Cold Shock Proteins Balance Biofilm-Associated Antibiotic Resistance and Oxidative Vulnerability in Mycobacteria
Abstract
1. Introduction
2. Materials and Methods
2.1. Strains and Growth Conditions
2.2. Generation of Mutants, Complementation, and Constitutive Expression Plasmids
2.3. Colony Morphology Experiments
2.4. Static Biofilm Phenotyping Experiments
2.5. Crystal Violet Staining Quantitative Assay
2.6. INH Susceptibility Testing Experiments
2.7. Oxidative Stress Experiments
2.8. Proteomic Assays
2.9. Statistics
3. Results
3.1. M. smegmatis Genome Has Three Genes Encoding Csp Proteins
3.2. CspA1 Affects Colony Morphology in Mycobacteria
3.3. CspA1 Promotes Biofilm Formation
3.4. CspA1 Suppresses the Antioxidant Growth of Mycobacteria
3.5. CspA1 Contributes to the INH Resistance of Mycobacteria
3.6. CspA2 Family Proteins Are Redundant in Biofilm Formation
3.7. CspA2 and CspB Negatively Regulate Anti-Oxidative Stress of Mycobacteria
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. WHO Global Tuberculosis Report 2024; World Health Organisation: Geneva, Switzerland, 2024.
- Mishra, R.; Hannebelle, M.; Patil, V.P.; Dubois, A.; Garcia-Mouton, C.; Kirsch, G.M.; Jan, M.; Sharma, K.; Guex, N.; Sordet-Dessimoz, J.; et al. Mechanopathology of biofilm-like Mycobacterium tuberculosis cords. Cell 2023, 186, 5135–5150.e28. [Google Scholar] [CrossRef] [PubMed]
- Ling, X.; Liu, X.; Wang, K.; Guo, M.; Ou, Y.; Li, D.; Xiang, Y.; Zheng, J.; Hu, L.; Zhang, H.; et al. Lsr2 acts as a cyclic di-GMP receptor that promotes keto-mycolic acid synthesis and biofilm formation in mycobacteria. Nat. Commun. 2024, 15, 695. [Google Scholar] [CrossRef] [PubMed]
- Eshwar, A.K.; Guldimann, C.; Oevermann, A.; Tasara, T. Cold-Shock Domain Family Proteins (Csps) Are Involved in Regulation of Virulence, Cellular Aggregation, and Flagella-Based Motility in Listeria monocytogenes. Front. Cell Infect. Microbiol. 2017, 7, 453. [Google Scholar] [CrossRef] [PubMed]
- Tomlinson, B.R.; Denham, G.A.; Torres, N.J.; Brzozowski, R.S.; Allen, J.L.; Jackson, J.K.; Eswara, P.J.; Shaw, L.N.; Brodsky, I.E. Assessing the Role of Cold-Shock Protein C: A Novel Regulator of Acinetobacter baumannii Biofilm Formation and Virulence. Infect. Immun. 2022, 90, e0037622. [Google Scholar] [CrossRef]
- Ray, S.; Da Costa, R.; Das, M.; Nandi, D. Interplay of cold shock protein E with an uncharacterized protein, YciF, lowers porin expression and enhances bile resistance in Salmonella typhimurium. J. Biol. Chem. 2019, 294, 9084–9099. [Google Scholar] [CrossRef]
- Michaux, C.; Holmqvist, E.; Vasicek, E.; Sharan, M.; Barquist, L.; Westermann, A.J.; Gunn, J.S.; Vogel, J. RNA target profiles direct the discovery of virulence functions for the cold-shock proteins CspC and CspE. Proc. Natl. Acad. Sci. USA 2017, 114, 6824–6829. [Google Scholar] [CrossRef]
- Chen, C.; Choudhury, A.; Zhang, S.; Garst, A.D.; Song, X.; Liu, X.; Chen, T.; Gill, R.T.; Wang, Z.; Bulman, Z. Integrating CRISPR-Enabled Trackable Genome Engineering and Transcriptomic Analysis of Global Regulators for Antibiotic Resistance Selection and Identification in Escherichia coli. mSystems 2020, 5. [Google Scholar] [CrossRef]
- Katzif, S.; Lee, E.-H.; Law, A.B.; Tzeng, Y.-L.; Shafer, W.M. CspA regulates pigment production in Staphylococcus aureus through a SigB-dependent mechanism. J. Bacteriol. 2005, 187, 8181–8184. [Google Scholar] [CrossRef]
- Donegan, N.P.; Manna, A.C.; Tseng, C.W.; Liu, G.Y.; Cheung, A.L. CspA regulation of Staphylococcus aureus carotenoid levels and sigma(B) activity is controlled by YjbH and Spx. Mol. Microbiol. 2019, 112, 532–551. [Google Scholar] [CrossRef]
- Su, R.; Yuan, J.; Gao, T.; Liu, Y.; Shu, W.; Wang, Y.; Pang, Y.; Li, Q. Selection and validation of genes related to oxidative stress production and clearance in macrophages infected with Mycobacterium tuberculosis. Front. Cell Infect. Microbiol. 2023, 13, 1324611. [Google Scholar] [CrossRef]
- Priyanka; Sharma, S.; Sharma, M. Role of PE/PPE proteins of Mycobacterium tuberculosis in triad of host mitochondria, oxidative stress and cell death. Microb. Pathog. 2024, 193, 106757. [Google Scholar] [CrossRef] [PubMed]
- Méndez, V.; Rodríguez-Castro, L.; Durán, R.E.; Padrón, G.; Seeger, M. The OxyR and SoxR transcriptional regulators are involved in a broad oxidative stress response in Paraburkholderia xenovorans LB400. Biol. Res. 2022, 55, 7. [Google Scholar] [CrossRef] [PubMed]
- Caballero, C.J.; Menendez-Gil, P.; Catalan-Moreno, A.; Vergara-Irigaray, M.; García, B.; Segura, V.; Irurzun, N.; Villanueva, M.; Ruiz de Los Mozos, I.; Solano, C.; et al. The regulon of the RNA chaperone CspA and its auto-regulation in Staphylococcus aureus. Nucleic Acids Res. 2018, 46, 1345–1361. [Google Scholar] [CrossRef]
- Delaleau, M.; Figueroa-Bossi, N.; Do, T.D.; Kerboriou, P.; Eveno, E.; Bossi, L.; Boudvillain, M. Rho-dependent transcriptional switches regulate the bacterial response to cold shock. Mol. Cell. 2024, 84, 3482–3496.e7. [Google Scholar] [CrossRef]
- Fan, Z.; Li, Z.; Xu, Z.; Li, H.; Li, L.; Ning, C.; Ma, L.; Xie, X.; Wang, G.; Yu, H. cspA influences biofilm formation and drug resistance in pathogenic fungus Aspergillus fumigatus. Biomed. Res. Int. 2015, 2015, 960357. [Google Scholar] [CrossRef]
- Wei, W.; Sawyer, T.; Burbank, L. Csp1, a Cold Shock Protein Homolog in Xylella fastidiosa Influences Cell Attachment, Pili Formation, and Gene Expression. Microbiol. Spectr. 2021, 9, e0159121. [Google Scholar] [CrossRef]
- Kragh, M.L.; Muchaamba, F.; Tasara, T.; Hansen, L.T. Cold-shock proteins affect desiccation tolerance, biofilm formation and motility in Listeria monocytogenes. Int. J. Food Microbiol. 2020, 329, 108662. [Google Scholar] [CrossRef]
- Park, S.-H.; Singh, H.; Appukuttan, D.; Jeong, S.; Choi, Y.J.; Jung, J.-H.; Narumi, I.; Lim, S. PprM, a Cold Shock Domain-Containing Protein from Deinococcus radiodurans, Confers Oxidative Stress Tolerance to Escherichia coli. Front. Microbiol. 2016, 7, 2124. [Google Scholar] [CrossRef] [PubMed]
- Tschowri, N.; Busse, S.; Hengge, R. The BLUF-EAL protein YcgF acts as a direct anti-repressor in a blue-light response of Escherichia coli. Genes. Dev. 2009, 23, 522–534. [Google Scholar] [CrossRef]
- Seo, S.W.; Kim, D.; Latif, H.; O’bRien, E.J.; Szubin, R.; Palsson, B.O. Deciphering Fur transcriptional regulatory network highlights its complex role beyond iron metabolism in Escherichia coli. Nat. Commun. 2014, 5, 4910. [Google Scholar] [CrossRef]
- Chiang, S.M.; Schellhorn, H.E. Regulators of oxidative stress response genes in Escherichia coli and their functional conservation in bacteria. Arch. Biochem. Biophys. 2012, 525, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Mehta, M.; Singh, A. Mycobacterium tuberculosis WhiB3 maintains redox homeostasis and survival in response to reactive oxygen and nitrogen species. Free Radic. Biol. Med. 2019, 131, 50–58. [Google Scholar] [CrossRef]
- Singh, R.; Wiseman, B.; Deemagarn, T.; Donald, L.J.; Duckworth, H.W.; Carpena, X.; Fita, I.; Loewen, P.C. Catalase-peroxidases (KatG) exhibit NADH oxidase activity. J. Biol. Chem. 2004, 279, 43098–43106. [Google Scholar] [CrossRef] [PubMed]
- Mdluli, K.; Slayden, R.A.; Zhu, Y.; Ramaswamy, S.; Pan, X.; Mead, D.; Crane, D.D.; Musser, J.M.; Barry, C.E. Inhibition of a Mycobacterium tuberculosis beta-ketoacyl ACP synthase by isoniazid. Science 1998, 280, 1607–1610. [Google Scholar] [CrossRef] [PubMed]
- Timmins, G.S.; Deretic, V. Mechanisms of action of isoniazid. Mol. Microbiol. 2006, 62, 1220–1227. [Google Scholar] [CrossRef]
- Duval, B.D.; Mathew, A.; Satola, S.W.; Shafer, W.M. Altered growth, pigmentation, and antimicrobial susceptibility properties of Staphylococcus aureus due to loss of the major cold shock gene cspB. Antimicrob. Agents Chemother. 2010, 54, 2283–2290. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, J.; He, L.; Wei, Y.; Lu, J.; Liu, X.; Li, W. Cold Shock Proteins Balance Biofilm-Associated Antibiotic Resistance and Oxidative Vulnerability in Mycobacteria. Microorganisms 2025, 13, 1597. https://doi.org/10.3390/microorganisms13071597
Zheng J, He L, Wei Y, Lu J, Liu X, Li W. Cold Shock Proteins Balance Biofilm-Associated Antibiotic Resistance and Oxidative Vulnerability in Mycobacteria. Microorganisms. 2025; 13(7):1597. https://doi.org/10.3390/microorganisms13071597
Chicago/Turabian StyleZheng, Jiachen, Linzhao He, Yizhang Wei, Jie Lu, Xiaolin Liu, and Weihui Li. 2025. "Cold Shock Proteins Balance Biofilm-Associated Antibiotic Resistance and Oxidative Vulnerability in Mycobacteria" Microorganisms 13, no. 7: 1597. https://doi.org/10.3390/microorganisms13071597
APA StyleZheng, J., He, L., Wei, Y., Lu, J., Liu, X., & Li, W. (2025). Cold Shock Proteins Balance Biofilm-Associated Antibiotic Resistance and Oxidative Vulnerability in Mycobacteria. Microorganisms, 13(7), 1597. https://doi.org/10.3390/microorganisms13071597