Revisiting the Genomic Epidemiology of Distinct Phage-Type Vibrio cholerae Strains Reveals Restricted Spatiotemporal Dissemination During an Epidemic
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strains, Phages, Plasmids, and Culture Conditions
2.2. DNA Extraction and Genome Sequencing
2.3. Phylogenetic Analysis and Phylodynamic Assessment
2.4. Selection and Complementation of ompW Gene Mutants
3. Results
3.1. PT6 Strains in Sichuan Province That Emerged in 1998 and Disappeared by 2001
3.2. PT6 Strains Formed an Independent Clone Belonging to Wave 2
3.3. Multiple Copies of RS1ET or RS1ET with RS1-4** Integrated on Chr. 1 of PT6 Strains
3.4. Frequent Cross-Regional Transmission and Local Outbreaks in Sichuan
3.5. Spontaneous Mutations of the ompW Gene in V. cholerae Under VP5 Phage Pressure
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Cholera, 2023; Weekly Epidemiological Record; World Health Organization: Geneva, Switzerland, 2024; Volume 99, pp. 481–495.
- Hegde, S.T.; Khan, A.I.; Perez-Saez, J.; Khan, I.I.; Hulse, J.D.; Islam, M.T.; Khan, Z.H.; Ahmed, S.; Bertuna, T.; Rashid, M.; et al. Clinical surveillance systems obscure the true cholera infection burden in an endemic region. Nat. Med. 2024, 30, 888–895. [Google Scholar] [CrossRef]
- Kaper, J.B.; Morris, J.J.; MM, L. Cholera. Clin. Microbiol. Rev. 1995, 8, 48–86. [Google Scholar] [CrossRef] [PubMed]
- Kanungo, S.; Azman, A.S.; Ramamurthy, T.; Deen, J.; Dutta, S. Cholera. Lancet 2022, 399, 1429–1440. [Google Scholar] [CrossRef] [PubMed]
- Waldor, M.K.; Rubin, E.J.; Pearson, G.D.; Kimsey, H.; Mekalanos, J.J. Regulation, replication, and integration functions of the Vibrio cholerae CTXphi are encoded by region RS2. Mol. Microbiol. 1997, 24, 917–926. [Google Scholar] [CrossRef]
- Kan, B.; Qi, G.M.; Liu, Y.Q.; Liu, C.L.; Gao, S.Y. Genome of bacteriophage CTXΦ without the presence of ctxAB exists in ctxAB strains of Vibrio cholerae. Chin. J. Microbiol. Immunol. 1999, 19, 175–179. [Google Scholar] [CrossRef]
- Boyd, E.F.; Heilpern, A.J.; Waldor, M.K. Molecular analyses of a putative CTXphi precursor and evidence for independent acquisition of distinct CTX(phi)s by toxigenic Vibrio cholerae. J. Bacteriol. 2000, 182, 5530–5538. [Google Scholar] [CrossRef]
- Mohapatra, S.S.; Mantri, C.K.; Fazil, M.H.U.T.; Singh, D.V. Vibrio cholerae O1 biotype El Tor strains isolated in 1992 from Varanasi, India harboured El Tor CTXΦ and classical ctxB on the chromosome-I and classical CTXΦ and classical ctxB on the chromosome-II. Environ. Microbiol. Rep. 2011, 3, 783–790. [Google Scholar] [CrossRef]
- Mutreja, A.; Kim, D.W.; Thomson, N.R.; Connor, T.R.; Lee, J.H.; Kariuki, S.; Croucher, N.J.; Choi, S.Y.; Harris, S.R.; Lebens, M.; et al. Evidence for several waves of global transmission in the seventh cholera pandemic. Nature 2011, 477, 462–465. [Google Scholar] [CrossRef]
- Safa, A.; Nair, G.B.; Kong, R.Y. Evolution of new variants of Vibrio cholerae O1. Trends Microbiol. 2010, 18, 46–54. [Google Scholar] [CrossRef]
- Kim, E.J.; Lee, C.H.; Nair, G.B.; Kim, D.W. Whole-genome sequence comparisons reveal the evolution of Vibrio cholerae O1. Trends Microbiol. 2015, 23, 479–489. [Google Scholar] [CrossRef]
- Ramamurthy, T.; Mutreja, A.; Weill, F.X.; Das, B.; Ghosh, A.; Nair, G.B. Revisiting the Global Epidemiology of Cholera in Conjuction with the Genomics of Vibrio cholerae. Front. Public Heal. 2019, 7, 203. [Google Scholar] [CrossRef]
- Naha, A.; Pazhani, G.P.; Ganguly, M.; Ghosh, S.; Ramamurthy, T.; Nandy, R.K.; Nair, G.B.; Takeda, Y.; Mukhopadhyay, A.K. Development and evaluation of a PCR assay for tracking the emergence and dissemination of Haitian variant ctxB in Vibrio cholerae O1 strains isolated from Kolkata, India. J. Clin. Microbiol. 2012, 50, 1733–1736. [Google Scholar] [CrossRef] [PubMed]
- Didelot, X.; Pang, B.; Zhou, Z.; McCann, A.; Ni, P.; Li, D.; Achtman, M.; Kan, B. The role of China in the global spread of the current cholera pandemic. PLOS Genet. 2015, 11, e1005072. [Google Scholar] [CrossRef] [PubMed]
- Maciel-Guerra, A.; Babaarslan, K.; Baker, M.; Rahman, A.; Hossain, M.; Sadique, A.; Alam, J.; Uzzaman, S.; Ferdous Rahman Sarker, M.; Sultana, N.; et al. Core and accessory genomic traits of Vibrio cholerae O1 drive lineage transmission and disease severity. Nat. Commun. 2024, 15, 8231. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Payne, M.; Kaur, S.; Octavia, S.; Lan, R. Genomic evidence of two-staged transmission of the early seventh cholera pandemic. Nat. Commun. 2024, 15, 8504. [Google Scholar] [CrossRef]
- Gao, S.Y.; Wu, S.E.; Liu, B.J. Characteristics of typing phages of Vibrio cholerae biotype El Tor. Fu Huo Luan Zi Liao Hui Bian. 1984, 4, 237–245. [Google Scholar]
- Xu, D.L.; Zhang, J.Y.; Liu, J.; Xu, J.L.; Zhou, H.; Zhang, L.; Zhu, J.; Kan, B. Outer membrane protein OmpW is the receptor for typing phage VP5 in the Vibrio cholerae O1 El Tor biotype. J. Virol. 2014, 88, 7109–7111. [Google Scholar] [CrossRef]
- Xu, D.L.; Wang, H.X.; Diao, B.W.; Liu, H.; Xiong, L.; Gao, S.; Kan, B. Molecular characterization of Vibrio cholerae phage-type 6b epidemic isolates from 1998 to 2001 in Sichuan province. Chi. J. Prev. Med. 2009, 43, 409–412. [Google Scholar] [CrossRef]
- Nandi, B.; Nandy, R.K.; Sarkar, A.; Ghose, A.C. Structural features, properties and regulation of the outer-membrane protein W (OmpW) of Vibrio cholerae. Microbiology 2005, 151, 2975–2986. [Google Scholar] [CrossRef]
- Morita, D.; Morita, M.; Alam, M.; Mukhopadhyay, A.K.; Johura, F.T.; Sultana, M.; Monira, S.; Ahmed, N.; Chowdhury, G.; Dutta, S.; et al. Whole-Genome Analysis of Clinical Vibrio cholerae O1 in Kolkata, India, and Dhaka, Bangladesh, Reveals Two Lineages of Circulating Strains, Indicating Variation in Genomic Attributes. mBio 2020, 11, e01227-20. [Google Scholar] [CrossRef]
- Oprea, M.; Njamkepo, E.; Cristea, D.; Zhukova, A.; Clark, C.G.; Kravetz, A.N.; Monakhova, E.; Ciontea, A.S.; Cojocaru, R.; Rauzier, J.; et al. The seventh pandemic of cholera in Europe revisited by microbial genomics. Nat. Commun. 2020, 11, 5347. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.Y.; Li, W.; Zhang, Q.; Wang, H.X.; Xu, X.; Diao, B.; Zhang, L.; Kan, B. The core oligosaccharide and thioredoxin of Vibrio cholerae are necessary for binding and propagation of its typing phage VP3. J. Bacteriol. 2009, 191, 2622–2629. [Google Scholar] [CrossRef] [PubMed]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef]
- Walker, B.J.; Abeel, T.; Shea, T.; Priest, M.; Abouelliel, A.; Sakthikumar, S.; Cuomo, C.A.; Zeng, Q.; Wortman, J.; Young, S.K.; et al. Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 2014, 9, e112963. [Google Scholar] [CrossRef]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef]
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef]
- Stamatakis, A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006, 22, 2688–2690. [Google Scholar] [CrossRef]
- Sagulenko, P.; Puller, V.; Neher, R.A. TreeTime: Maximum-likelihood phylodynamic analysis. Virus Evol. 2018, 4, vex042. [Google Scholar] [CrossRef]
- Chen, C.; Wu, Y.; Li, J.; Wang, X.; Zeng, Z.; Xu, J.; Liu, Y.; Feng, J.; Chen, H.; He, Y.; et al. TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Mol. Plant 2023, 16, 1733–1742. [Google Scholar] [CrossRef] [PubMed]
- Filippov, A.A.; Sergueev, K.V.; He, Y.; Huang, X.Z.; Gnade, B.T.; Mueller, A.J.; Fernandez-Prada, C.M.; Nikolich, M.P. Bacteriophage-resistant mutants in Yersinia pestis: Identification of phage receptors and attenuation for mice. PLoS ONE 2011, 6, e25486. [Google Scholar] [CrossRef] [PubMed]
- Mashe, T.; Domman, D.; Tarupiwa, A.; Manangazira, P.; Phiri, I.; Masunda, K.; Chonzi, P.; Njamkepo, E.; Ramudzulu, M.; Mtapuri-Zinyowera, S.; et al. Highly Resistant Cholera Outbreak Strain in Zimbabwe. N. Engl. J. Med. 2020, 383, 687–689. [Google Scholar] [CrossRef]
- Mukhopadhyay, A.K.; Chakraborty, S.; Takeda, Y.; Nair, G.B.; Berg, D.E. Characterization of VPI pathogenicity island and CTXphi prophage in environmental strains of Vibrio cholerae. J. Bacteriol. 2001, 183, 4737–4746. [Google Scholar] [CrossRef]
- Li, X.; Han, Y.; Zhao, W.; Xiao, Y.; Huang, S.; Li, Z.; Fan, F.; Liang, W.; Kan, B. Diversity and Complexity of CTXΦ and Pre-CTXΦ Families in Vibrio cholerae from Seventh Pandemic. Microorganisms 2024, 12, 1935. [Google Scholar] [CrossRef]
- Pacchiarini, N.; McKerr, C.; Morgan, M.; Connor, T.R.; Williams, C. The potential of genomic epidemiology: Capitalizing on its practical use for impact in the healthcare setting. Front. Public Health 2025, 13, 1504796. [Google Scholar] [CrossRef]
- Sitharam, N.; Tegally, H.; Silva, D.C.; Baxter, C.; de Oliveira, T.; Xavier, J.S. SARS-CoV-2 Genomic Epidemiology Dashboards: A Review of Functionality and Technological Frameworks for the Public Health Response. Genes 2024, 15, 876. [Google Scholar] [CrossRef]
- Zhang, X.; Xiong, D.; Yu, J.; Yang, H.; He, P.; Wei, H. Genetic Polymorphism Drives Susceptibility Between Bacteria and Bacteriophages. Front. Microbiol. 2021, 12, 627897. [Google Scholar] [CrossRef]
- Gordillo Altamirano, F.; Forsyth, J.H.; Patwa, R.; Kostoulias, X.; Trim, M.; Subedi, D.; Archer, S.K.; Morris, F.C.; Oliveira, C.; Kielty, L.; et al. Bacteriophage-resistant Acinetobacter baumannii are resensitized to antimicrobials. Nat. Microbiol. 2021, 6, 157–161. [Google Scholar] [CrossRef]
- Mose, D.E.; Zhang, J.H.; Zhang, Z.C. Epidemiological analysis on cholera prevalence in Liangshan state of Sichuan province in 1998. JPM 2006, 22, 365–366. [Google Scholar] [CrossRef]
- Moise, K.; Achille, A.M.; Batumbo, D.; Bourdeau, B.; Rebaudet, S.; Lerebours, G.; Henrys, J.H.; Raccurt, C. Impact of patron saint festivities on cholera in three communes in Haiti. BMC Public Health 2020, 20, 1490. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Global Framework to Define and Guide Studies into the Origins of Emerging and Re-Emerging Pathogens with Epidemic and Pandemic Potential; World Health Organization: Geneva, Switzerland, 2024; pp. 19–20. Available online: https://www.who.int/publications/i/item/9789240101470 (accessed on 11 February 2025).
- Mi, Y.; He, Y.; Mi, J.; Huang, Y.; Fan, H.; Song, L.; An, X.; Xu, S.; Li, M.; Tong, Y. Genetic and Phenotypic Analysis of Phage-Resistant Mutant Fitness Triggered by Phage-Host Interactions. Int. J. Mol. Sci. 2023, 24, 15594. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Li, P.; Liu, S.; Shen, M.; Liu, Y.; Zhou, X. Salmonella enteritidis acquires phage resistance through a point mutation in rfbD but loses some of its environmental adaptability. Vet. Res. 2024, 55, 85. [Google Scholar] [CrossRef] [PubMed]
- Potapova, A.; Garvey, W.; Dahl, P.; Guo, S.; Chang, Y.; Schwechheimer, C.; Trebino, M.A.; Floyd, K.A.; Phinney, B.S.; Liu, J.; et al. Outer membrane vesicles and the outer membrane protein OmpU govern Vibrio cholerae biofilm matrix assembly. mBio 2024, 15, e0330423. [Google Scholar] [CrossRef]
- Das, B.; Verma, J.; Kumar, P.; Ghosh, A.; Ramamurthy, T. Antibiotic resistance in Vibrio cholerae: Understanding the ecology of resistance genes and mechanisms. Vaccine 2020, 38 (Suppl. S1), A83–A92. [Google Scholar] [CrossRef]
Strain | No. of Mutants | Mutation Rate | Mutation Type | ||
---|---|---|---|---|---|
Deletion (66.1%, 37/56) | Insertion (28.6%, 16/56) | Substitution (5.3%, 3/56) | |||
VC597 | 19 | 9.9 × 10−6 CFU/mL | 79–90 nt (15.8%, 3/19); 80–90 nt (31.6%, 6/19); 89–90 nt (5.3%, 1/19); 167 nt (5.3%, 1/19); 322–323 nt (5.3%, 1/19); 520–523 nt (10.5%, 2/19); 545–586 nt (5.3%, 1/19) | 288 nt: TG (5.3%, 1/19); 374 nt: ATG (5.3%, 1/19) | G542A (10.5%, 2/19) |
VC1488 | 37 | 5.6 × 10−6 CFU/mL | 15–31 nt (2.7%, 1/37); 84–85 nt (10.8%, 4/37); 326–336 nt (2.7%, 1/37); 327–328 nt (13.5%, 5/37); 365–371 nt (16.2%, 6/37); 422–431 nt (2.7%, 1/37) | 235 nt: G (2.7%, 1/37); 263 nt: C (2.7%, 1/37); 291 nt: T (21.6%, 8/37); 479 nt: T (5.4%, 2/37); 538 nt: G (2.7%, 1/37); 542 nt: G (2.7%, 1/37) | G494A (2.7%, 1/37) |
502–512 nt (2.7%, 1/37); 537–538 nt (2.7%, 1/37); 608–609 nt (2.7%, 1/37); 635–639 nt (2.7%, 1/37) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Y.; Zhao, W.; Yang, X.; Fan, F.; Li, Z.; Pang, B.; Kan, B. Revisiting the Genomic Epidemiology of Distinct Phage-Type Vibrio cholerae Strains Reveals Restricted Spatiotemporal Dissemination During an Epidemic. Microorganisms 2025, 13, 1585. https://doi.org/10.3390/microorganisms13071585
Jiang Y, Zhao W, Yang X, Fan F, Li Z, Pang B, Kan B. Revisiting the Genomic Epidemiology of Distinct Phage-Type Vibrio cholerae Strains Reveals Restricted Spatiotemporal Dissemination During an Epidemic. Microorganisms. 2025; 13(7):1585. https://doi.org/10.3390/microorganisms13071585
Chicago/Turabian StyleJiang, Yu, Wenxuan Zhao, Xiaorong Yang, Fenxia Fan, Zhenpeng Li, Bo Pang, and Biao Kan. 2025. "Revisiting the Genomic Epidemiology of Distinct Phage-Type Vibrio cholerae Strains Reveals Restricted Spatiotemporal Dissemination During an Epidemic" Microorganisms 13, no. 7: 1585. https://doi.org/10.3390/microorganisms13071585
APA StyleJiang, Y., Zhao, W., Yang, X., Fan, F., Li, Z., Pang, B., & Kan, B. (2025). Revisiting the Genomic Epidemiology of Distinct Phage-Type Vibrio cholerae Strains Reveals Restricted Spatiotemporal Dissemination During an Epidemic. Microorganisms, 13(7), 1585. https://doi.org/10.3390/microorganisms13071585