Achnatherum inebrians Bacterial Communities Associated with Epichloë gansuensis Endophyte Infection Under Low-Concentration Urea Treatment: Links to Plant Growth and Root Metabolite
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Epichloë Endophyte Strain Isolation
2.3. Epichloë Endophyte Strain Identification
2.4. Plant Growth-Promoting Effects of Epichloë Endophyte Strain
2.5. Experiment 1: Effects of Nitrogen Fertilizers on Epichloë Endophyte Strains
2.6. Experiment 2: Effects of Urea on the Achnatherum Inebrians–Epichloë Endophyte Symbiont
2.6.1. Experimental Design
2.6.2. Nutrient Content and Dry Weight Measurements of Shoots and Roots
2.6.3. DNA Extraction and Sequencing
2.6.4. Metabolite Extraction and UHPLC–MS/MS Analysis
2.6.5. LC–MS Data Processing and Annotation
2.6.6. Mining of Differentially Abundant Metabolites
2.7. Bioinformatics Analysis
2.8. Statistical Analyses
2.9. Analysis of the Microbial Co-Occurrence Networks in the Shoot, Root, and Root Microbiota–Metabolite Interactions
3. Results
3.1. Impact of Different N on the Growth of the Epichloë Strain
3.2. Urea Modulation of the Stimulatory Effect of the Epichloë Endophyte on Root Morphology and Plant Weight
3.3. Effects of Urea on the Composition and Diversity of the Bacterial Community in the Shoots and Roots of the E+ and E− Plants
3.4. Epichloë Gansuensis Symbiosis Alters the Metabolite Composition of the Host Plant
3.5. Foliar Presence of the Epichloë Endophyte Increased the Shoot Microbial Co-Occurrence Network Complexity and Positive Interaction
3.6. Correlation Analysis Between Microbes and Metabolites in the Roots
4. Discussion
4.1. Urea Inhibited the Growth of the Epichloë Gansuensis Endophyte Strain
4.2. Plant Bacterial Communities Recruited by Epichloë Gansuensis
4.3. The Epichloë Gansuensis Endophyte Increases Shoot Microbial Network Complexity
4.4. Effects of the Epichloë Gansuensis Endophyte Infection on Root Metabolites of Achnatherum Inebrians
4.5. Root Microbial and Metabolic Interactions with the Symbiont
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Leuchtmann, A. Systematics, distribution, and host specificity of grass endophytes. Nat. Toxins 1992, 1, 150–162. [Google Scholar] [CrossRef]
- Johnson, L.J.; Bonth, A.C.M.D.; Briggs, L.R.; Caradus, J.R.; Finch, S.C.; Fleetwood, D.J.; Fletcher, L.R.; Hume, D.E.; Johnson, R.D.; Popay, A.J.; et al. The exploitation of Epichloë endophytes for agricultural benefit. Fungal Divers. 2013, 60, 171–188. [Google Scholar] [CrossRef]
- Clement, S.L.; Jinguo, H.; Stewart, A.V.; Bingrui, W.; Elberson, L.R. Detrimental and neutral effects of a wild grass-fungal endophyte symbiotum on insect preference and performance. J. Insect Sci. 2011, 11, 77–90. [Google Scholar] [CrossRef] [PubMed]
- Moy, M.; Belanger, F.; Duncan, R.; Freehoff, A.; Leary, A.; Meyer, W.; Sullivan, R.; White, J.F. Identification of epiphyllous mycelial nets on leaves of grasses infected by Clavicipitaceous endophytes. Symbiosis 2000, 20, 291–302. [Google Scholar]
- Azad, K.; Kaminskyj, S. A fungal endophyte strategy for mitigating the effect of salt and drought stress on plant growth. Symbiosis 2016, 68, 73–78. [Google Scholar] [CrossRef]
- Casler, M.D.; Santen, E.V. Fungal endophyte removal does not reduce cold tolerance of tall fescue. Crop Sci. 2008, 48, 2033–2039. [Google Scholar] [CrossRef]
- Müller, C.B.; Krauss, J. Symbiosis between grasses and asexual fungal endophytes. Curr. Opin. Plant Biol. 2005, 8, 450–456. [Google Scholar] [CrossRef]
- Chen, Z.J.; Jin, Y.Y.; Yao, X.; Chen, T.X.; Wei, X.K.; Li, C.J.; White, J.F.; Nan, Z.B. Fungal endophyte improves survival of Lolium perenne in low fertility soils by increasing root growth, metabolic activity and absorption of nutrients. Plant Soil 2020, 452, 185–206. [Google Scholar] [CrossRef]
- Saikkonen, K.; Lehtonen, P.; Helander, M.; Koricheva, J.; Faeth, S.H. Model systems in ecology: Dissecting the endophyte–grass literature. Trends Plant Sci. 2006, 11, 428–433. [Google Scholar] [CrossRef]
- Rasmussen, S.; Parsons, A.J.; Bassett, S.; Christensen, M.J.; Newman, J.A. High nitrogen supply and carbohydrate content reduce fungal endophyte and alkaloid concentration in Lolium perenne. New Phytol. 2007, 173, 787–797. [Google Scholar] [CrossRef]
- Ryan, G.D.; Rasmussen, S.; Xue, H.; Parsons, A.J.; Newman, J.A. Metabolite analysis of the effects of elevated CO2 and nitrogen fertilization on the association between tall fescue (Schedonorus arundinaceus) and its fungal symbiont Neotyphodium coenophialum. Plant Cell Environ. 2013, 37, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Li, C.J.; Nan, Z.B.; Zhang, C.J.; Zhang, C.Y.; Zhang, Y.H. Effects of drunken horse grass infected with endophyte on Chinese rabbit. J. Agric. Sci. Technol. 2009, 11, 84–90. (In Chinese) [Google Scholar]
- Yao, X.; Fan, Y.B.; Chai, Q.; Johnson, R.D.; Nan, Z.B.; Li, C.J. Modification of susceptible and toxic herbs on grassland disease. Sci. Rep. 2016, 6, 30635–30642. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Chai, Q.; Chen, T.X.; Chen, Z.J.; Wei, X.K.; Bao, G.S.; Song, M.L.; Wei, W.R.; Zhang, X.X.; Li, C.J.; et al. Disturbance by grazing and the presence of rodents facilitates the dominance of the unpalatable grass Achnatherum inebrians in alpine meadows of northern China. Rangel. J. 2019, 41, 301–312. [Google Scholar] [CrossRef]
- Chen, L.; Li, X.Z.; Li, C.J.; Swoboda, G.A.; Young, C.A.; Sugawara, K.; Leuchtmann, A.; Schardl, C.L. Two distinct Epichloë species symbiotic with Achnatherum inebrians, drunken horse grass. Mycologia 2015, 107, 863–873. [Google Scholar] [CrossRef]
- Liang, Y.; Wang, H.C.; Li, C.J.; Nan, Z.B.; Li, F.D. Effects of feeding drunken horse grass infected with Epichloë gansuensis endophyte on animal performance, clinical symptoms and physiological parameters in sheep. BMC Vet. Re. 2017, 13, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.X.; Li, C.J.; Nan, Z.B.; Matthew, C. Neotyphodium endophyte increases Achnatherum inebrians (drunken horse grass) resistance to herbivores and seed predators. Weed Res. 2012, 52, 70–78. [Google Scholar] [CrossRef]
- Xia, C.; Li, N.N.; Zhang, X.X.; Feng, Y.; Christensen, M.J.; Nan, Z.B. An Epichloë endophyte improves photosynthetic ability and dry matter production of its host Achnatherum inebrians infected by Blumeria graminis under various soil water conditions. Fungal Ecol. 2016, 22, 26–34. [Google Scholar] [CrossRef]
- Xia, C.; Zhang, X.X.; Christensen, M.J.; Nan, Z.B.; Li, C.J. Epichloë endophyte affects the ability of powdery mildew (Blumeria graminis) to colonise drunken horse grass (Achnatherum inebrians). Fungal Ecol. 2015, 16, 26–33. [Google Scholar] [CrossRef]
- Zhang, X.X.; Li, C.J.; Nan, Z.B. Effects of cadmium stress on growth and anti-oxidative systems in Achnatherum inebrians symbiotic with Neotyphodium gansuense. J. Hazard. Mater. 2010, 175, 703–709. [Google Scholar] [CrossRef]
- Chen, N.; He, R.L.; Chai, Q.; Li, C.J.; Nan, Z.B. Transcriptomic analyses giving insights into molecular regulation mechanisms involved in cold tolerance by Epichloë endophyte in seed germination of Achnatherum inebrians. Plant Growth Regul. 2016, 80, 367–375. [Google Scholar] [CrossRef]
- Xia, C.; Christensen, M.J.; Zhang, X.X.; Nan, Z.B. Effect of Epichloë gansuensis endophyte and transgenerational effects on the water use efficiency, nutrient and biomass accumulation of Achnatherum inebrians under soil water deficit. Plant Soil 2018, 424, 555–571. [Google Scholar] [CrossRef]
- Hou, W.P.; Wang, J.F.; Christensen, M.J.; Liu, J.; Zhang, Y.Q.; Liu, Y.L.; Cheng, C. Metabolomics insights into the mechanism by which Epichloë gansuensis endophyte increased Achnatherum inebrians tolerance to low nitrogen stress. Plant Soil 2021, 463, 487–508. [Google Scholar] [CrossRef]
- Liu, Y.L.; Hou, W.P.; Jin, J.; Christensen, M.J.; Gu, L.J.; Cheng, C.; Wang, J.F. Epichloë gansuensis increases the tolerance of Achnatherum inebrians to low-P stress by modulating amino acids metabolism and phosphorus utilization efficiency. J. Fungi 2021, 7, 390. [Google Scholar] [CrossRef]
- Liang, J.J.; Gao, G.Y.; Zhong, R.; Liu, B.W.; Christensen, M.J.; Ju, Y.W.; Zhang, W.; Wu, Z.; Li, Y.Z.; Li, C.J.; et al. Effect of Epichloë gansuensis endophyte on seed-borne microbes and seed metabolites in Achnatherum inebrians. Microbiol. Spectr. 2023, 11, e0135022. [Google Scholar] [CrossRef]
- Liu, B.W.; Ju, Y.W.; Xia, C.; Zhong, R.; Christensen, M.J.; Zhang, X.X.; Nan, Z.B. The effect of Epichloë endophyte on phyllosphere microbes and leaf metabolites in Achnatherum inebrians. iScience 2022, 25, 104144–104166. [Google Scholar] [CrossRef]
- Sun, X.; Kosman, E.; Sharon, O.; Ezrati, S.; Sharon, A. Significant host- and environment-dependent differentiation among highly sporadic fungal endophyte communities in cereal crops-related wild grasses. Environ. Microbiol. 2020, 22, 3357–3374. [Google Scholar] [CrossRef]
- Whitaker, B.K.; Reynolds, H.L.; Clay, K. Foliar fungal endophyte communities are structured by environment but not host ecotype in Panicum virgatum (switchgrass). Ecology 2018, 99, 2703–2711. [Google Scholar] [CrossRef]
- Jin, Y.Y.; Chen, Z.J.; White, J.F.; Malik, K.; Li, C.J. Interactions between Epichloë endophyte and the plant microbiome impact nitrogen responses in host Achnatherum inebrians plants. Microbiol. Spectr. 2024, 12, e0257423. [Google Scholar] [CrossRef]
- Yao, X.; Chen, Z.J.; Wei, X.K.; Chen, S.H.; White, J.F.; Huang, X.; Li, C.J.; Nan, Z.B. A toxic grass Achnatherum inebrians serves as a diversity refuge for the soil fungal community in rangelands of northern China. Plant Soil 2020, 448, 425–443. [Google Scholar] [CrossRef]
- Zhong, R.; Xia, C.; Ju, Y.W.; Zhang, X.X.; Duan, T.Y.; Nan, Z.B.; Li, C.J. A foliar Epichloë endophyte and soil moisture modified belowground arbuscular mycorrhizal fungal biodiversity associated with Achnatherum inebrians. Plant Soil 2021, 458, 105–122. [Google Scholar] [CrossRef]
- Hou, W.P.; Xia, C.; Christensen, M.; Wang, J.F.; Li, X.Z.; Chen, T.; Nan, Z.B. Effect of Epichloë gansuensis endophyte on rhizosphere bacterial communities and nutrient concentrations and ratios in the perennial grass species Achnatherum inebrians during three growth seasons. Crop Pasture Sci. 2020, 71, 1050–1066. [Google Scholar] [CrossRef]
- Jin, Y.Y.; Chen, Z.J.; He, Y.L.; White, J.F.; Malik, K.; Chen, T.X.; Li, C.J. Effects of Achnatherum inebrians ecotypes and endophyte status on plant growth, plant nutrient, soil fertility and soil microbial community. Soil Sci. Soc. Am. J. 2022, 84, 1028–1042. [Google Scholar] [CrossRef]
- Wang, C.; Wang, J.F.; Niu, X.L.; Yang, Y.; Malik, K.; Jin, J.; Zhao, C.Z.; Tang, R.; Zheng, R.; Huang, R. Phosphorus addition modifies the bacterial community structure in rhizosphere of Achnatherum inebrians by influencing the soil properties and modulates the Epichloë gansuensis-mediated root exudate profiles. Plant Soil 2023, 491, 543–560. [Google Scholar] [CrossRef]
- Chen, Z.J.; Jin, Y.Y.; Yao, X.; Wei, X.K.; Li, X.Z.; Li, C.J.; White, J.F.; Nan, Z.B. Gene analysis reveals that leaf litter from Epichloë endophyte–infected perennial ryegrass alters diversity and abundance of soil microbes involved in nitrification and denitrification. Soil Biol. Biochem. 2021, 154, 108123. [Google Scholar] [CrossRef]
- Omacini, M.; Semmartin, M.; Pérez, L.I.; Gundel, P.E. Grass-endophyte symbiosis: A neglected aboveground interaction with multiple belowground consequences. Appl. Soil Ecol. 2012, 61, 273–279. [Google Scholar] [CrossRef]
- Li, C.J. Biological and Ecological Characteristics of Achnatherum inebrians/Neotyphodium Endophyte Symbiont. Ph.D. Dissertation, Lanzhou University, Lanzhou, China, 2005. [Google Scholar]
- Wang, T.; Chen, T.X.; White, J.F.; Li, C.J. Identification of Three Epichloë Endophytes from Hordeum bogdanii Wilensky in China. J. Fungi 2022, 8, 928. [Google Scholar] [CrossRef]
- Dapprich, P.; Paul, V.H.; Krohn, K. Incidence of Acremonium endophytes in selected German pastures and the contents of alkaloids in Lolium perenne. In Proceedings of the 2nd International conference on Harmful and Beneficial Microorganisms in Grassland, Pastures and Turf, Paderborn, Germany, 22–24 November 1995; Krohn, K., Paul, V.H., Eds.; IOBC: San Francisco, CA, USA, 1996; Volume 19, pp. 103–114. [Google Scholar]
- Kulkarni, G.B.; Sajjan, S.S.; Karegoudar, T.B. Pathogenicity of indole–3–acetic acid producing fungus Fusarium delphinoides strain GPK towards chickpea and pigeon pea. Eur. J. Plant Pathol. 2011, 131, 355–369. [Google Scholar] [CrossRef]
- Patil, S.R.; Dayanand, A. Production of pectinase from deseeded sunflower head by Aspergillus niger in submerged and solid-state conditions. Bioresour. Technol. 2006, 97, 2054–2058. [Google Scholar] [CrossRef]
- Chowdappa, S.; Jagannath, S.; Konappa, N.; Udayashankar, A.C.; Jogaiah, S. Detection and characterization of antibacterial siderophores secreted by endophytic fungi from Cymbidium aloifolium. Biomolecules 2020, 10, 1412. [Google Scholar] [CrossRef]
- Chen, Z.J.; White, J.F.; Malik, K.; Chen, H.; Jin, Y.Y.; Yao, X.; Wei, X.K.; Li, C.J.; Nan, Z.B. Soil nutrient dynamics relate to Epichloë endophyte mutualism and nitrogen turnover in a low nitrogen environment. Soil Biol. Biochem. 2022, 174, 108832. [Google Scholar] [CrossRef]
- Wang, J.F.; Nan, Z.B.; Christensen, M.J.; Zhang, X.X.; Tian, P.; Zhang, Z.X.; Niu, X.L.; Gao, P.; Chen, T.; Ma, L.X. Effect of Epichloë gansuensis endophyte on the nitrogen metabolism, nitrogen use efficiency, and stoichiometry of Achnatherum inebrians under nitrogen limitation. J. Agric. Food Chem. 2018, 66, 4022–4031. [Google Scholar] [CrossRef]
- Liu, C.Y.; Jiang, M.T.; Yuan, M.T.; Wang, R.T.; Bai, Y.; Crowther, T.W.; Zhou, J.Z.; Ma, Z.Y.; Zhang, L.; Wang, Y.; et al. Root microbiota confers rice resistance to aluminum toxicity and phosphorus deficiency in acidic soils. Nat. Food 2023, 4, 912–924. [Google Scholar] [CrossRef] [PubMed]
- Mundy, D.C.; Vanga, B.R.; Thompson, S.; Bulman, S. Assessment of sampling and DNA extraction methods for identification of grapevine trunk microorganisms using metabarcoding. N. Z. Plant Prot. 2018, 71, 10–18. [Google Scholar] [CrossRef]
- Liu, C.S.; Zhao, D.F.; Ma, W.J.; Guo, Y.D.; Wang, A.J.; Wang, Q.L.; Lee, D.J. Denitrifying sulfide removal process on high-salinity wastewaters in the presence of Halomonas sp. Appl. Microbiol. Biotechnol. 2016, 1001, 1421–1426. [Google Scholar] [CrossRef]
- Vainchtein, L.D.; Thijssen, B.; Stokvis, E.; Rosing, H.; Schellens, J.H.M.; Beijnen, J.H. A simple and sensitive assay for the quantitative analysis of paclitaxel and metabolites in human plasma using liquid chromatography/tandem mass spectrometry. Biomed. Chromatogr. 2010, 20, 139–148. [Google Scholar] [CrossRef] [PubMed]
- González, R.R.; Fernández, R.F.; Vidal, J.L.M.; Frenich, A.G.; Gómez-Pérez, M.L. Development and validation of an ultra-high performance liquid chromatography-tandem mass-spectrometry (UHPLC-MS/MS) method for the simultaneous determination of neurotransmitters in rat brain samples. J. Neurosci. Methods 2011, 198, 187–194. [Google Scholar] [CrossRef]
- Wiklund, S.; Johansson, E.; Sjöström, L.; Mellerowicz, E.J.; Edlund, U.G.; Shockcor, J.P.; Gottfries, J.; Moritz, T.; Trygg, J. Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Anal. Chem. 2008, 80, 115–122. [Google Scholar] [CrossRef]
- Chen, S.F.; Zhou, Y.Q.; Chen, Y.R.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Ji, N.N.; Liang, D.; Clark, L.V.; Sacks, E.J.; Kent, A.D. Host genetic variation drives the differentiation in the ecological role of the native Miscanthus root-associated microbiome. Microbiome 2023, 11, 216–229. [Google Scholar] [CrossRef]
- Ma, B.; Wang, H.; Dsouza, M.; Lou, J.; He, Y.; Dai, Z.; Brookes, P.C.; Xu, J.; Gilbert, J.A. Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China. ISME J. 2016, 10, 1891–1901. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, D.J.; David, A.S.; Menges, E.S.; Searcy, C.A.; Afkhami, M.E. Environmental stress destabilizes microbial networks. ISME J. 2021, 15, 1722–1734. [Google Scholar] [CrossRef] [PubMed]
- Dinkins, R.D.; Nagabhyru, P.; Young, C.A.; West, C.P.; Schardl, C.L. Transcriptome analysis and differential expression in tall fescue harboring different endophyte strains in response to water deficit. Plant Genome 2019, 12, 180071–180085. [Google Scholar] [CrossRef]
- Thamhesl, M.; Apfelthaler, E.; Schwartz-Zimmermann, H.E.; Kunz-Vekiru, E.; Krska, R.; Kneifel, W.; Schatzmayr, G.; Moll, E.K. Streptococcus erythropolis MTHt3 biotransforms ergopeptines to lysergic acid. BMC Microbiol. 2015, 15, 73–86. [Google Scholar] [CrossRef]
- Richardson, M.D.; Cabrera, R.I.; Murphy, J.A.; Zaurov, D.E. Nitrogen-form and endophyte–infection effects on growth, nitrogen uptake, and alkaloid content of chewings fescue turfgrass. J. Plant Nutr. 1999, 22, 67–79. [Google Scholar] [CrossRef]
- Li, C.J.; Nan, Z.B.; Li, F. Biological and physiological characteristics of Neotyphodium gansuense symbiotic with Achnatherum inebrians. Microbiol. Res. 2008, 163, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Schäfer, M.; Vogel, C.M.; Bortfeld-Miller, M.; Mittelviefhaus, M.; Vorholt, J.A. Mapping phyllosphere microbiota interactions in planta to establish genotype–phenotype relationships. Nat. Microbiol. 2022, 7, 856–867. [Google Scholar] [CrossRef]
- Zhalnina, K.; Louie, K.B.; Hao, Z.; Mansoori, N.; da Rocha, U.N.; Shi, S.J.; Cho, H.; Karaoz, U.; Loqué, D.; Bowen, B.P.; et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat. Microbiol. 2018, 3, 470–480. [Google Scholar] [CrossRef]
- Jin, J.; Wang, J.F.; Niu, X.L.; Wang, C.; Malik, K.; Li, C.J. Integrated microbiology and metabolomics analysis reveal patterns and mechanisms of improvement the Achnatherum inebrians adaptability to N addition by endophytic fungus Epichloë gansuensis. Environ. Exp. Bot. 2023, 213, 105421. [Google Scholar] [CrossRef]
- Zhang, L.; Huang, X.Y.; Zhou, J.Z.; Ju, F. Active predation, phylogenetic diversity, and global prevalence of myxobacteria in wastewater treatment plants. ISME J. 2023, 17, 671–681. [Google Scholar] [CrossRef]
- Oren, A.; Garrity, G.M. Valid publication of the names of forty-two phyla of prokaryotes. Int. J. Syst. Evol. Micr. 2012, 70, 005056. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Xu, Z.; Xie, J.; Hesselberg-Thomsen, V.; Tan, T.; Zheng, D.; Strube, M.L.; Dragoš, A.; Shen, Q.; Zhang, R.; et al. Bacillus velezensis stimulates resident rhizosphere Pseudomonas stutzeri for plant health through metabolic interactions. ISME J. 2022, 16, 774–787. [Google Scholar] [CrossRef] [PubMed]
- Faust, K.; Raes, J. Microbial interactions: From networks to models. Nat. Rev. Microbiol. 2012, 10, 538–550. [Google Scholar] [CrossRef]
- Cheng, H.; Yuan, M.; Tang, L.; Shen, Y.; Yu, Q.; Li, S. Integrated microbiology and metabolomics analysis reveal responses of soil microorganisms and metabolic functions to phosphorus fertilizer on semiarid farm. Sci. Total Environ. 2022, 817, 152878. [Google Scholar] [CrossRef] [PubMed]
- Eiler, A.; Heinrich, F.; Bertilsson, S. Coherent dynamics and association networks among lake bacterioplankton taxa. ISME J. 2011, 6, 330–342. [Google Scholar] [CrossRef]
- Dakora, F.D.; Phillips, D.A. Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 2002, 245, 201–213. [Google Scholar] [CrossRef]
- Guo, J.Q.; McCulley, R.L.; McNear, D.H.J. Tall fescue cultivar and fungal endophyte combinations influence plant growth and root exudate composition. Front. Plant Sci. 2015, 6, 183. [Google Scholar] [CrossRef]
- Rostás, M.; Cripps, M.G.; Silcock, P. Aboveground endophyte affects root volatile emission and host plant selection of a belowground insect. Oecologia 2015, 177, 487–497. [Google Scholar] [CrossRef]
- Zahar-Haichar, F.E.; Marol, C.; Berge, O.; Rangel-Castro, J.I.; Prosser, J.I.; Balesdent, J.; Heulin, T.; Achouak, W. Plant host habitat and root exudates shape soil bacterial community structure. ISME J. 2008, 2, 1221–1230. [Google Scholar] [CrossRef]
- Zhang, X.X.; Li, C.J.; Nan, Z.B. Effects of salt and drought stress on alkaloid production in endophyte–infected drunken horse grass (Achnatherum inebrians). Biochem. Syst. Ecol. 2011, 39, 471–476. [Google Scholar] [CrossRef]
- Ryan, G.D.; Shukla, K.; Rasmussen, S.; Shelp, B.J.; Newman, S.J.A. Phloem phytochemistry and aphid responses to elevated CO2, nitrogen fertilization and endophyte infection. Agr. Forest Entomon. 2014, 16, 273–283. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, Y.; Chen, Z.; Malik, K.; Li, C. Achnatherum inebrians Bacterial Communities Associated with Epichloë gansuensis Endophyte Infection Under Low-Concentration Urea Treatment: Links to Plant Growth and Root Metabolite. Microorganisms 2025, 13, 1493. https://doi.org/10.3390/microorganisms13071493
Jin Y, Chen Z, Malik K, Li C. Achnatherum inebrians Bacterial Communities Associated with Epichloë gansuensis Endophyte Infection Under Low-Concentration Urea Treatment: Links to Plant Growth and Root Metabolite. Microorganisms. 2025; 13(7):1493. https://doi.org/10.3390/microorganisms13071493
Chicago/Turabian StyleJin, Yuanyuan, Zhenjiang Chen, Kamran Malik, and Chunjie Li. 2025. "Achnatherum inebrians Bacterial Communities Associated with Epichloë gansuensis Endophyte Infection Under Low-Concentration Urea Treatment: Links to Plant Growth and Root Metabolite" Microorganisms 13, no. 7: 1493. https://doi.org/10.3390/microorganisms13071493
APA StyleJin, Y., Chen, Z., Malik, K., & Li, C. (2025). Achnatherum inebrians Bacterial Communities Associated with Epichloë gansuensis Endophyte Infection Under Low-Concentration Urea Treatment: Links to Plant Growth and Root Metabolite. Microorganisms, 13(7), 1493. https://doi.org/10.3390/microorganisms13071493