The Biological Functions of Yeast and Yeast Derivatives and Their Application in Swine Production: A Review
Abstract
1. Introduction
2. The Main Sources of Yeast in Pig Production
2.1. Saccharomyces cerevisiae
2.2. Beer Yeast
2.3. Pichia Pastoris
2.4. Kluyveromyces fragilis
2.5. Kluyveromyces marxianus
2.6. Saccharomyces boulardii
3. Yeast Bioactive Compounds
3.1. β-Glucan
3.2. Mannan
3.3. Chitin
3.4. Yeast Nucleotides
3.5. Amino Acids
4. The Biological Functions of Yeast and Its Derivatives in Animal Husbandry
4.1. Appetite-Stimulating Effect
4.2. Anti-Inflammatory Effects
4.3. Antioxidant Effects
4.4. Antimicrobial Effects
4.5. Maintaining Intestinal Health
4.6. Immune Regulation
5. Application of Yeast and Its Derivatives in Pig Production
5.1. Sows
5.1.1. Enhancing Reproductive Performance and Gut Health
5.1.2. Improving Placental Function and Immune Transfer
5.1.3. Reducing Oxidative Stress and Enhancing Maternal Health
5.2. Weaned Piglet
5.2.1. Enhancing Gut Health and Microbial Balance
5.2.2. Improving Nutrient Utilization and Digestive Function
5.2.3. Boosting Antioxidant Capacity and Reducing Oxidative Stress
5.2.4. Strengthening Immunity and Disease Resistance
5.3. Growing-Finishing Pigs
5.3.1. Enhancing Meat Quality and Growth Performance
5.3.2. Supporting Heat Stress Adaptation and Energy Metabolism
5.3.3. Modulating Gut Microbiota and Immune Function
5.3.4. Improving Antioxidant Capacity and Lipid Metabolism
6. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gui, L.; Chen, X.; Zhou, L.; Yan, X.; Liu, M.; Hou, S.; Wang, Z. Effects of Adding Yeast Cultures to Diets on Growth Performance and Rumen Microbial Diversity of Qinghai Tibetan Sheep. J. Sichuan Agric. Univ. 2023, 41, 912–917. [Google Scholar]
- Elghandour, M.M.Y.; Tan, Z.L.; Abu Hafsa, S.H.; Adegbeye, M.J.; Greiner, R.; Ugbogu, E.A.; Cedillo Monroy, J.; Salem, A.Z.M. Saccharomyces cerevisiae as a probiotic feed additive to non and pseudo-ruminant feeding: A review. J. Appl. Microbiol. 2020, 128, 658–674. [Google Scholar] [CrossRef]
- Peng, X.; Yan, C.; Hu, L.; Huang, Y.; Fang, Z.; Lin, Y.; Xu, S.; Feng, B.; Li, J.; Zhuo, Y.; et al. Live yeast supplementation during late gestation and lactation affects reproductive performance, colostrum and milk composition, blood biochemical and immunological parameters of sows. Anim. Nutr. 2020, 6, 288–292. [Google Scholar] [CrossRef]
- Namted, S.; Poungpong, K.; Loongyai, W.; Rakangthong, C.; Bunchasak, C. Dietary autolysed yeast modulates blood profiles, small intestinal morphology and caecal microbiota of weaning pigs. Animal 2022, 16, 100660. [Google Scholar] [CrossRef]
- Pais, P.; Almeida, V.; Yılmaz, M.; Teixeira, M.C. Saccharomyces boulardii: What Makes It Tick as Successful Probiotic? J. Fungi 2020, 6, 78. [Google Scholar] [CrossRef]
- Valini, G.A.C.; Duarte, M.S.; Calderano, A.A.; Teixeira, L.M.; Rodrigues, G.A.; Fernandes, K.M.; Veroneze, R.; Serão, N.V.L.; Mantovani, H.C.; Rocha, G.C. Dietary nucleotide supplementation as an alternative to in-feed antibiotics in weaned piglets. Animal 2021, 15, 100021. [Google Scholar] [CrossRef]
- Che, D.; Adams, S.; Zhao, B.; Qin, G.; Jiang, H. Effects of Dietary L-arginine Supplementation from Conception to Post- Weaning in Piglets. Curr. Protein Pept. Sci. 2019, 20, 736–749. [Google Scholar] [CrossRef]
- Goh, T.W.; Kim, H.J.; Moon, K.; Kim, Y.Y. Effects of β-glucan with vitamin E supplementation on the growth performance, blood profiles, immune response, pork quality, pork flavor, and economic benefit in growing and finishing pigs. Anim. Biosci. 2023, 36, 929–942. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Shi, B.; Yan, S.; Li, T.; Guo, Y.; Li, J. Effects of chitosan on body weight gain, growth hormone and intestinal morphology in weaned pigs. Asian-Australas. J. Anim. Sci. 2013, 26, 1484–1489. [Google Scholar] [CrossRef]
- Goodridge, H.S.; Wolf, A.J.; Underhill, D.M. Beta-glucan recognition by the innate immune system. Immunol. Rev. 2009, 230, 38–50. [Google Scholar] [CrossRef]
- Camilli, G.; Tabouret, G.; Quintin, J. The Complexity of Fungal β-Glucan in Health and Disease: Effects on the Mononuclear Phagocyte System. Front. Immunol. 2018, 9, 673. [Google Scholar] [CrossRef] [PubMed]
- Agazzi, A.; Perricone, V.; Omodei Zorini, F.; Sandrini, S.; Mariani, E.; Jiang, X.R.; Ferrari, A.; Crestani, M.; Nguyen, T.X.; Bontempo, V.; et al. Dietary Mannan Oligosaccharides Modulate Gut Inflammatory Response and Improve Duodenal Villi Height in Post-Weaning Piglets Improving Feed Efficiency. Animals 2020, 10, 1283. [Google Scholar] [CrossRef] [PubMed]
- Fouhse, J.M.; Dawson, K.; Graugnard, D.; Dyck, M.; Willing, B.P. Dietary supplementation of weaned piglets with a yeast-derived mannan-rich fraction modulates cecal microbial profiles, jejunal morphology and gene expression. Animal 2019, 13, 1591–1598. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Xie, C.; Liang, X.; Li, Z.; Li, B.; Wu, X.; Yin, Y. Yeast-based nucleotide supplementation in mother sows modifies the intestinal barrier function and immune response of neonatal pigs. Anim. Nutr. 2021, 7, 84–93. [Google Scholar] [CrossRef]
- Yin, C.-G.; Comi, M.; Cai, L.; Chen, W.-N.; Perricone, V.; Xiao, J.F.; Agazzi, A.; Li, X.L.; Jiang, X.R. Hydrolysed yeast from Kluyveromyces fragilis improves plasma antioxidant efficiency and immunoglobulin concentration, and faecal microbiota of weaned piglets. Ital. J. Anim. Sci. 2023, 22, 578–588. [Google Scholar] [CrossRef]
- Liu, Y.; Huo, B.; Chen, Z.; Wang, K.; Huang, L.; Che, L.; Feng, B.; Lin, Y.; Xu, S.; Zhuo, Y.; et al. Effects of Organic Chromium Yeast on Performance, Meat Quality, and Serum Parameters of Grow-Finish Pigs. Biol. Trace Elem. Res. 2023, 201, 1188–1196. [Google Scholar] [CrossRef]
- Mayorga, E.J.; Kvidera, S.K.; Horst, E.A.; Al-Qaisi, M.; McCarthy, C.S.; Abeyta, M.A.; Lei, S.; Elsasser, T.H.; Kahl, S.; Kiros, T.G.; et al. Effects of dietary live yeast supplementation on growth performance and biomarkers of metabolism and inflammation in heat-stressed and nutrient-restricted pigs. Transl. Anim. Sci. 2021, 5, txab072. [Google Scholar] [CrossRef]
- Xu, S.; Jia, X.; Liu, Y.; Pan, X.; Chang, J.; Wei, W.; Lu, P.; Petry, D.; Che, L.; Jiang, X.; et al. Effects of yeast-derived postbiotic supplementation in late gestation and lactation diets on performance, milk quality, and immune function in lactating sows. J. Anim. Sci. 2023, 101, skad201. [Google Scholar] [CrossRef]
- Ballet, N.; Renaud, S.; Roume, H.; George, F.; Vandekerckove, P.; Boyer, M.; Durand-Dubief, M. Saccharomyces cerevisiae: Multifaceted Applications in One Health and the Achievement of Sustainable Development Goals. Encyclopedia 2023, 3, 602–613. [Google Scholar] [CrossRef]
- Pereira, P.R.; Freitas, C.S.; Paschoalin, V.M.F. Saccharomyces cerevisiae biomass as a source of next-generation food preservatives: Evaluating potential proteins as a source of antimicrobial peptides. Compr. Rev. Food Sci. Food Saf. 2021, 20, 4450–4479. [Google Scholar] [CrossRef]
- Que, Z.; Wang, S.; Wei, M.; Fang, Y.; Ma, T.; Wang, X.; Sun, X. The powerful function of Saccharomyces cerevisiae in food science and other fields: A critical review. Food Innov. Adv. 2024, 3, 167–180. [Google Scholar] [CrossRef]
- Feng, P.P.; Sun, L.J.; Xiao, D.G.; Xie, X.; Song, F.; Zhang, C.Y. Research progress on metabolism and regulation of higher alcohols in beer yeast. Food Res. Dev. 2021, 42, 153–159. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, J.; Li, L.; Zheng, F.; Li, Q. Protective Effects of Exogenous Trehalose on Brewer’s Yeast under Heat Stress. J. Food Sci. Biotechnol. 2020, 39, 43–50. [Google Scholar]
- Vieira, E.; Cunha, S.C.; Ferreira, I.M.P.L.V.O. Characterization of a Potential Bioactive Food Ingredient from Inner Cellular Content of Brewer’s Spent Yeast. Waste Biomass Valorization 2019, 10, 3235–3242. [Google Scholar] [CrossRef]
- Feldmann, H. Yeast Cell Architecture and Functions. In Yeast; Wiley: Hoboken, NJ, USA, 2012; pp. 5–24. [Google Scholar]
- Tao, Z.; Yuan, H.; Liu, M.; Liu, Q.; Zhang, S.; Liu, H.; Jiang, Y.; Huang, D.; Wang, T. Yeast Extract: Characteristics, Production, Applications and Future Perspectives. J. Microbiol. Biotechnol. 2023, 33, 151–166. [Google Scholar] [CrossRef] [PubMed]
- Bryant, R.W.; Cohen, S.D. Characterization of hop acids in spent brewer’s yeast from craft and multinational sources. J. Am. Soc. Brew. Chem. 2015, 73, 159–164. [Google Scholar] [CrossRef]
- Puligundla, P.; Mok, C.; Park, S. Advances in the valorization of spent brewer’s yeast. Innov. Food Sci. Emerg. Technol. 2020, 62, 102350. [Google Scholar] [CrossRef]
- Estévez, A.; Padrell, L.; Iñarra, B.; Orive, M.; Martin, D.S. Brewery by-products (yeast and spent grain) as protein sources in gilthead seabream (Sparus aurata) feeds. Aquaculture 2021, 543, 736921. [Google Scholar] [CrossRef]
- Yamada, R. Chapter 17—Pichia pastoris-based microbial cell factories. In Microbial Cell Factories Engineering for Production of Biomolecules; Singh, V., Ed.; Academic Press: Sydney, Australia, 2021; pp. 335–344. [Google Scholar]
- Rahimnejad, S.; Yuan, X.Y.; Liu, W.B.; Jiang, G.Z.; Cao, X.F.; Dai, Y.J.; Wang, C.C.; Desouky, H.E. Evaluation of antioxidant capacity and immunomodulatory effects of yeast hydrolysates for hepatocytes of blunt snout bream (Megalobrama amblycephala). Fish Shellfish Immunol. 2020, 106, 142–148. [Google Scholar] [CrossRef]
- Lane, M.M.; Morrissey, J.P. Kluyveromyces marxianus: A yeast emerging from its sister’s shadow. Fungal Biol. Rev. 2010, 24, 17–26. [Google Scholar] [CrossRef]
- Fonseca, G.G.; Heinzle, E.; Wittmann, C.; Gombert, A.K. The yeast Kluyveromyces marxianus and its biotechnological potential. Appl. Microbiol. Biotechnol. 2008, 79, 339–354. [Google Scholar] [CrossRef] [PubMed]
- Paul, D.; Mukhopadhyay, R.; Chatterjee, B.P.; Guha, A.K. Nutritional profile of food yeast Kluyveromyces fragilis biomass grown on whey. Appl. Biochem. Biotechnol. 2002, 97, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Koukoumaki, D.I.; Papanikolaou, S.; Ioannou, Z.; Mourtzinos, I.; Sarris, D. Single-Cell Protein and Ethanol Production of a Newly Isolated Kluyveromyces marxianus Strain through Cheese Whey Valorization. Foods 2024, 13, 1892. [Google Scholar] [CrossRef] [PubMed]
- Tullio, V. Probiotic Yeasts: A Developing Reality? J. Fungi 2024, 10, 489. [Google Scholar] [CrossRef]
- Xu, Z.; Yang, L.; Chen, H.; Bai, P.; Li, X.; Liu, D. Transcriptomic characterization of the functional and morphological development of the rumen wall in weaned lambs fed a diet containing yeast co-cultures of Saccharomyces cerevisiae and Kluyveromyces marxianus. Front. Vet. Sci. 2025, 12, 1510689. [Google Scholar] [CrossRef]
- Fu, J.; Liu, J.; Wen, X.; Zhang, G.; Cai, J.; Qiao, Z.; An, Z.; Zheng, J.; Li, L. Unique Probiotic Properties and Bioactive Metabolites of Saccharomyces boulardii. Probiotics Antimicrob. Proteins 2023, 15, 967–982. [Google Scholar] [CrossRef]
- Roy Sarkar, S.; Mitra Mazumder, P.; Chatterjee, K.; Sarkar, A.; Adhikary, M.; Mukhopadhyay, K.; Banerjee, S. Saccharomyces boulardii ameliorates gut dysbiosis associated cognitive decline. Physiol. Behav. 2021, 236, 113411. [Google Scholar] [CrossRef]
- Sampath, V.; Sureshkumar, S.; Kim, I.H. The Efficacy of Yeast Supplementation on Monogastric Animal Performance-A Short Review. Life 2023, 13, 2037. [Google Scholar] [CrossRef]
- Wang, J.; Li, M.; Zheng, F.; Niu, C.; Liu, C.; Li, Q.; Sun, J. Cell wall polysaccharides: Before and after autolysis of brewer’s yeast. World J. Microbiol. Biotechnol. 2018, 34, 137. [Google Scholar] [CrossRef]
- Galinari, É.; Sabry, D.A.; Sassaki, G.L.; Macedo, G.R.; Passos, F.M.L.; Mantovani, H.C.; Rocha, H.A.O. Chemical structure, antiproliferative and antioxidant activities of a cell wall α-d-mannan from yeast Kluyveromyces marxianus. Carbohydr. Polym. 2017, 157, 1298–1305. [Google Scholar] [CrossRef]
- Mahmoud, S.H.; Yassein, S.N. Characterization of β-glucan obtained from Candida albicans of caprine mastitis. Open Vet. J. 2024, 14, 1269–1280. [Google Scholar] [CrossRef]
- Wang, M.; Pan, J.; Xiang, W.; You, Z.; Zhang, Y.; Wang, J.; Zhang, A. β-glucan: A potent adjuvant in immunotherapy for digestive tract tumors. Front. Immunol. 2024, 15, 1424261. [Google Scholar] [CrossRef]
- Goh, T.W.; Kim, H.J.; Moon, K.; Kim, C.S.; Kim, Y.Y. Effects of β-glucan with vitamin E supplementation on the growth performance, blood profiles, immune response, fecal microbiota, fecal score, and nutrient digestibility in weaning pigs. Anim. Biosci. 2023, 36, 642–653. [Google Scholar] [CrossRef] [PubMed]
- Venardou, B.; O’Doherty, J.V.; McDonnell, M.J.; Mukhopadhya, A.; Kiely, C.; Ryan, M.T.; Sweeney, T. Evaluation of the in vitro effects of the increasing inclusion levels of yeast β-glucan, a casein hydrolysate and its 5 kDa retentate on selected bacterial populations and strains commonly found in the gastrointestinal tract of pigs. Food Funct. 2021, 12, 2189–2200. [Google Scholar] [CrossRef] [PubMed]
- Gao, G.; Cai, L.; Fan, Y.; Aroche Ginarte, R.; Li, Y.; Sun, W.; Jiang, X.; Li, X.; Pi, Y. Effects of Different Hemicellulose Components on Fermentation Kinetics and Microbial Composition in Fecal Inoculum from Suckling Piglets In Vitro. ACS Omega 2025, 10, 9120–9131. [Google Scholar] [CrossRef]
- Wu, Y.; Li, Y.; Chen, M.; Zhao, J.; Xiong, X.; Olnood, C.G.; Gao, Y.; Wang, F.; Peng, C.; Liu, M.; et al. The effect of a water-soluble β-glucan on intestinal immunity and microbiota in LPS-challenged piglets. Front. Vet. Sci. 2025, 12, 1533872. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wu, Q.; Wu, X.; Algharib, S.A.; Gong, F.; Hu, J.; Luo, W.; Zhou, M.; Pan, Y.; Yan, Y.; et al. Structure, preparation, modification, and bioactivities of β-glucan and mannan from yeast cell wall: A review. Int. J. Biol. Macromol. 2021, 173, 445–456. [Google Scholar] [CrossRef]
- Raymundo, D.L.; Borges, P.C.; Barbosa, K.; Utiumi, K.U.; Varaschin, M.S.; Leal, D.F.; Silva, S.R., Jr.; Resende, M.; Barbosa, J.A.; de Souza Cantarelli, V. Effects of dietary yeast mannan-rich fraction supplementation on growth performance, intestinal morphology, and lymphoid tissue characteristics in weaned piglets challenged with Escherichia coli F4. Trop. Anim. Health Prod. 2024, 56, 179. [Google Scholar] [CrossRef]
- Saberi Riseh, R.; Gholizadeh Vazvani, M.; Vatankhah, M.; Kennedy, J.F. Chitin-induced disease resistance in plants: A review. Int. J. Biol. Macromol. 2024, 266, 131105. [Google Scholar] [CrossRef]
- Hameed, H.; Khan, M.A.; Paiva-Santos, A.C.; Ereej, N.; Faheem, S. Chitin: A versatile biopolymer-based functional therapy for cartilage regeneration. Int. J. Biol. Macromol. 2024, 265, 131120. [Google Scholar] [CrossRef]
- Tabata, E.; Kashimura, A.; Wakita, S.; Ohno, M.; Sakaguchi, M.; Sugahara, Y.; Imamura, Y.; Seki, S.; Ueda, H.; Matoska, V.; et al. Protease resistance of porcine acidic mammalian chitinase under gastrointestinal conditions implies that chitin-containing organisms can be sustainable dietary resources. Sci. Rep. 2017, 7, 12963. [Google Scholar] [CrossRef]
- Gao, L.M.; Zhou, T.T.; Chen, Z.P.; Wassie, T.; Li, B.; Wu, X.; Yin, Y.L. Maternal yeast-based nucleotide supplementation decreased stillbirth by regulating nutrient metabolism. J. Sci. Food Agric. 2021, 101, 4018–4032. [Google Scholar] [CrossRef] [PubMed]
- Leung, H.; Yitbarek, A.; Snyder, R.; Patterson, R.; Barta, J.R.; Karrow, N.; Kiarie, E. Responses of broiler chickens to Eimeria challenge when fed a nucleotide-rich yeast extract. Poult. Sci. 2019, 98, 1622–1633. [Google Scholar] [CrossRef] [PubMed]
- Duttlinger, A.W.; Centeno Martinez, R.E.; McConn, B.R.; Kpodo, K.R.; Lay, D.C.; Richert, B.T.; Johnson, T.A.; Johnson, J.S. Replacing dietary antibiotics with 0.20% l-glutamine in swine nursery diets: Impact on intestinal physiology and the microbiome following weaning and transport. J. Anim. Sci. 2021, 99, skab091. [Google Scholar] [CrossRef]
- Mi, M.; Shen, Z.; Hu, N.; Zhang, Q.; Wang, B.; Pan, L.; Qin, G.; Bao, N.; Zhao, Y. Effects of diets with different amino acid release characteristics on the gut microbiota and barrier function of weaned pigs. BMC Microbiol. 2023, 23, 18. [Google Scholar] [CrossRef]
- Rodrigues, L.A.; Panisson, J.C.; Van Kessel, A.G.; Columbus, D.A. Functional amino acid supplementation attenuates the negative effects of plant-based nursery diets on the response of pigs to a subsequent Salmonella Typhimurium challenge. J. Anim. Sci. 2022, 100, skac267. [Google Scholar] [CrossRef]
- Yamamoto, T.; Inui-Yamamoto, C. The flavor-enhancing action of glutamate and its mechanism involving the notion of kokumi. npj Sci. Food 2023, 7, 3. [Google Scholar] [CrossRef]
- Komorowska, A.; Sieliwanowicz, B.; Mrówka, E.; Stecka, K.; Hałasińska, A. Studies on yeast extracts enriched in 5 nucleotides flavour enhancers obtained from spent brewery yeast. Biotechnology 2003, 6, 1–6. [Google Scholar]
- Yousefi, L. Yeast mannan: Structure, extraction and bioactivity. Appl. Food Biotechnol. 2023, 10, 155–164. [Google Scholar]
- Pizarroso, N.A.; Fuciños, P.; Gonçalves, C.; Pastrana, L.; Amado, I.R. A review on the role of food-derived bioactive molecules and the microbiota–gut–brain axis in satiety regulation. Nutrients 2021, 13, 632. [Google Scholar] [CrossRef]
- Maggiolino, A.; Centoducati, G.; Casalino, E.; Elia, G.; Latronico, T.; Liuzzi, M.G.; Macchia, L.; Dahl, G.E.; Ventriglia, G.; Zizzo, N.; et al. Use of a commercial feed supplement based on yeast products and microalgae with or without nucleotide addition in calves. J. Dairy Sci. 2023, 106, 4397–4412. [Google Scholar] [CrossRef]
- Stefenoni, H.; Harrison, J.H.; Adams-Progar, A.; Block, E. Effect of enzymatically hydrolyzed yeast on health and performance of transition dairy cattle. J. Dairy Sci. 2020, 103, 1541–1552. [Google Scholar] [CrossRef] [PubMed]
- Maturana, M.; Castillejos, L.; Martin-Orue, S.M.; Minel, A.; Chetty, O.; Felix, A.P.; Adib Lesaux, A. Potential benefits of yeast Saccharomyces and their derivatives in dogs and cats: A review. Front. Vet. Sci. 2023, 10, 1279506. [Google Scholar] [CrossRef] [PubMed]
- Martins, L.; Bonato, M.A.; Reis, W. 349 Effects of Adding a Yeast Blend to Diets with High Levels of Dried Distillers Grains on Feeding Behavior, Intake, and Performance of Beef Cattle Fattened in Feedlot. J. Anim. Sci. 2023, 101, 263–264. [Google Scholar] [CrossRef]
- Zhang, S.; Geng, Y.; Ling, Y.; Wang, D.; Hu, G. Yeast Culture Is Beneficial for Improving the Rumen Fermentation and Promoting the Growth Performance of Goats in Summer. Fermentation 2024, 10, 307. [Google Scholar] [CrossRef]
- Amin, A.B.; Mao, S. Influence of yeast on rumen fermentation, growth performance and quality of products in ruminants: A review. Anim. Nutr. 2021, 7, 31–41. [Google Scholar] [CrossRef]
- Williams, M.S.; Mandell, I.B.; Bohrer, B.M.; Wood, K.M. The effects of feeding benzoic acid and/or live active yeast (Saccharomyces cerevisiae) on beef cattle performance, feeding behavior, and carcass characteristics. Transl. Anim. Sci. 2021, 5, txab143. [Google Scholar] [CrossRef]
- Picó-Monllor, J.A.; Mingot-Ascencao, J.M. Search and Selection of Probiotics That Improve Mucositis Symptoms in Oncologic Patients. A Systematic Review. Nutrients 2019, 11, 2322. [Google Scholar] [CrossRef]
- Lee, J.E.; Lee, E. The Probiotic Effects of the Saccharomyces cerevisiae 28-7 Strain Isolated from Nuruk in a DSS-Induced Colitis Mouse Model. J. Microbiol. Biotechnol. 2022, 32, 877–884. [Google Scholar] [CrossRef]
- Qiao, Y.; Ye, X.; Zhong, L.; Xia, C.; Zhang, L.; Yang, F.; Li, Y.; Fang, X.; Fu, L.; Huang, Y.; et al. Yeast β-1,3-glucan production by an outer membrane β-1,6-glucanase: Process optimization, structural characterization and immunomodulatory activity. Food Funct. 2022, 13, 3917–3930. [Google Scholar] [CrossRef]
- Walachowski, S.; Breyne, K.; Secher, T.; Cougoule, C.; Guzylack-Piriou, L.; Meyer, E.; Foucras, G.; Tabouret, G. Oral supplementation with yeast β-glucans improves the resolution of Escherichia coli-associated inflammatory responses independently of monocyte/macrophage immune training. Front. Immunol. 2022, 13, 1086413. [Google Scholar] [CrossRef] [PubMed]
- Maina, T.W.; McDonald, P.O.; Rani Samuel, B.E.; Sardi, M.I.; Yoon, I.; Rogers, A.; McGill, J.L. Feeding Saccharomyces cerevisiae fermentation postbiotic products alters immune function and the lung transcriptome of preweaning calves with an experimental viral-bacterial coinfection. J. Dairy Sci. 2024, 107, 2253–2267. [Google Scholar] [CrossRef] [PubMed]
- Habotta, O.A.; Wang, X.; Othman, H.; Aljali, A.A.; Gewaily, M.; Dawood, M.; Khafaga, A.; Zaineldin, A.I.; Singla, R.K.; Shen, B.; et al. Selenium-enriched yeast modulates the metal bioaccumulation, oxidant status, and inflammation in copper-stressed broiler chickens. Front. Pharmacol. 2022, 13, 1026199. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Cheng, K.; Li, Q.; Wang, T. Effects of yeast hydrolysate supplementation on intestinal morphology, barrier, and anti-inflammatory functions of broilers. Anim. Biosci. 2022, 35, 858–868. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, J.; Feng, Y.; Yin, H.; Lai, H.; Xiao, R.; He, S.; Yang, Z.; He, Y. Process Optimization, Amino Acid Composition, and Antioxidant Activities of Protein and Polypeptide Extracted from Waste Beer Yeast. Molecules 2022, 27, 6825. [Google Scholar] [CrossRef]
- Guo, H.; Guo, S.; Liu, H. Antioxidant activity and inhibition of ultraviolet radiation-induced skin damage of Selenium-rich peptide fraction from selenium-rich yeast protein hydrolysate. Bioorg. Chem. 2020, 105, 104431. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, J.; Obianwuna, U.E.; Long, C.; Qiu, K.; Zhang, H.; Qi, X.; Wu, S. Optimizing selenium-enriched yeast supplementation in laying hens: Enhancing egg quality, selenium concentration in eggs, antioxidant defense, and liver health. Poult. Sci. 2025, 104, 104584. [Google Scholar] [CrossRef]
- Qiu, Q.; Zhan, Z.; Zhou, Y.; Zhang, W.; Gu, L.; Wang, Q.; He, J.; Liang, Y.; Zhou, W.; Li, Y. Effects of Yeast Culture on Laying Performance, Antioxidant Properties, Intestinal Morphology, and Intestinal Flora of Laying Hens. Antioxidants 2024, 13, 779. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Z.; Li, C.; Chen, Z.; Zheng, A.; Chang, W.; Liu, G.; Cai, H. Effects of Selenium Dietary Yeast on Growth Performance, Slaughter Performance, Antioxidant Capacity, and Selenium Deposition in Broiler Chickens. Animals 2023, 13, 3830. [Google Scholar] [CrossRef]
- Xie, Y.; Yuan, Y.C.; Wang, F.; He, H.; Wan, K.; Liu, A.F.; Cao, T.T.; Lyu, Y.Z.; Luo, Y.L.; Yang, Y.H.; et al. Effects of yeast culture on growth performance and serum metabolism and antioxidant indexes of Sichuan white geese aged 0 to 4 weeks. Chin. J. Anim. Nutr. 2021, 33, 5947–5954. [Google Scholar] [CrossRef]
- Ge, L.; Bai, S.; Shen, H.; Sha, K.; Shao, Y.; Shi, H. Yeast cultures improve lactation performance by influencing rumen microbial composition in dairy goats. Anim. Nutr. 2025, 2, e3. [Google Scholar] [CrossRef]
- Youn, H.Y.; Kim, H.J.; Kim, H.; Seo, K.H. A comparative evaluation of the kefir yeast Kluyveromyces marxianus A4 and sulfasalazine in ulcerative colitis: Anti-inflammatory impact and gut microbiota modulation. Food Funct. 2024, 15, 6717–6730. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, B.; Vetvicka, V. Review: β-glucans as Effective Antibiotic Alternatives in Poultry. Molecules 2021, 26, 3560. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.D.; Cai, Q.L.; Ma, R.; Yu, M.H.; Liu, W.M.; Wei, Y. Protective effect of yeast mannatide on mice infected with pathogenic Escherichia coli. Acta Vet. Et Zootech. Sin. 2022, 53, 3642–3653. [Google Scholar] [CrossRef]
- Omara, I.I.; Pender, C.M.; White, M.B.; Dalloul, R.A. The Modulating Effect of Dietary Beta-Glucan Supplementation on Expression of Immune Response Genes of Broilers during a Coccidiosis Challenge. Animals 2021, 11, 159. [Google Scholar] [CrossRef]
- Zhu, X.; Tao, L.; Liu, H.; Yang, G. Effects of fermented feed on growth performance, immune organ indices, serum biochemical parameters, cecal odorous compound production, and the microbiota community in broilers. Poult. Sci. 2023, 102, 102629. [Google Scholar] [CrossRef]
- Liu, Y.Z.; Chen, X.; Zhao, W.; Lang, M.; Zhang, X.F.; Wang, T.; Farouk, M.H.; Zhen, Y.G.; Qin, G.X. Effects of yeast culture supplementation and the ratio of non-structural carbohydrate to fat on rumen fermentation parameters and bacterial-community composition in sheep. Anim. Feed Sci. Technol. 2019, 249, 62–75. [Google Scholar] [CrossRef]
- Liu, Y.; Cheng, X.; Zhen, W.; Zeng, D.; Qu, L.; Wang, Z.; Ning, Z. Yeast Culture Improves Egg Quality and Reproductive Performance of Aged Breeder Layers by Regulating Gut Microbes. Front. Microbiol. 2021, 12, 633276. [Google Scholar] [CrossRef]
- Rimoldi, S.; Gini, E.; Koch, J.F.A.; Iannini, F.; Brambilla, F.; Terova, G. Effects of hydrolyzed fish protein and autolyzed yeast as substitutes of fishmeal in the gilthead sea bream (Sparus aurata) diet, on fish intestinal microbiome. BMC Vet. Res. 2020, 16, 118. [Google Scholar] [CrossRef]
- Huang, B.; Khan, M.Z.; Chen, Y.; Liang, H.; Kou, X.; Wang, X.; Ren, W.; Wang, C.; Zhang, Z. Yeast polysaccharide supplementation: Impact on lactation, growth, immunity, and gut microbiota in Dezhou donkeys. Front. Microbiol. 2023, 14, 1289371. [Google Scholar] [CrossRef]
- Wang, M.; Xia, D.; Yu, L.; Hao, Q.; Xie, M.; Zhang, Q.; Zhao, Y.; Meng, D.; Yang, Y.; Ran, C.; et al. Effects of solid-state fermentation product of yeast supplementation on liver and intestinal health, and resistance of common carp (Cyprinus carpio) against spring viraemia carp virus. Anim. Nutr. 2024, 18, 408–418. [Google Scholar] [CrossRef]
- Yu, Z.; Zhang, Z.; Teame, T.; Guan, L.; Wang, R.; Zhu, R.; Zhang, Q.; Yang, H.; Cui, N.; Huang, Y.; et al. Yeast cell wall extract as a strategy to mitigate the effects of aflatoxin B1 and deoxynivalenol on liver and intestinal health, and gut microbiota of largemouth bass (Micropterus salmoides). Aquaculture 2025, 597, 741917. [Google Scholar] [CrossRef]
- Li, X.; Xie, Q.; Guo, W.; Mao, X.; Song, G.; Liu, Y.; Zhao, H.; Li, F.; Liu, L. Effects of dietary active yeast on growth performance, meat quality and intestinal flora of growing meat rabbits. Chin. J. Anim. Nutr. 2024, 36, 2603–2611. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, G.; Zhuang, Y.; Chai, J.; Zhang, N. Yeast (Saccharomyces cerevisiae) Culture Promotes the Performance of Fattening Sheep by Enhancing Nutrients Digestibility and Rumen Development. Fermentation 2022, 8, 719. [Google Scholar] [CrossRef]
- Wang, X.; Wang, S.S.; Yan, F.; Yang, W.Q.; Tang, G.F.; Cui, M.H.; Xu, X.R. Intraperitoneal injection of β-glucan during the suckling period improved the intestinal health of newly weaned rabbits by enhancing immune responses. Livest. Sci. 2023, 272, 105214. [Google Scholar] [CrossRef]
- An, S.; Jia, Y.G.; Zhou, Y.; Lyu, Z.Z.; Guo, S.; Xu, C.W.; Zhang, Q.F.; Yan, L.; Zhou, G.L. Effects of dietary yeast polypeptides on growth performance, carcass composition and intestinal microbiota of broilers. Chin. J. Anim. Nutr. 2022, 34, 4261–4270. [Google Scholar]
- Cui, Y.; Guo, P.; Ning, M.; Yue, Y.; Yuan, Y.; Yue, T. Kluyveromyces marxianus supplementation ameliorates alcohol-induced liver injury associated with the modulation of gut microbiota in mice. Food Funct. 2023, 14, 9920–9935. [Google Scholar] [CrossRef]
- Rassmidatta, K.; Theapparat, Y.; Chanaksorn, N.; Carcano, P.; Adeyemi, K.D.; Ruangpanit, Y. Dietary Kluyveromyces marxianus hydrolysate alters humoral immunity, jejunal morphology, cecal microbiota and metabolic pathways in broiler chickens raised under a high stocking density. Poult. Sci. 2024, 103, 103970. [Google Scholar] [CrossRef]
- Zhang, M.; Jin, X.; Yang, Y.F.; Cao, G.F. β-glucan from Saccharomyces cerevisiae is involved in immunostimulation of ovine ruminal explants. Can. J. Vet. Res. Rev. Can. DE Rech. Vet. 2020, 84, 283–293. [Google Scholar]
- Nikkhah, M.; Chamani, M.; Sadeghi, A.A.; Hasan-Sajedi, R. Effects of enzymatically hydrolyzed yeast supplementation on blood attributes, antioxidant status and gene expression of cytokines in vaccinated dairy cows. Anim. Biotechnol. 2023, 34, 3329–3336. [Google Scholar] [CrossRef]
- Strompfová, V.; Kubašová, I.; Mudroňová, D.; Štempelová, L.; Takáčová, M.; Gąsowski, B.; Čobanová, K.; Maďari, A. Effect of Hydrolyzed Yeast Administration on Faecal Microbiota, Haematology, Serum Biochemistry and Cellular Immunity in Healthy Dogs. Probiotics Antimicrob. Proteins 2021, 13, 1267–1276. [Google Scholar] [CrossRef]
- Chen, X.Q.; Zhao, W.; Xie, S.W.; Xie, J.J.; Zhang, Z.H.; Tian, L.X.; Liu, Y.J.; Niu, J. Effects of dietary hydrolyzed yeast (Rhodotorula mucilaginosa) on growth performance, immune response, antioxidant capacity and histomorphology of juvenile Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 2019, 90, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.T.; Lee, H.G.; Kim, D.H.; Son, J.K.; Kim, B.W.; Joo, S.S.; Park, D.S.; Park, Y.J.; Lee, S.Y.; Kim, M.H. Hydrolyzed Yeast Supplementation in Calf Starter Promotes Innate Immune Responses in Holstein Calves under Weaning Stress Condition. Animals 2020, 10, 1468. [Google Scholar] [CrossRef] [PubMed]
- Maina, A.N.; Schulze, H.; Kiarie, E.G. Response of broiler breeder pullets when fed hydrolyzed whole yeast from placement to 22 wk of age. Poult. Sci. 2024, 103, 103383. [Google Scholar] [CrossRef] [PubMed]
- Idowu, O.; Adesope, O.; Eigbe, E.; Oladejo, A.; Adeyanju, B.; Babatunde, S.; Adeniyi, O.; Rafiu, S.O. 132. The impact of yeasts as feed supplement on the blood haematological and serum indices of West African Dwarf goats. Anim. Sci. Proc. 2024, 15, 146–147. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Q.; Zhou, P.; Li, Z.; Zhong, W.; Zhuo, Y.; Che, L.; Xu, S.; Fang, Z.; Jiang, X.; et al. Effects of yeast culture supplementation from late gestation to weaning on performance of lactating sows and growth of nursing piglets. Animal 2022, 16, 100526. [Google Scholar] [CrossRef]
- Ma, Z.; Wu, Z.; Wang, Y.; Meng, Q.; Chen, P.; Li, J.; Shan, A. Effect of Yeast Culture on Reproductive Performance, Gut Microbiota, and Milk Composition in Primiparous Sows. Animals 2023, 13, 2954. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, P.; Meng, Q.W.; Ma, Z.Z.; Li, J.P. Effect of yeast culture on plasma biochemical indexes and metabolomics of first-parity gilts during lactation. Chin. J. Anim. Nutr. 2022, 34, 2221–2228. [Google Scholar] [CrossRef]
- Hong, Y.F.; Yu, F.Y.; Xia, S.S.; Du, L.; Cheng, K.; Wang, T. Effects of Yeast Nucleotide Added in Diets of Sows on Growth Performance of Suckling Piglets and Sow Immune Indexes. J. Domest. Anim. Ecol. 2023, 44, 28–33. [Google Scholar] [CrossRef]
- Kim, S.W.; Duarte, M.E. Saccharomyces yeast postbiotics supplemented in feeds for sows and growing pigs for its impact on growth performance of offspring and growing pigs in commercial farm environments. Anim. Biosci. 2024, 37, 1463–1473. [Google Scholar] [CrossRef]
- Chang, J.; Jia, X.; Liu, Y.; Jiang, X.; Che, L.; Lin, Y.; Zhuo, Y.; Feng, B.; Fang, Z.; Li, J.; et al. Microbial Mechanistic Insight into the Role of Yeast-Derived Postbiotics in Improving Sow Reproductive Performance in Late Gestation and Lactation Sows. Animals 2024, 14, 162. [Google Scholar] [CrossRef]
- Xiong, L.; Lin, T.; Yue, X.; Zhang, S.; Liu, X.; Chen, F.; Zhang, S.; Guan, W. Maternal Selenium-Enriched Yeast Supplementation in Sows Enhances Offspring Growth and Antioxidant Status through the Nrf2/Keap1 Pathway. Antioxidants 2023, 12, 2064. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.Q.; Li, J.Y.; Ji, Y.C.; Yang, Y.Y.; Zhao, X.C.; Chen, M.X.; Xin, Z.Q.; Wen, L.J.; Cui, Z.Y.; Shu, G.; et al. Effects of dietary supplementation of different amounts of yeast extract on oxidative stress, milk components, and productive performance of sows. Anim. Feed Sci. Technol. 2021, 274, 114648. [Google Scholar] [CrossRef]
- Kinara, E.; Moturi, J.; Mun, J.; Hosseindoust, A.; Ha, S.; Park, S.; Choi, P.S.; Park, S.I.; Kim, J. Effects of dietary yeast β-glucan on lactating sows under heat stress. J. Anim. Sci. Technol. 2025, 67, 137–151. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, J.; Ma, Z.; Fu, Z.; Zhao, Y.; Zeng, X.; Lin, G.; Zhang, S.; Guan, W.; Chen, F. Enhanced Antioxidative Capacity Transfer between Sow and Fetus via the Gut–Placenta Axis with Dietary Selenium Yeast and Glycerol Monolaurate Supplementation during Pregnancy. Antioxidants 2024, 13, 141. [Google Scholar] [CrossRef]
- Chen, Z.; Li, B.; Zhuo, Y.; Zhang, Y.; Chen, G. Beneficial Effects of Maternal Supplementation of Yeast Single-Cell Protein on Suckling Piglets by Altering Sow Gut Microbiome and Milk Metabolome. Fermentation 2024, 10, 643. [Google Scholar] [CrossRef]
- Zhong, X.; Liang, G.; Cao, L.; Qiao, Q.; Hu, Z.; Fu, M.; Hong, B.; Wu, Q.; Liang, G.; Zhang, Z.; et al. Effects of Glucagon-Like Peptide-2-Expressing Saccharomyces cerevisiae Not Different from Empty Vector. J. Microbiol. Biotechnol. 2019, 29, 1644–1655. [Google Scholar] [CrossRef]
- Pornanek, P.; Phoemchalard, C. Dietary supplementation of beta-glucan-rich molasses yeast powder on antibody response to swine fever virus and hematology of starter-grower pigs. Trop. Anim. Health Prod. 2020, 53, 43. [Google Scholar] [CrossRef]
- Liu, Y.; Jia, X.; Chang, J.; Pan, X.; Jiang, X.; Che, L.; Lin, Y.; Zhuo, Y.; Feng, B.; Fang, Z.; et al. Yeast culture supplementation of sow diets regulates the immune performance of their weaned piglets under lipopolysaccharide stress. J. Anim. Sci. 2023, 101, skad226. [Google Scholar] [CrossRef]
- Law, K.; Johnston, L.J.; Urriola, P.E.; Gomez, A. Maternal Programming of Nursery Pig Performance and Gut Microbiome through Live Yeast Supplementation. Animals 2024, 14, 910. [Google Scholar] [CrossRef]
- Fu, Y.; Li, E.; Casey, T.M.; Johnson, T.A.; Adeola, O.; Ajuwon, K.M. Impact of maternal live yeast supplementation to sows on intestinal inflammatory cytokine expression and tight junction proteins in suckling and weanling piglets. J. Anim. Sci. 2024, 102, skae008. [Google Scholar] [CrossRef]
- Boontiam, W.; Bunchasak, C.; Kim, Y.Y.; Kitipongpysan, S.; Hong, J. Hydrolyzed Yeast Supplementation to Newly Weaned Piglets: Growth Performance, Gut Health, and Microbial Fermentation. Animals 2022, 12, 350. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Liu, T.; Xia, B.; Dong, Y.; Liu, M.; Zhou, J. Precise evaluation of the nutritional value of yeast culture and its effect on pigs fed low-protein diets. Anim. Nutr. 2024, 19, 325–338. [Google Scholar] [CrossRef] [PubMed]
- Barducci, R.S.; Santos, A.A.D.; Pacheco, L.G.; Putarov, T.C.; Koch, J.F.A.; Callegari, M.A.; Dias, C.P.; de Carvalho, R.H.; da Silva, C.A. Enhancing Weaned Piglet Health and Performance: The Role of Autolyzed Yeast (Saccharomyces cerevisiae) and β-Glucans as a Blood Plasma Alternative in Diets. Animals 2024, 14, 631. [Google Scholar] [CrossRef] [PubMed]
- Correia, A.M.; Genova, J.L.; Kim, S.W.; Abranches, F.F.; Rocha, G.C. Autolyzed yeast and sodium butyrate supplemented alone to diets promoted improvements in performance, intestinal health and nutrient transporter in weaned piglets. Sci. Rep. 2024, 14, 11885. [Google Scholar] [CrossRef]
- Pan, L.H.; Yang, C.F.; Liang, C.L.; Zhang, S.C.; Lin, S.N.; Wang, H.; Jiang, Q.Y.; Zhu, C.J. Effects of yeast peptides and subtilis peptides on growth performance, diarrhea rate and intestinal health of weaned piglets. Acta Agric. Univ. Jiangxiensis 2024, 46, 196–209. [Google Scholar]
- Qin, H.; Wang, Z.; You, J.; Chen, L.; Xiong, H. Effects of yeast cell wall polysaccharides on intestinal volatile fatty acids and microbial flora of weaned piglets. Chin. J. Anim. Nutr. 2017, 29, 177–183. [Google Scholar]
- Tan, C.; Ji, Y.; Zhao, X.; Xin, Z.; Li, J.; Huang, S.; Cui, Z.; Wen, L.; Liu, C.; Kim, S.W.; et al. Effects of dietary supplementation of nucleotides from late gestation to lactation on the performance and oxidative stress status of sows and their offspring. Anim. Nutr. 2021, 7, 111–118. [Google Scholar] [CrossRef]
- Jiang, Z.; Wei, S.; Wang, Z.; Zhu, C.; Hu, S.; Zheng, C.; Chen, Z.; Hu, Y.; Wang, L.; Ma, X.; et al. Effects of different forms of yeast Saccharomyces cerevisiae on growth performance, intestinal development, and systemic immunity in early-weaned piglets. J. Anim. Sci. Biotechnol. 2015, 6, 47. [Google Scholar] [CrossRef]
- Gormley, A.R.; Duarte, M.E.; Deng, Z.; Kim, S.W. Saccharomyces yeast postbiotics mitigate mucosal damages from F18+ Escherichia coli challenges by positively balancing the mucosal microbiota in the jejunum of young pigs. Anim. Microbiome 2024, 6, 73. [Google Scholar] [CrossRef]
- Duarte, M.E.; Kim, S.W. Efficacy of Saccharomyces yeast postbiotics on cell turnover, immune responses, and oxidative stress in the jejunal mucosa of young pigs. Sci. Rep. 2024, 14, 19235. [Google Scholar] [CrossRef] [PubMed]
- Papatsiros, V.G.; Papakonstantinou, G.I.; Voulgarakis, N.; Eliopoulos, C.; Marouda, C.; Meletis, E.; Valasi, I.; Kostoulas, P.; Arapoglou, D.; Riahi, I.; et al. Effects of a Curcumin/Silymarin/Yeast-Based Mycotoxin Detoxifier on Redox Status and Growth Performance of Weaned Piglets under Field Conditions. Toxins 2024, 16, 168. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Gao, Y.; Guo, Z.; Yang, Z.; Wang, X.; Liu, H.; Sun, H.; Shi, B. Effects of fermented wheat bran and yeast culture on growth performance, immunity, and intestinal microflora in growing-finishing pigs. J. Anim. Sci. 2021, 99, skab308. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Yu, C.; Ma, Z.; Che, L.; Feng, B.; Fang, Z.; Xu, S.; Zhuo, Y.; Li, J.; Zhang, J.; et al. Effects of Yeast Culture Supplementation in Wheat-Rice-Based Diet on Growth Performance, Meat Quality, and Gut Microbiota of Growing-Finishing Pigs. Animals 2022, 12, 2177. [Google Scholar] [CrossRef]
- Serviento, A.M.; Castex, M.; Renaudeau, D.; Labussière, E. Effect of live yeast supplementation and feeding frequency in male finishing pigs subjected to heat stress. Br. J. Nutr. 2023, 129, 1855–1870. [Google Scholar] [CrossRef]
- Labussière, E.; Achard, C.; Dubois, S.; Combes, S.; Castex, M.; Renaudeau, D. Saccharomyces cerevisiae boulardii CNCM I-1079 supplementation in finishing male pigs helps to cope with heat stress through feeding behaviour and gut microbiota modulation. Br. J. Nutr. 2022, 127, 353–368. [Google Scholar] [CrossRef]
- Kim, S.W.; Holanda, D.M.; Gao, X.; Park, I.; Yiannikouris, A. Efficacy of a Yeast Cell Wall Extract to Mitigate the Effect of Naturally Co-Occurring Mycotoxins Contaminating Feed Ingredients Fed to Young Pigs: Impact on Gut Health, Microbiome, and Growth. Toxins 2019, 11, 633. [Google Scholar] [CrossRef]
- Hong, J.; Kim, H.S.; Adams, S.; Scaria, J.; Patterson, R.; Woyengo, T.A. Growth performance and gut health of nursery pigs fed diet containing sodium butyrate or enzymatically hydrolyzed yeast product. Animal 2025, 19, 101448. [Google Scholar] [CrossRef]
- Namted, S.; Poungpong, K.; Loongyai, W.; Rakangthong, C.; Bunchasak, C. Improving growth performance and blood profile by feeding autolyzed yeast to improve pork carcass and meat quality. Anim. Sci. J. 2021, 92, e13666. [Google Scholar] [CrossRef]
- Li, H.; Wu, M.; Li, Z.; Zhang, Q.; Zhang, X.; Zhang, Y.; Zhao, D.; Wang, L.; Hou, Y.; Wu, T. Effect of supplementation with yeast polysaccharides on intestinal function in piglets infected with porcine epidemic diarrhea virus. Front. Microbiol. 2024, 15, 1378070. [Google Scholar] [CrossRef]
- Rao, Z.X.; Tokach, M.D.; Woodworth, J.C.; DeRouchey, J.M.; Goodband, R.D.; Gebhardt, J.T. Effects of Various Feed Additives on Finishing Pig Growth Performance and Carcass Characteristics: A Review. Animals 2023, 13, 200. [Google Scholar] [CrossRef]
Source | Type | Dosage | Main Results | References |
---|---|---|---|---|
Saccharomyces cerevisiae | Selenium yeast | 1 g/kg | Beneficially regulated the intestinal microbiota; Improved the health status of sows and reduced the number of stillborn piglets and piglets with low birth weight | [3] |
Angel yeast | Yeast nucleotides | 4 g/kg | Improved small intestinal development of newborn piglets; Enhanced immunity of newborn piglets and prevented diarrhea | [14] |
- | Yeast nucleotides | 4 g/kg | Regulated placental transport function; Improving reproductive performance | [54] |
Saccharomyces cerevisiae | Yeast culture | Gestation period: 24 g/L Lactation period: 40 g/L | Increased concentrations of glucagon-like peptide-1 and neuropeptide Y in sow plasma; Improved intestinal health | [108] |
Saccharomyces cerevisiae | Yeast culture | Gestation period: 5 g/kg Lactation period: 8 g/kg | Improved sow reproductive performance; Increased ATTD of total energy and calcium; Increased fecal SCFA production; Regulated gut microbiota | [109] |
Saccharomyces cerevisiae | Yeast culture | 8 g/kg | Improved reproductive performance; Increased plasma L-leucine, creatine, and D-proline levels | [110] |
- | Yeast nucleotides | 0.2g/kg | Improved immunoglobulin levels, | [111] |
Saccharomyces cerevisiae | Saccharomyces yeast postbiotics | 0.27–0.32 g/kg | Increased ADG and ADFI; Improved reproductive performance | [112] |
Saccharomyces yeast | Saccharomyces yeast postbiotics | 20 g/kg | Maintained gut microbiota homeostasis; Regulated SCFA production; Promoted intestinal health | [113] |
Selenium-enriched yeast | Selenium yeast | 0.0002 g/kg | Enhanced fecal SCFA production; Improved growth performance, selenium status, antioxidant capacity, and immunoglobulin transfer of piglets | [114] |
- | Yeast nucleotides | 10 g/kg | Increased ADFI; Reduced weight loss during lactation; Improved piglet production performance; Alleviated oxidative stress in sows and piglets | [115] |
Saccharomyces cerevisiae | β-glucan | 0.1 g/kg | Reduced oxidative stress; Decreased TNF-α, LPS, and SOD levels | [116] |
Selenium yeast and glycerol monolaurate supplementation | - | 0.0002 g/kg SeY + 1 g/kg GML | Improve placental development and function; Alleviated intrauterine oxidative stress and inflammation | [117] |
Saccharomyces cerevisiae | Yeast single-cell protein | 20 g/kg | Enhanced reproductive performance; Reduced intestinal harmful pathogenic microorganisms; Improved growth performance of piglets | [118] |
Source | Type | Dosage (g/kg) | Main Results | References |
---|---|---|---|---|
Saccharomyces cerevisiae | Autolyzed yeast | 10 | Regulated intestinal microbiota; Suppressed inflammation; Improved intestinal environment | [4] |
Kluyveromyces fragilis | Yeast hydrolysate | 10 | Enhanced antioxidant capacity; Reduced oxidative damage | [15] |
Saccharomyces cerevisiae | Yeast culture | 5 | Increased serum GSH-Px level; Enhanced antioxidant capacity; Improved gut microbiota health | [109] |
Saccharomyces cerevisiae | Yeast cell wall | 2 | Improved intestinal microbiota; Reduced diarrhea rate | [119] |
Saccharomyces cerevisiae | Yeast powder | 75 | Enhanced immunity and the number and function of intraepithelial lymphocytes in the gut epithelium | [120] |
- | Yeast culture | 2 | Downregulated gene expression of IL-6 and IL-10 in the thymus; Reduced inflammation | [121] |
Saccharomyces cerevisiae | Live yeast | 10 | Improved the post-weaning ADG and ADFI of offspring | [122] |
Saccharomyces cerevisiae | Live yeast | Gestation period: 0.5 Lactation period: 10 | Enhanced offspring intestinal development and health; Activated immune system; Upregulated TJP and antioxidant enzymes gene expression | [123] |
Saccharomyces cerevisiae | Yeast culture | 100 | Inhibited pathogens’ growth; Improved intestinal health | [124] |
Saccharomyces cerevisiae | Yeast culture | 15 | Enhanced FCR and antioxidant capacity; Promoted intestinal microbiota balance in piglets fed low-protein diets | [125] |
Saccharomyces cerevisiae | Autolyzed yeast | 50 | Enhanced ADG and ADFI of piglets; Improved their growth performance | [126] |
Saccharomyces cerevisiae | Autolyzed yeast; Sodium butyrate | 10 autolyzed yeasts or 1.5 sodium butyrate | Improved growth performance in weaned piglets; Enhanced intestinal barrier integrity; Boosted antioxidant enzyme activity | [127] |
Saccharomyces cerevisiae | Yeast peptides | 0.5 | Increased serum GSH-Px level; Enhanced antioxidant capacity; Improved gut microbiota health | [128] |
Saccharomyces cerevisiae | Yeast polysaccharides | 3; 4.5 | Improved production performance; Increased colonic SCFAs levels; Reduced E. coli and Salmonella in the cecum; Enhanced intestinal development | [129] |
- | Yeast nucleotides | 1 | Decreased oxidative stress | [130] |
Saccharomyces cerevisiae | Live yeast; Yeast powder | 3; 3 | Enhanced intestinal development; Increased serum IgA level and enhanced immunity | [131] |
- | Yeast postbiotics | 0.175 | Mitigated the negative effects of E. coli infection; Enhanced intestinal immune function | [132] |
Saccharomyces | Yeast postbiotics | 0.175 | Alternative protein sources provide numerous nutritional benefits | [133] |
- | Curcumin/Silymarin/Yeast-based | 25 | Reduced oxidative stress biomarkers; Enhanced antioxidant activity; Improved production performance | [134] |
Source | Type | Administration Method | Dosage | Main Results | References |
---|---|---|---|---|---|
Chromium yeast | Chromium yeast | Added to feed | 200 μg/kg | Increased serum IgG and IgM levels; Improved antioxidant capacity and immune ability; Reduced backfat thickness | [16] |
Saccharomyces cerevisiae | Live yeast | Added to feed | 2.5 g/kg | Improved feed efficiency; Reduced inflammation | [17] |
Saccharomyces cerevisiae | Yeast culture | Added to feed | 20 g/kg | Reduced body fat; Enhanced intestinal barrier function | [135] |
Saccharomyces cerevisiae | Yeast culture | Added to feed | 1 × 106 CFU/g | Improved nitrogen utilization and antioxidant capacity; Regulated immunity and microbial community; Improved meat color | [136] |
Saccharomyces cerevisiae | Live yeast | Added to feed | 1 × 106 CFU/g | Improved insulin sensitivity and heat loss efficiency, increased feed intake | [137] |
Saccharomyces boulardii | Live yeast | - | 1 × 106 CFU/g | Improved heat stress; Increasing daily meal frequency | [138] |
Saccharomyces cerevisiae | Yeast cell wall | Added to feed | 2 g/kg | Increased jejunum villus height; Reduced the proportion of IgA | [139] |
Saccharomyces cerevisiae | Yeast cell wall; Sodium butyrate | Added to feed | 0.5 g/kg sodium butyrate, 1 g/kg Yeast cell wall | Enhanced FCR; Reduced jejunal permeability to FITC-Dextran 4 kDa; Improved intestinal integrity; Modulated the microbial composition in both the cecum and feces | [140] |
Saccharomyces cerevisiae | Autolyzed yeast | Added to feed | 5 g/kg | Reduced ADFI; Improved FCR and meat quality | [141] |
- | Yeast culture | Oral | 0.02 g/kg | Alleviated morphological destruction of intestinal villi; Enhanced serum antioxidant capacity | [142] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, Y.; Yin, C.; Xu, L.; Bai, R.; Wei, Z.; Gao, G.; Li, Y.; Sun, W.; Li, X.; Pi, Y. The Biological Functions of Yeast and Yeast Derivatives and Their Application in Swine Production: A Review. Microorganisms 2025, 13, 1669. https://doi.org/10.3390/microorganisms13071669
Fan Y, Yin C, Xu L, Bai R, Wei Z, Gao G, Li Y, Sun W, Li X, Pi Y. The Biological Functions of Yeast and Yeast Derivatives and Their Application in Swine Production: A Review. Microorganisms. 2025; 13(7):1669. https://doi.org/10.3390/microorganisms13071669
Chicago/Turabian StyleFan, Yuyang, Chenggang Yin, Lei Xu, Rong Bai, Zixi Wei, Ge Gao, Yanpin Li, Wenjuan Sun, Xilong Li, and Yu Pi. 2025. "The Biological Functions of Yeast and Yeast Derivatives and Their Application in Swine Production: A Review" Microorganisms 13, no. 7: 1669. https://doi.org/10.3390/microorganisms13071669
APA StyleFan, Y., Yin, C., Xu, L., Bai, R., Wei, Z., Gao, G., Li, Y., Sun, W., Li, X., & Pi, Y. (2025). The Biological Functions of Yeast and Yeast Derivatives and Their Application in Swine Production: A Review. Microorganisms, 13(7), 1669. https://doi.org/10.3390/microorganisms13071669