The Effects of Fecal Microbial Transplantation on the Symptoms in Autism Spectrum Disorder, Gut Microbiota and Metabolites: A Scoping Review
Abstract
:1. Introduction
2. Article Search
3. Methods
4. Impact of FMT on ASD Symptoms
5. Impact of FMT on Gut Microbiota Diversity and Metabolites
6. Discussion
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
5-HTI | Serotonin |
ABC | Aberrant Behavior Checklist |
AEs | Adverse Events |
ADHD | Attention Deficit Hyperactivity Disorder |
ADI-R | Autism Diagnostic Interview—Revised |
AGA | American Gastroenterological Association |
ASD | Autism Spectrum Disorders |
ATEC | Autism Treatment Evaluation Checklist |
BBB | Blood–Brain Barrier |
BSFS | Bristol Stool Form Scale |
CARS | Childhood Autism Rating Scale |
DA | Dopamine |
CNBS-R2016 | Chinese Neuropsychological and Behavioral Scale—Revised 2016 |
CNS | Central Nervous System |
DSR | Daily Stool Record |
FMT | Fecal Microbiota Transplantation |
GABA | Gamma-Aminobutyric Acid |
GI | Gastrointestinal Tract |
GSRS | Gastrointestinal Symptom Rating Scale |
HAMA | Hamilton Anxiety Rating Scale |
HAMD | Hamilton Depression Rating Scale |
HPA | Hypothalamic–Pituitary–Adrenal |
IBS-D | Irritable Bowel Syndrome with Diarrhea |
LGI | Lower Gastrointestinal Route |
NGS | Next-Generation Sequencing |
NJT | Nasojejunal Tube |
PGI-II,III | Parent Global Impressions II,III |
SAS | Social Adjustment Scale |
SCFAs | Short Chain Fatty Acids |
SCL-90 | Symptom Checklist-90 |
SDSC | Sleep Disturbance Scale for Children |
SRS | Social Responsiveness Scale |
TET | Transendoscopic Enteral Tube |
UDP-GlcNAc | Uridine Diphosphate N-Acetylglucosamine |
VABS-II | Vineland Adaptive Behavior Scales, Second Edition |
WMT | Washed Microbiota Transplantation |
References
- Ursell, L.K.; Metcalf, J.L.; Parfrey, L.W.; Knight, R. Defining the Human Microbiome. Nutr. Rev. 2012, 70, S38–S44. [Google Scholar] [CrossRef]
- Jandhyala, S.M.; Talukdar, R.; Subramanyam, C.; Vuyyuru, H.; Sasikala, M.; Reddy, D.N. Role of the Normal Gut Microbiota. World J. Gastroenterol. 2015, 21, 8787–8803. [Google Scholar] [CrossRef] [PubMed]
- Borrego-Ruiz, A.; Borrego, J.J. An Updated Overview on the Relationship between Human Gut Microbiome Dysbiosis and Psychiatric and Psychological Disorders. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2024, 128, 110861. [Google Scholar] [CrossRef]
- Lai, M.-C.; Lombardo, M.V.; Baron-Cohen, S. Autism. Lancet 2014, 383, 896–910. [Google Scholar] [CrossRef]
- Loomes, R.; Hull, L.; Mandy, W.P.L. What Is the Male-to-Female Ratio in Autism Spectrum Disorder? A Systematic Review and Meta-Analysis. J. Am. Acad. Child Adolesc. Psychiatry 2017, 56, 466–474. [Google Scholar] [CrossRef] [PubMed]
- Hodges, H.; Fealko, C.; Soares, N. Autism Spectrum Disorder: Definition, Epidemiology, Causes, and Clinical Evaluation. Transl. Pediatr. 2020, 9, S55–S65. [Google Scholar] [CrossRef]
- Cryan, J.F.; O’Mahony, S.M. The Microbiome-Gut-Brain Axis: From Bowel to Behavior. Neurogastroenterol. Motil. 2011, 23, 187–192. [Google Scholar] [CrossRef]
- Cryan, J.F.; Dinan, T.G. Mind-Altering Microorganisms: The Impact of the Gut Microbiota on Brain and Behaviour. Nat. Rev. Neurosci. 2012, 13, 701–712. [Google Scholar] [CrossRef]
- Doenyas, C.; Clarke, G.; Cserjési, R. Gut–Brain Axis and Neuropsychiatric Health: Recent Advances. Sci. Rep. 2025, 15, 3415. [Google Scholar] [CrossRef]
- Cryan, J.F.; O’Riordan, K.J.; Cowan, C.S.M.; Sandhu, K.V.; Bastiaanssen, T.F.S.; Boehme, M.; Codagnone, M.G.; Cussotto, S.; Fulling, C.; Golubeva, A.V.; et al. The Microbiota-Gut-Brain Axis. Physiol. Rev. 2019, 99, 1877–2013. [Google Scholar] [CrossRef]
- Martin, C.R.; Osadchiy, V.; Kalani, A.; Mayer, E.A. The Brain-Gut-Microbiome Axis. Cell. Mol. Gastroenterol. Hepatol. 2018, 6, 133–148. [Google Scholar] [CrossRef] [PubMed]
- Rhee, S.H.; Pothoulakis, C.; Mayer, E.A. Principles and Clinical Implications of the Brain–Gut–Enteric Microbiota Axis. Nat. Rev. Gastroenterol. Hepatol. 2009, 6, 306–314. [Google Scholar] [CrossRef]
- Borre, Y.E.; O’Keeffe, G.W.; Clarke, G.; Stanton, C.; Dinan, T.G.; Cryan, J.F. Microbiota and Neurodevelopmental Windows: Implications for Brain Disorders. Trends Mol. Med. 2014, 20, 509–518. [Google Scholar] [CrossRef]
- Lin, F.; Wang, X.; Luo, R.; Yuan, B.; Ye, S.; Yang, T.; Xiao, L.; Chen, J. Maternal LPS Exposure Enhances the 5-HT Level in the Prefrontal Cortex of Autism-like Young Offspring. Brain Sci. 2023, 13, 958. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; O’Hely, M.; Quinn, T.P.; Ponsonby, A.-L.; Harrison, L.C.; Frøkiær, H.; Tang, M.L.K.; Brix, S.; Kristiansen, K.; Burgner, D.; et al. Maternal Gut Microbiota during Pregnancy and the Composition of Immune Cells in Infancy. Front. Immunol. 2022, 13, 986340. [Google Scholar] [CrossRef]
- Perez-Muñoz, M.E.; Arrieta, M.-C.; Ramer-Tait, A.E.; Walter, J. A Critical Assessment of the “Sterile Womb” and “in Utero Colonization” Hypotheses: Implications for Research on the Pioneer Infant Microbiome. Microbiome 2017, 5, 48. [Google Scholar] [CrossRef]
- Zhang, C.; Li, L.; Jin, B.; Xu, X.; Zuo, X.; Li, Y.; Li, Z. The Effects of Delivery Mode on the Gut Microbiota and Health: State of Art. Front. Microbiol. 2021, 12, 724449. [Google Scholar] [CrossRef]
- Yip, B.H.K.; Leonard, H.; Stock, S.; Stoltenberg, C.; Francis, R.W.; Gissler, M.; Gross, R.; Schendel, D.; Sandin, S. Caesarean Section and Risk of Autism across Gestational Age: A Multi-National Cohort Study of 5 Million Births. Int. J. Epidemiol. 2017, 46, 429–439. [Google Scholar] [CrossRef]
- Morais, L.H.; Golubeva, A.V.; Moloney, G.M.; Moya-Pérez, A.; Ventura-Silva, A.P.; Arboleya, S.; Bastiaanssen, T.F.S.; O’Sullivan, O.; Rea, K.; Borre, Y.; et al. Enduring Behavioral Effects Induced by Birth by Caesarean Section in the Mouse. Curr. Biol. 2020, 30, 3761–3774.e6. [Google Scholar] [CrossRef]
- Lewandowska-Pietruszka, Z.; Figlerowicz, M.; Mazur-Melewska, K. Microbiota in Autism Spectrum Disorder: A Systematic Review. Int. J. Mol. Sci. 2023, 24, 16660. [Google Scholar] [CrossRef]
- Sharp, W.G.; Berry, R.C.; McCracken, C.; Nuhu, N.N.; Marvel, E.; Saulnier, C.A.; Klin, A.; Jones, W.; Jaquess, D.L. Feeding Problems and Nutrient Intake in Children with Autism Spectrum Disorders: A Meta-Analysis and Comprehensive Review of the Literature. J. Autism Dev. Disord. 2013, 43, 2159–2173. [Google Scholar] [CrossRef] [PubMed]
- Tomova, A.; Soltys, K.; Kemenyova, P.; Karhanek, M.; Babinska, K. The Influence of Food Intake Specificity in Children with Autism on Gut Microbiota. Int. J. Mol. Sci. 2020, 21, 2797. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Mao, X.; Dan, Z.; Pei, Y.; Xu, R.; Guo, M.; Liu, K.; Zhang, F.; Chen, J.; Su, C.; et al. Gene Variations in Autism Spectrum Disorder Are Associated with Alternation of Gut Microbiota, Metabolites and Cytokines. Gut Microbes 2021, 13, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Madra, M.; Ringel, R.; Margolis, K.G. Gastrointestinal Issues and Autism Spectrum Disorder. Child Adolesc. Psychiatr. Clin. N. Am. 2020, 29, 501–513. [Google Scholar] [CrossRef]
- Kim, J.Y.; Choi, M.J.; Ha, S.; Hwang, J.; Koyanagi, A.; Dragioti, E.; Radua, J.; Smith, L.; Jacob, L.; Salazar de Pablo, G.; et al. Association between Autism Spectrum Disorder and Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis. Autism Res. 2022, 15, 340–352. [Google Scholar] [CrossRef]
- Cammarota, G.; Ianiro, G.; Tilg, H.; Rajilić-Stojanović, M.; Kump, P.; Satokari, R.; Sokol, H.; Arkkila, P.; Pintus, C.; Hart, A.; et al. European Consensus Conference on Faecal Microbiota Transplantation in Clinical Practice. Gut 2017, 66, 569–580. [Google Scholar] [CrossRef]
- Peery, A.F.; Kelly, C.R.; Kao, D.; Vaughn, B.P.; Lebwohl, B.; Singh, S.; Imdad, A.; Altayar, O.; AGA Clinical Guidelines Committee. AGA Clinical Practice Guideline on Fecal Microbiota-Based Therapies for Select Gastrointestinal Diseases. Gastroenterology 2024, 166, 409–434. [Google Scholar] [CrossRef]
- Mullish, B.H.; Merrick, B.; Quraishi, M.N.; Bak, A.; Green, C.A.; Moore, D.J.; Porter, R.J.; Elumogo, N.T.; Segal, J.P.; Sharma, N.; et al. The Use of Faecal Microbiota Transplant as Treatment for Recurrent or Refractory Clostridioides Difficile Infection and Other Potential Indications: Second Edition of Joint British Society of Gastroenterology (BSG) and Healthcare Infection Society (HIS) Guidelines. J. Hosp. Infect. 2024, 148, 189–219. [Google Scholar] [CrossRef]
- Gulati, M.; Singh, S.K.; Corrie, L.; Kaur, I.P.; Chandwani, L. Delivery Routes for Faecal Microbiota Transplants: Available, Anticipated and Aspired. Pharmacol. Res. 2020, 159, 104954. [Google Scholar] [CrossRef]
- Cheng, Y.-W.; Fischer, M. Fecal Microbiota Transplantation. Clin. Colon. Rectal Surg. 2023, 36, 151–156. [Google Scholar] [CrossRef]
- Kang, D.-W.; Adams, J.B.; Gregory, A.C.; Borody, T.; Chittick, L.; Fasano, A.; Khoruts, A.; Geis, E.; Maldonado, J.; McDonough-Means, S.; et al. Microbiota Transfer Therapy Alters Gut Ecosystem and Improves Gastrointestinal and Autism Symptoms: An Open-Label Study. Microbiome 2017, 5, 10. [Google Scholar] [CrossRef] [PubMed]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Guyatt, G.H.; Oxman, A.D.; Vist, G.E.; Kunz, R.; Falck-Ytter, Y.; Alonso-Coello, P.; Schünemann, H.J.; GRADE Working Group. GRADE: An Emerging Consensus on Rating Quality of Evidence and Strength of Recommendations. BMJ 2008, 336, 924–926. [Google Scholar] [CrossRef]
- Haddaway, N.R.; Page, M.J.; Pritchard, C.C.; McGuinness, L.A. PRISMA2020: An R Package and Shiny App for Producing PRISMA 2020-Compliant Flow Diagrams, with Interactivity for Optimised Digital Transparency and Open Synthesis. Campbell Syst. Rev. 2022, 18, e1230. [Google Scholar] [CrossRef]
- Li, N.; Chen, H.; Cheng, Y.; Xu, F.; Ruan, G.; Ying, S.; Tang, W.; Chen, L.; Chen, M.; Lv, L.; et al. Fecal Microbiota Transplantation Relieves Gastrointestinal and Autism Symptoms by Improving the Gut Microbiota in an Open-Label Study. Front. Cell Infect. Microbiol. 2021, 11, 759435. [Google Scholar] [CrossRef]
- Pan, Z.-Y.; Zhong, H.-J.; Huang, D.-N.; Wu, L.-H.; He, X.-X. Beneficial Effects of Repeated Washed Microbiota Transplantation in Children With Autism. Front. Pediatr. 2022, 10, 928785. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, J.; Pan, Z.; He, X. Effects of Washed Fecal Bacteria Transplantation in Sleep Quality, Stool Features and Autism Symptomatology: A Chinese Preliminary Observational Study. Neuropsychiatr. Dis. Treat. 2022, 18, 1165–1173. [Google Scholar] [CrossRef]
- Li, Y.; Xiao, P.; Ding, H.; Wang, H.; Xu, Q.; Wang, R.; Zheng, L.; Song, X.; Wang, Y.; Zhang, T. Fecal Microbiota Transplantation in Children with Autism. Neuropsychiatr. Dis. Treat. 2024, 20, 2391–2400. [Google Scholar] [CrossRef]
- Wan, L.; Wang, H.; Liang, Y.; Zhang, X.; Yao, X.; Zhu, G.; Cai, J.; Liu, G.; Liu, X.; Niu, Q.; et al. Effect of Oral Faecal Microbiota Transplantation Intervention for Children with Autism Spectrum Disorder: A Randomised, Double-Blind, Placebo-Controlled Trial. Clin. Transl. Med. 2024, 14, e70006. [Google Scholar] [CrossRef]
- Hazan, S.; Haroon, J.; Jordan, S.; Walker, S.J. Improvements in Gut Microbiome Composition and Clinical Symptoms Following Familial Fecal Microbiota Transplantation in a Nineteen-Year-Old Adolescent with Severe Autism. J. Med. Cases 2024, 15, 82–91. [Google Scholar] [CrossRef]
- Huang, H.-L.; Xu, H.-M.; Liu, Y.-D.; Shou, D.-W.; Chen, H.-T.; Nie, Y.-Q.; Li, Y.-Q.; Zhou, Y.-J. First Application of Fecal Microbiota Transplantation in Adult Asperger Syndrome with Digestive Symptoms-A Case Report. Front. Psychiatry 2022, 13, 695481. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; He, T.; Zou, B.; Li, H.; Zhao, J.; Hu, C.; Cui, J.; Huang, Z.; Shu, S.; Hao, Y. Fecal Microbiota Transplantation in a Child with Severe ASD Comorbidities of Gastrointestinal Dysfunctions—A Case Report. Front. Psychiatry 2023, 14, 1219104. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, M.J.; Weingarden, A.R.; Sadowsky, M.J.; Khoruts, A. Standardized Frozen Preparation for Transplantation of Fecal Microbiota for Recurrent Clostridium Difficile Infection. Am. J. Gastroenterol. 2012, 107, 761–767. [Google Scholar] [CrossRef]
- Langille, M.G.I.; Zaneveld, J.; Caporaso, J.G.; McDonald, D.; Knights, D.; Reyes, J.A.; Clemente, J.C.; Burkepile, D.E.; Vega Thurber, R.L.; Knight, R.; et al. Predictive Functional Profiling of Microbial Communities Using 16S rRNA Marker Gene Sequences. Nat. Biotechnol. 2013, 31, 814–821. [Google Scholar] [CrossRef]
- Goloshchapov, O.V.; Olekhnovich, E.I.; Sidorenko, S.V.; Moiseev, I.S.; Kucher, M.A.; Fedorov, D.E.; Pavlenko, A.V.; Manolov, A.I.; Gostev, V.V.; Veselovsky, V.A.; et al. Long-Term Impact of Fecal Transplantation in Healthy Volunteers. BMC Microbiol. 2019, 19, 312. [Google Scholar] [CrossRef]
- El-Salhy, M.; Gilja, O.H.; Hatlebakk, J.G. Factors Underlying the Long-Term Efficacy of Faecal Microbiota Transplantation for Patients with Irritable Bowel Syndrome. Microbes Infect. 2024, 26, 105372. [Google Scholar] [CrossRef]
- Kang, D.-W.; Adams, J.B.; Coleman, D.M.; Pollard, E.L.; Maldonado, J.; McDonough-Means, S.; Caporaso, J.G.; Krajmalnik-Brown, R. Long-Term Benefit of Microbiota Transfer Therapy on Autism Symptoms and Gut Microbiota. Sci. Rep. 2019, 9, 5821. [Google Scholar] [CrossRef]
- Di Vincenzo, F.; Del Gaudio, A.; Petito, V.; Lopetuso, L.R.; Scaldaferri, F. Gut Microbiota, Intestinal Permeability, and Systemic Inflammation: A Narrative Review. Intern. Emerg. Med. 2024, 19, 275–293. [Google Scholar] [CrossRef] [PubMed]
- O’Callaghan, A.; van Sinderen, D. Bifidobacteria and Their Role as Members of the Human Gut Microbiota. Front. Microbiol. 2016, 7, 925. [Google Scholar] [CrossRef]
- Wang, J.; Chen, W.-D.; Wang, Y.-D. The Relationship Between Gut Microbiota and Inflammatory Diseases: The Role of Macrophages. Front. Microbiol. 2020, 11, 1065. [Google Scholar] [CrossRef]
- Mehra, A.; Arora, G.; Sahni, G.; Kaur, M.; Singh, H.; Singh, B.; Kaur, S. Gut Microbiota and Autism Spectrum Disorder: From Pathogenesis to Potential Therapeutic Perspectives. J. Tradit. Complement. Med. 2023, 13, 135–149. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.L.; Hornig, M.; Parekh, T.; Lipkin, W.I. Application of Novel PCR-Based Methods for Detection, Quantitation, and Phylogenetic Characterization of Sutterella Species in Intestinal Biopsy Samples from Children with Autism and Gastrointestinal Disturbances. mBio 2012, 3, e00261-11. [Google Scholar] [CrossRef]
- Kang, D.-W.; Park, J.G.; Ilhan, Z.E.; Wallstrom, G.; Labaer, J.; Adams, J.B.; Krajmalnik-Brown, R. Reduced Incidence of Prevotella and Other Fermenters in Intestinal Microflora of Autistic Children. PLoS ONE 2013, 8, e68322. [Google Scholar] [CrossRef] [PubMed]
- Andreo-Martínez, P.; Rubio-Aparicio, M.; Sánchez-Meca, J.; Veas, A.; Martínez-González, A.E. A Meta-Analysis of Gut Microbiota in Children with Autism. J. Autism Dev. Disord. 2022, 52, 1374–1387. [Google Scholar] [CrossRef]
- Hooi, S.L.; Dwiyanto, J.; Rasiti, H.; Toh, K.Y.; Wong, R.K.M.; Lee, J.W.J. A Case Report of Improvement on ADHD Symptoms after Fecal Microbiota Transplantation with Gut Microbiome Profiling Pre- and Post-Procedure. Curr. Med. Res. Opin. 2022, 38, 1977–1982. [Google Scholar] [CrossRef] [PubMed]
- Park, J.C.; Im, S.-H. Of Men in Mice: The Development and Application of a Humanized Gnotobiotic Mouse Model for Microbiome Therapeutics. Exp. Mol. Med. 2020, 52, 1383–1396. [Google Scholar] [CrossRef]
- Treuting, P.M.; Arends, M.J.; Dintzis, S.M. 12—Lower Gastrointestinal Tract. In Comparative Anatomy and Histology, 2nd ed.; Treuting, P.M., Dintzis, S.M., Montine, K.S., Eds.; Academic Press: San Diego, CA, USA, 2018; pp. 213–228. ISBN 978-0-12-802900-8. [Google Scholar]
- Wrzosek, L.; Ciocan, D.; Borentain, P.; Spatz, M.; Puchois, V.; Hugot, C.; Ferrere, G.; Mayeur, C.; Perlemuter, G.; Cassard, A.-M. Transplantation of Human Microbiota into Conventional Mice Durably Reshapes the Gut Microbiota. Sci. Rep. 2018, 8, 6854. [Google Scholar] [CrossRef]
- Ram, R. Chapter 15—Extrapolation of Animal Research Data to Humans: An Analysis of the Evidence. In Animal Experimentation: Working Towards a Paradigm Change; Brill: Leiden, The Netherlands, 2019. [Google Scholar]
- Osadchiy, V.; Martin, C.R.; Mayer, E.A. The Gut-Brain Axis and the Microbiome: Mechanisms and Clinical Implications. Clin. Gastroenterol. Hepatol. 2019, 17, 322–332. [Google Scholar] [CrossRef]
- De Vadder, F.; Kovatcheva-Datchary, P.; Goncalves, D.; Vinera, J.; Zitoun, C.; Duchampt, A.; Bäckhed, F.; Mithieux, G. Microbiota-Generated Metabolites Promote Metabolic Benefits via Gut-Brain Neural Circuits. Cell 2014, 156, 84–96. [Google Scholar] [CrossRef]
- Erny, D.; de Angelis, A.L.H.; Jaitin, D.; Wieghofer, P.; Staszewski, O.; David, E.; Keren-Shaul, H.; Mahlakoiv, T.; Jakobshagen, K.; Buch, T.; et al. Host Microbiota Constantly Control Maturation and Function of Microglia in the CNS. Nat. Neurosci. 2015, 18, 965–977. [Google Scholar] [CrossRef]
- Goehler, L.E.; Gaykema, R.P.A.; Opitz, N.; Reddaway, R.; Badr, N.; Lyte, M. Activation in Vagal Afferents and Central Autonomic Pathways: Early Responses to Intestinal Infection with Campylobacter Jejuni. Brain Behav. Immun. 2005, 19, 334–344. [Google Scholar] [CrossRef]
- Fülling, C.; Dinan, T.G.; Cryan, J.F. Gut Microbe to Brain Signaling: What Happens in Vagus…. Neuron 2019, 101, 998–1002. [Google Scholar] [CrossRef] [PubMed]
- Goehler, L.E.; Park, S.M.; Opitz, N.; Lyte, M.; Gaykema, R.P.A. Campylobacter Jejuni Infection Increases Anxiety-like Behavior in the Holeboard: Possible Anatomical Substrates for Viscerosensory Modulation of Exploratory Behavior. Brain Behav. Immun. 2008, 22, 354–366. [Google Scholar] [CrossRef]
- Rusch, J.A.; Layden, B.T.; Dugas, L.R. Signalling Cognition: The Gut Microbiota and Hypothalamic-Pituitary-Adrenal Axis. Front. Endocrinol. 2023, 14, 1130689. [Google Scholar] [CrossRef]
- Pan, J.-X.; Deng, F.-L.; Zeng, B.-H.; Zheng, P.; Liang, W.-W.; Yin, B.-M.; Wu, J.; Dong, M.-X.; Luo, Y.-Y.; Wang, H.-Y.; et al. Absence of Gut Microbiota during Early Life Affects Anxiolytic Behaviors and Monoamine Neurotransmitters System in the Hippocampal of Mice. J. Neurol. Sci. 2019, 400, 160–168. [Google Scholar] [CrossRef]
- Kuley, E.; Balıkcı, E.; Özoğul, I.; Gökdogan, S.; Ozoğul, F. Stimulation of Cadaverine Production by Foodborne Pathogens in the Presence of Lactobacillus, Lactococcus, and Streptococcus spp. J. Food Sci. 2012, 77, M650–M658. [Google Scholar] [CrossRef]
- Nankova, B.B.; Agarwal, R.; MacFabe, D.F.; La Gamma, E.F. Enteric Bacterial Metabolites Propionic and Butyric Acid Modulate Gene Expression, Including CREB-Dependent Catecholaminergic Neurotransmission, in PC12 Cells--Possible Relevance to Autism Spectrum Disorders. PLoS ONE 2014, 9, e103740. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zabihi, M.; Li, Q.; Li, X.; Kim, B.J.; Ubogu, E.E.; Raja, S.N.; Wesselmann, U.; Zhao, C. Drug Permeability: From the Blood-Brain Barrier to the Peripheral Nerve Barriers. Adv. Ther. 2023, 6, 2200150. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, M.; Kibe, R.; Ooga, T.; Aiba, Y.; Sawaki, E.; Koga, Y.; Benno, Y. Cerebral Low-Molecular Metabolites Influenced by Intestinal Microbiota: A Pilot Study. Front. Syst. Neurosci. 2013, 7, 9. [Google Scholar] [CrossRef]
- Nishino, R.; Mikami, K.; Takahashi, H.; Tomonaga, S.; Furuse, M.; Hiramoto, T.; Aiba, Y.; Koga, Y.; Sudo, N. Commensal Microbiota Modulate Murine Behaviors in a Strictly Contamination-Free Environment Confirmed by Culture-Based Methods. Neurogastroenterol. Motil. 2013, 25, 521–528. [Google Scholar] [CrossRef]
- El-Ansary, A.K.; Bacha, A.B.; Kotb, M. Etiology of Autistic Features: The Persisting Neurotoxic Effects of Propionic Acid. J. Neuroinflammation 2012, 9, 74. [Google Scholar] [CrossRef] [PubMed]
- Barrett, E.; Ross, R.P.; O’Toole, P.W.; Fitzgerald, G.F.; Stanton, C. γ-Aminobutyric Acid Production by Culturable Bacteria from the Human Intestine. J. Appl. Microbiol. 2012, 113, 411–417. [Google Scholar] [CrossRef]
- Cotrina, M.L.; Ferreiras, S.; Schneider, P. High Prevalence of Self-Reported Autism Spectrum Disorder in the Propionic Acidemia Registry. JIMD Rep. 2020, 51, 70–75. [Google Scholar] [CrossRef]
- Belelli, D.; Lambert, J.J.; Wan, M.L.Y.; Monteiro, A.R.; Nutt, D.J.; Swinny, J.D. From Bugs to Brain: Unravelling the GABA Signalling Networks in the Brain–Gut–Microbiome Axis. Brain 2025, 148, 1479–1506. [Google Scholar] [CrossRef]
- Bravo, J.A.; Forsythe, P.; Chew, M.V.; Escaravage, E.; Savignac, H.M.; Dinan, T.G.; Bienenstock, J.; Cryan, J.F. Ingestion of Lactobacillus Strain Regulates Emotional Behavior and Central GABA Receptor Expression in a Mouse via the Vagus Nerve. Proc. Natl. Acad. Sci. USA 2011, 108, 16050–16055. [Google Scholar] [CrossRef] [PubMed]
- Janik, R.; Thomason, L.A.M.; Stanisz, A.M.; Forsythe, P.; Bienenstock, J.; Stanisz, G.J. Magnetic Resonance Spectroscopy Reveals Oral Lactobacillus Promotion of Increases in Brain GABA, N-Acetyl Aspartate and Glutamate. Neuroimage 2016, 125, 988–995. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, S.; Fujii, T.; Koga, N.; Hori, H.; Teraishi, T.; Hattori, K.; Noda, T.; Higuchi, T.; Motohashi, N.; Kunugi, H. Plasma L-Tryptophan Concentration in Major Depressive Disorder: New Data and Meta-Analysis. J. Clin. Psychiatry 2014, 75, e906–e915. [Google Scholar] [CrossRef]
- Yano, J.M.; Yu, K.; Donaldson, G.P.; Shastri, G.G.; Ann, P.; Ma, L.; Nagler, C.R.; Ismagilov, R.F.; Mazmanian, S.K.; Hsiao, E.Y. Indigenous Bacteria from the Gut Microbiota Regulate Host Serotonin Biosynthesis. Cell 2015, 161, 264–276. [Google Scholar] [CrossRef]
- Vich Vila, A.; Zhang, J.; Liu, M.; Faber, K.N.; Weersma, R.K. Untargeted Faecal Metabolomics for the Discovery of Biomarkers and Treatment Targets for Inflammatory Bowel Diseases. Gut 2024, 73, 1909–1920. [Google Scholar] [CrossRef]
- Baronio, D.; Gonchoroski, T.; Castro, K.; Zanatta, G.; Gottfried, C.; Riesgo, R. Histaminergic System in Brain Disorders: Lessons from the Translational Approach and Future Perspectives. Ann. Gen. Psychiatry 2014, 13, 34. [Google Scholar] [CrossRef]
- Engevik, K.; Edens, R.; Engevik, A.; Engevik, M.; Horvath, T. Production of Histamine by Diverse Gut Bacteria Can Activate Intestinal HRH1 and Promote Calcium Mobilization. Physiology 2024, 39, 2142. [Google Scholar] [CrossRef]
- Diebel, L.N.; Liberati, D.M.; Hall-Zimmerman, L. H2 Blockers Decrease Gut Mucus Production and Lead to Barrier Dysfunction in Vitro. Surgery 2011, 150, 736–743. [Google Scholar] [CrossRef] [PubMed]
- Hughes, H.K.; Moreno, R.J.; Ashwood, P. Innate Immune Dysfunction and Neuroinflammation in Autism Spectrum Disorder (ASD). Brain Behav. Immun. 2023, 108, 245–254. [Google Scholar] [CrossRef]
- Than, U.T.T.; Nguyen, L.T.; Nguyen, P.H.; Nguyen, X.-H.; Trinh, D.P.; Hoang, D.H.; Nguyen, P.A.T.; Dang, V.D. Inflammatory Mediators Drive Neuroinflammation in Autism Spectrum Disorder and Cerebral Palsy. Sci. Rep. 2023, 13, 22587. [Google Scholar] [CrossRef] [PubMed]
- Saghazadeh, A.; Ataeinia, B.; Keynejad, K.; Abdolalizadeh, A.; Hirbod-Mobarakeh, A.; Rezaei, N. A Meta-Analysis of pro-Inflammatory Cytokines in Autism Spectrum Disorders: Effects of Age, Gender, and Latitude. J. Psychiatr. Res. 2019, 115, 90–102. [Google Scholar] [CrossRef]
- Li, W.; Deng, M.; Loughran, P.A.; Yang, M.; Lin, M.; Yang, C.; Gao, W.; Jin, S.; Li, S.; Cai, J.; et al. LPS Induces Active HMGB1 Release from Hepatocytes into Exosomes Through the Coordinated Activities of TLR4 and Caspase-11/GSDMD Signaling. Front. Immunol. 2020, 11, 229. [Google Scholar] [CrossRef]
- Abdelli, L.S.; Samsam, A.; Naser, S.A. Propionic Acid Induces Gliosis and Neuro-Inflammation through Modulation of PTEN/AKT Pathway in Autism Spectrum Disorder. Sci. Rep. 2019, 9, 8824. [Google Scholar] [CrossRef]
- Saresella, M.; Marventano, I.; Guerini, F.R.; Mancuso, R.; Ceresa, L.; Zanzottera, M.; Rusconi, B.; Maggioni, E.; Tinelli, C.; Clerici, M. An Autistic Endophenotype Results in Complex Immune Dysfunction in Healthy Siblings of Autistic Children. Biol. Psychiatry 2009, 66, 978–984. [Google Scholar] [CrossRef]
- Curie, A.; Oberlander, T.F.; Jensen, K.B. Placebo Effects in Children with Autism Spectrum Disorder. Dev. Med. Child. Neurol. 2023, 65, 1316–1320. [Google Scholar] [CrossRef]
- Siafis, S.; Çıray, O.; Schneider-Thoma, J.; Bighelli, I.; Krause, M.; Rodolico, A.; Ceraso, A.; Deste, G.; Huhn, M.; Fraguas, D.; et al. Placebo Response in Pharmacological and Dietary Supplement Trials of Autism Spectrum Disorder (ASD): Systematic Review and Meta-Regression Analysis. Mol. Autism 2020, 11, 66. [Google Scholar] [CrossRef]
- King, B.H.; Dukes, K.; Donnelly, C.L.; Sikich, L.; McCracken, J.T.; Scahill, L.; Hollander, E.; Bregman, J.D.; Anagnostou, E.; Robinson, F.; et al. Baseline Factors Predicting Placebo Response to Treatment in Children and Adolescents with Autism Spectrum Disorders: A Multisite Randomized Clinical Trial. JAMA Pediatr. 2013, 167, 1045–1052. [Google Scholar] [CrossRef] [PubMed]
- Masi, A.; Lampit, A.; Glozier, N.; Hickie, I.B.; Guastella, A.J. Predictors of Placebo Response in Pharmacological and Dietary Supplement Treatment Trials in Pediatric Autism Spectrum Disorder: A Meta-Analysis. Transl. Psychiatry 2015, 5, e640. [Google Scholar] [CrossRef] [PubMed]
- Buitelaar, J.K.; Sobanski, E.; Stieglitz, R.-D.; Dejonckheere, J.; Waechter, S.; Schäuble, B. Predictors of Placebo Response in Adults with Attention-Deficit/Hyperactivity Disorder: Data from 2 Randomized Trials of Osmotic-Release Oral System Methylphenidate. J. Clin. Psychiatry 2012, 73, 1097–1102. [Google Scholar] [CrossRef] [PubMed]
- Barnes, E.L.; Agrawal, M.; Syal, G.; Ananthakrishnan, A.N.; Cohen, B.L.; Haydek, J.P.; Al Kazzi, E.S.; Eisenstein, S.; Hashash, J.G.; Sultan, S.S.; et al. AGA Clinical Practice Guideline on the Management of Pouchitis and Inflammatory Pouch Disorders. Gastroenterology 2024, 166, 59–85. [Google Scholar] [CrossRef]
- Halkjær, S.I.; Christensen, A.H.; Lo, B.Z.S.; Browne, P.D.; Günther, S.; Hansen, L.H.; Petersen, A.M. Faecal Microbiota Transplantation Alters Gut Microbiota in Patients with Irritable Bowel Syndrome: Results from a Randomised, Double-Blind Placebo-Controlled Study. Gut 2018, 67, 2107–2115. [Google Scholar] [CrossRef]
Study | Type of Study | Intervention | Number of Participants | All Outcome Measures | Outcomes Measures Related to ASD | Observations | Persistence | Strength of Evidence According to GRADE System |
---|---|---|---|---|---|---|---|---|
Kang et al. (2017) [31] | Open-label | 14-day vancomycin + Bowel cleanse + 1 high-dose FMT + 7–8 weeks low-dose FMT | 18 (ASD = 10, Control = 8 no intervention on controls) | PGI-III, CARS, SRS, ABC, VABS-II, GSRS, bacterial, and viral changes in stool | CARS | Decreased by 22% from beginning to end of the treatment; p < 0.001 (Wilcoxon signed-rank test). | Decreased 24% (relative to baseline) after 8 weeks. | Very low |
PGI-III | Significant Improvement p < 0.001 (Wilcoxon signed-rank test). | Maintained after 8 weeks without treatment. | ||||||
SRS | Significant Improvement in social skills; p < 0.001 (Wilcoxon signed-rank test), | Maintained after 8 weeks without treatment. | ||||||
ABC | Significant Improvement in multiple behavioral domains (multiple behavioral domains, irritability, hyperactivity, lethargy, stereotypy, aberrant speech); p < 0.001 (Wilcoxon signed-rank test). | Maintained after 8 weeks without treatment. | ||||||
VABS-II | Increased by 1.4 years (p < 0.001) and across all sub-domain areas. | No data. | ||||||
Li et al. (2021) [35] | Open-label | FMT once weekly for 4 weeks (oral capsules or colonoscopy) | 56 (ASD = 40, Controls = 16; no intervention on controls) | CARS, ABC, SRS, SAS, GSRS, BSFS, gut microbiota diversity, Serum 5-HT, GABA, and DA | CARS | Decreased by 10% at the end of the treatment and remained decreased by 6% after 8 weeks post-treatment. | Remained decreased by 6% after 8 weeks without treatment. | Low |
SAS | Decreased with the improvement of gastrointestinal symptoms and autism-like symptoms in children. | Returned to baseline after 8 weeks without treatment. | ||||||
SRS | Improved during the treatment. | Reversed after 8 weeks without treatment. | ||||||
ABC | Alleviated by the treatment. | Maintained after 8 weeks without treatment. | ||||||
Pan et al. (2022) [36] | Retrospective study | FMT given for 6 consecutive days via TET, | 42 ASD (34 males and 8 females) | ABC, CARS. SDSC, BSFS, Rome III criteria, white blood cell (WBC), and globulin levels | CARS | Decreased significantly in comparison to baseline after five/five interventions. | Remained decreased after the fifth intervention. | Very low |
SDSC | Decreased significantly in comparison to baseline after five/five interventions. | Remained decreased after the fifth intervention. | ||||||
ABC | Decreased significantly in comparison to baseline at the third, fourth, and fifth interventions. | Remained decreased after the fifth intervention. | ||||||
Other | Reduced serum level of globulin (third and fourth intervention) and white blood cells (fourth intervention). | Return to baseline levels after the fifth intervention. | ||||||
Zhang et al. (2022) [37] | Retrospective study | Single FMT via TET or nasojejunal tube | 49 (constipation group n = 24, control group n = 25, blank group n = 24) | CARS, SDSC, ABC, BSFS | CARS | Improved in constipation and control groups. | No follow-up. | Very low |
SDSC | Improved in the constipation group, not improved in the control group. | No follow-up. | ||||||
ABC | Improved in the constipation group, not improved in the control group. | No follow-up. | ||||||
Li et al. (2024) [38] | Open-label | FMT once weekly for 4 weeks (oral capsules or colonoscopy) | 98 (80 males and 18 females with ASD) | CARS, SRS, ABC, SDSC, GSRS, AEs | CARS | Capsule and NJT and TET groups decreased at the endpoint. | Effect of capsule-based treatment maintained at week 20; effect of NJT and TET maintained at week 12. | Low |
SRS | Capsule and NJT and TET groups decreased at the endpoint. | Effect of capsule-based treatment maintained at week 20; effect of NJT and TET maintained at week 12. | ||||||
ABC | Capsule and NJT and TET groups decreased at the endpoint. | Effect of capsule-based treatment maintained at week 20; effect of NJT and TET maintained at week 12. | ||||||
Wan et al. (2024) [39] | Randomized, double-blind placebo | 2x 6-day oral FMT capsule administration (in the 1st and 5th weeks) | 103 (n = 52 FMT group and placebo n = 51) | SRS-2 T (primary outcome), Vineland-3, ABC scores. AEs (secondary outcomes) | SRS-2 T | No difference between groups | No difference at week 17 (last follow-up). | Moderate |
ABC | No difference between groups | No difference at week 17 (last follow-up) | ||||||
Vineland-3 | At week 9 no difference between groups | Significant difference in the socialization domain from baseline to Week 17 in the Vineland-3 | ||||||
Hazan et al. (2024) [40] | Case study | 10-day vancomycin + Bowel cleanse + single FMT | 1 | ATEC, CARS, microbiota diversity | CARS | Improvement in verbal communication, behavioral regulation, social interaction, and emotional response, sensory processing and overall functioning. | Maintained at month 16. | Very low |
ATEC | Improvement in speech and sensory awareness. | Maintained at month 16. | ||||||
Other | Decrease in aggression, improvement in sleep patterns and speech. | No data. | ||||||
Huang et al. (2022) [41] | Case study | Bowel cleanse + FMT ×3 over 1 week via TET | 1 | HAMA, HAMD, SCL-90, BSFS, microbiota diversity | HAMA | Strong reduction in overall anxiety symptoms. | Maintained at the 1st month, not maintained at the 3rd month. | Very low |
HAMD | Depression symptoms improved but not fully resolved. | Maintained at the 1st month, not maintained at the 3rd month. | ||||||
SCL-90 | A progressive reduction in scores indicates broad improvement in overall psychiatric symptoms. | Maintained at the 1st month, not maintained at the 3rd month. | ||||||
Hu et al. (2023) [42] | Case study | 14-day vancomycin+ FMT ×5 over 3 months | 1 | CARS, ATEC, SRS, ABC score, CHAT-23, CNBS-R2016, microbiota diversity, changes in intestinal structure | CARS | Unchanged. | Unchanged. | Very low |
SRS | Overall downward trend after treatment, reflecting improved social abilities. | Trend to decrease at the fifth round of intervention. | ||||||
ABC | Score decreased overall with fluctuations, indicating behavioral improvement. | Fluctuation. | ||||||
ATEC | Slight developmental and physical improvements. | Slight decrease. | ||||||
CNBS-R2016 | Progress in multiple areas, including gross motor, adaptive behavior, language, and personal–social. Warning behavior increased. | No data. | ||||||
Other | Speaking single words, staying on the ground. | No data. |
Study | Number of Patients | Gut microbiota Changes | Additional Findings | Follow-Up Duration |
---|---|---|---|---|
Kang et al. (2017) [31] | 18 children with ASD (aged 7–16 years) | α-diversity ↑ donor similarity ↑ Bifidobacterium ↑ Prevotella ↑ Desulfovibrio ↑ | Donor virome similarity ↑ | Bacterial gut microbiota changes are maintained for at least 8 weeks post-treatment. |
Li et. al. (2021) [35] | 40 children with ASD (aged 3–17 years) + 16 controls | donor similarity ↑ Eubacterium coprostanoligenes ↓ | Comparable effects independent of FMT delivery route. Serum neurotransmitters: 5-HT ↓ GABA ↓ DA ↑ Higher Bristol score correlated with GABA ↑ and 5-HT. ↓ E. coprostanoligenes abundance correlated with GABA ↓and GI symptom severity (GSRS) ↑ | The differences between donor and recipient returned to baseline 8 weeks after FMT. Neurotransmitter levels partially reverted toward baseline with a trend of further decline after 8 weeks. |
Wan et al. (2024) [39] | 103 children with ASD (n = 52 FMT group and placebo n = 51) | α-diversity ↑ | Not reported | A gradual regression of α-diversity to baseline levels was observed by weeks 9 and 17. Increase of β-diversity in the FMT group at week 9, with partial regression towards baseline in week 17. |
Hazan et al. (2024) [40] | Case study (aged 19 years with ASD) | α-diversity ↑ donor similarity ↑ Proteobacteria ↓ Lactobacillus animalis ↓ Actinobacteria ↑ Bifidobacterium ↑ | Not reported | Gradual microbiota improvement throughout 15-month observation, with no signs of remission. |
Huang et al. (2022) [41] | Case study (aged 18 years with Asperger syndrome and IBS-D) | Genus level: Roseburia ↑ Bifidobacterium ↑ Ruminococcus ↑ Flavobacteriales ↑ Prevotella ↑ Faecalibacterium ↑ Coprococcus ↓ Dorea ↓ Veillonella ↓ Clostridium ↓ Haemophilus ↓ Streptococcus ↓ Romboutsia ↓ Species level: Bifidobacterium pseudocatenulatum ↑ Ruminococcus bromii ↑ Roseburia sp. TF10-5 ↑ Roseburia faecis ↑ Faecalibacterium prausnitzii ↑ Prevotella stercorea ↑ Flavobacteriales bacterium ↑ Bacteroides coprocola ↓ Romboutsia timonensis ↓ Coprococcus catus ↓ Haemophilus parainfluenzae ↓ Dorea longicatena ↓ Bifidobacterium bifidum ↓ Blautia obeum ↓ | Altered serum metabolite profile (17 ↑, 37 ↓): Linked to energy, vitamins, and SCFAs metabolism (e.g., riboflavin, UDP-GlcNAc, galantamine) ↑ Involved in amino acid and neurotransmitter biosynthesis (e.g., glutamine, proline, tryptophan) ↓ | Microbiota and serum metabolite profiles improved at the 1st month, followed by partial regression at the 3rd month after FMT. |
Hu et al. (2023) [42] | Case study (aged 7 years with ASD) | α-diversity ↑ Bacteroides ↑ Ruminococcus Bifidobacterium ↑ Anaerostipes↓ Streptococcus ↓ Faecalibacterium ↓ | SCFAs production (predicted) ↑ Inflammation and lesions in the ileum and rectum ↓ | Not reported. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maniscalco, I.; Bartochowski, P.; Priori, V.; Iancau, S.P.; De Francesco, M.; Innamorati, M.; Jagodzinska, N.; Giupponi, G.; Masucci, L.; Conca, A.; et al. The Effects of Fecal Microbial Transplantation on the Symptoms in Autism Spectrum Disorder, Gut Microbiota and Metabolites: A Scoping Review. Microorganisms 2025, 13, 1290. https://doi.org/10.3390/microorganisms13061290
Maniscalco I, Bartochowski P, Priori V, Iancau SP, De Francesco M, Innamorati M, Jagodzinska N, Giupponi G, Masucci L, Conca A, et al. The Effects of Fecal Microbial Transplantation on the Symptoms in Autism Spectrum Disorder, Gut Microbiota and Metabolites: A Scoping Review. Microorganisms. 2025; 13(6):1290. https://doi.org/10.3390/microorganisms13061290
Chicago/Turabian StyleManiscalco, Ignazio, Piotr Bartochowski, Vittoria Priori, Sidonia Paula Iancau, Michele De Francesco, Marco Innamorati, Natalia Jagodzinska, Giancarlo Giupponi, Luca Masucci, Andreas Conca, and et al. 2025. "The Effects of Fecal Microbial Transplantation on the Symptoms in Autism Spectrum Disorder, Gut Microbiota and Metabolites: A Scoping Review" Microorganisms 13, no. 6: 1290. https://doi.org/10.3390/microorganisms13061290
APA StyleManiscalco, I., Bartochowski, P., Priori, V., Iancau, S. P., De Francesco, M., Innamorati, M., Jagodzinska, N., Giupponi, G., Masucci, L., Conca, A., & Mroczek, M. (2025). The Effects of Fecal Microbial Transplantation on the Symptoms in Autism Spectrum Disorder, Gut Microbiota and Metabolites: A Scoping Review. Microorganisms, 13(6), 1290. https://doi.org/10.3390/microorganisms13061290