontol. 2000 2020, 83, 90–106. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, C.P.; Oliveira, F.A.F.; de Barros Silva, P.G.; Alves, A.P.N.N.; Mota, M.R.L.; Montenegro, R.C.; Burbano, R.M.R.; Seabra, A.D.; Filho, J.G.L.; Lima, D.L.F.; et al. Molecular analysis of oral bacteria in dental biofilm and atherosclerotic plaques of patients with vascular disease. Int. J Cardiol. 2014, 174, 710–712. [Google Scholar] [CrossRef] [PubMed]
- Rath, S.K.; Mukherjee, M.; Kaushik, R.; Sen, S.; Kumar, M. Periodontal pathogens in atheromatous plaque. Indian J. Pathol. Microbiol. 2014, 57, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Carrizales-Sepúlveda, E.F.; Ordaz-Farías, A.; Vera-Pineda, R.; Flores-Ramírez, R. Periodontal disease, systemic inflammation and the risk of cardiovascular disease. Heart Lung Circ. 2018, 27, 1327–1334. [Google Scholar] [CrossRef] [PubMed]
- Pyysalo, M.J.; Pyysalo, L.M.; Pessi, T.; Karhunen, P.J.; Öhman, J.E. The connection between ruptured cerebral aneurysms and odontogenic bacteria. J. Neurol. Neurosurg. Psychiatry 2013, 84, 1214–1218. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, Y.; Ouhara, K.; Kitagawa, M.; Akutagawa, K.; Kawada-Matsuo, M.; Tamura, T.; Zhai, R.; Hamamoto, Y.; Kajiya, M.; Matsuda, S.; et al. Periapical lesion following Cnm-positive Streptococcus mutans pulp infection worsens cerebral hemorrhage onset in an SHRSP rat model. Clin. Exp. Immunol. 2022, 210, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Hosoki, S.; Saito, S.; Tonomura, S.; Ishiyama, H.; Yoshimoto, T.; Ikeda, S.; Ikenouchi, H.; Yamamoto, Y.; Hattori, Y.; Miwa, K.; et al. Oral carriage of Streptococcus mutans harboring the cnm gene relates to an increased incidence of cerebral microbleeds. Stroke 2020, 51, 3632–3639. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, F.A.F.; Forte, C.P.F.; de Barros Silva, P.G.; Lopes, C.B.; Montenegro, R.C.; Dos Santos, Â.K.C.R.; Sobrinho, C.R.M.R.; Mota, M.R.L.; Sousa, F.B.; Alves, A.P.N.N. Molecular Analysis of Oral Bacteria in Heart Valve of Patients With Cardiovascular Disease by Real-Time Polymerase Chain Reaction. Medicine 2015, 94, e2067. [Google Scholar] [CrossRef] [PubMed]
- Nakano, K.; Nemoto, H.; Nomura, R.; Inaba, H.; Yoshioka, H.; Taniguchi, K.; Amano, A.; Ooshima, T. Detection of oral bacteria in cardiovascular specimens. Oral Microbiol. Immunol. 2009, 24, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Cohen, D.J.; Malave, D.; Ghidoni, J.J.; Iakovidis, P.; Everett, M.M.; You, S.; Liu, Y.; Boyan, B.D. Role of oral bacterial flora in calcific aortic stenosis: An animal model. Ann. Thorac. Surg. 2004, 77, 537–543. [Google Scholar] [CrossRef] [PubMed]
- Raffaelli, L.; Santangelo, R.; Falchetti, P.; Galluccio, F.; Luciani, N.; Anselmi, A.; Nowzari, H.; Verdugo, F.; Fadda, G.; D’ADdona, A. Examination of periodontal pathogens in stenotic valve specimens and in whole blood samples in patients affected by aortic valve stenosis and chronic periodontitis. Int. J. Immunopathol. Pharmacol. 2010, 23, 561–566. [Google Scholar] [CrossRef] [PubMed]
- Hokamura, K.; Umemura, K. Roles of oral bacteria in cardiovascular diseases—From molecular mechanisms to clinical cases: Porphyromonas gingivalis is the important role of intimal hyperplasia in the aorta. J. Pharmacol. Sci. 2010, 113, 110–114. [Google Scholar] [CrossRef] [PubMed]
- Tsubura-Okubo, M.; Komiyama, Y.; Kamimura, R.; Sawatani, Y.; Arai, H.; Mitani, K.; Haruyama, Y.; Kobashi, G.; Ishihama, H.; Uchida, D.; et al. Oral management with polaprezinc solution reduces adverse events in hematopoietic stem cell transplantation patients. Int. J. Oral Maxillofac. Surg. 2021, 50, 906–914. [Google Scholar] [CrossRef] [PubMed]
Age | ||
Mean ± 1SD | 74.125 ± 8.172 | |
Median | 76 | |
N | % | |
Gender | ||
male | 17 | 53.125 |
female | 15 | 46.875 |
Stage of periodontitis | ||
I | 5 | 15.625 |
II | 2 | 6.25 |
III | 5 | 15.625 |
IV | 10 | 31.25 |
edentulous | 10 | 31.25 |
Number of remaining teeth | ||
21~ | 11 | 34.375 |
11~20 | 6 | 18.75 |
1~10 | 5 | 15.625 |
Valvular findings (duplicate) | ||
calcification | 26 | 81.25 |
bicuspid | 7 | 21.875 |
no abnormal findings | 4 | 12.5 |
Aortic valve disease | ||
severe AS | 25 | 78.125 |
moderate–severe AS | 2 | 6.25 |
moderate AS | 3 | 9.375 |
severe AR | 1 | 3.125 |
moderate–severe AR | 1 | 3.125 |
Number of patients with bacterial DNA detected from resected aortic valves by PCR; in total 32 patients examined | 12 | 37.5 |
Number of patients with sufficient bacterial DNA collected from aortic valves for metagenomic analysis in the 12 patients examined | 6 | 50 |
Number of patients with 100% ASV match between oral bacteria and bacteria collected from aortic valves in the 6 patients examined | 6 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yaguchi, E.; Komiyama, Y.; Inami, S.; Shibasaki, I.; Shintani, T.; Shiraishi, R.; Hyodo, T.; Shiba, H.; Hamaguchi, S.; Fukuda, H.; et al. Oral Dysbiosis Is Associated with the Pathogenesis of Aortic Valve Diseases. Microorganisms 2025, 13, 1677. https://doi.org/10.3390/microorganisms13071677
Yaguchi E, Komiyama Y, Inami S, Shibasaki I, Shintani T, Shiraishi R, Hyodo T, Shiba H, Hamaguchi S, Fukuda H, et al. Oral Dysbiosis Is Associated with the Pathogenesis of Aortic Valve Diseases. Microorganisms. 2025; 13(7):1677. https://doi.org/10.3390/microorganisms13071677
Chicago/Turabian StyleYaguchi, Erika, Yuske Komiyama, Shu Inami, Ikuko Shibasaki, Tomoaki Shintani, Ryo Shiraishi, Toshiki Hyodo, Hideki Shiba, Shinsuke Hamaguchi, Hirotsugu Fukuda, and et al. 2025. "Oral Dysbiosis Is Associated with the Pathogenesis of Aortic Valve Diseases" Microorganisms 13, no. 7: 1677. https://doi.org/10.3390/microorganisms13071677
APA StyleYaguchi, E., Komiyama, Y., Inami, S., Shibasaki, I., Shintani, T., Shiraishi, R., Hyodo, T., Shiba, H., Hamaguchi, S., Fukuda, H., Toyoda, S., Fukumoto, C., Izumi, S., Wakui, T., & Kawamata, H. (2025). Oral Dysbiosis Is Associated with the Pathogenesis of Aortic Valve Diseases. Microorganisms, 13(7), 1677. https://doi.org/10.3390/microorganisms13071677