The Prevalence of Polyketide Synthase-Positive E. coli in Cystic Fibrosis
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Dietary Surveys and Analysis
2.3. DNA Extraction and Sequencing
2.4. Fecal Calprotectin
2.5. Identification of E. coli and pks-Producing E. coli
2.6. Statistical Analysis
3. Results
3.1. Demographics
3.2. Microbiome Diversity and Inflammation
3.3. Prevalence of pks+ E. coli at Baseline
3.4. Prevalence of pks+ E. coli in a Longitudinal Analysis of the CF Cohort
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coffey, M.J.; Nielsen, S.; Wemheuer, B.; Kaakoush, N.O.; Garg, M.; Needham, B.; Pickford, R.; Jaffe, A.; Thomas, T.; Ooi, C.Y. Gut Microbiota in Children With Cystic Fibrosis: A Taxonomic and Functional Dysbiosis. Sci. Rep. 2019, 9, 18593. [Google Scholar] [CrossRef] [PubMed]
- Manor, O.; Levy, R.; Pope, C.E.; Hayden, H.S.; Brittnacher, M.J.; Carr, R.; Radey, M.C.; Hager, K.R.; Heltshe, S.L.; Ramsey, B.W.; et al. Metagenomic evidence for taxonomic dysbiosis and functional imbalance in the gastrointestinal tracts of children with cystic fibrosis. Sci. Rep. 2016, 6, 22493. [Google Scholar] [CrossRef] [PubMed]
- Burke, D.G.; Fouhy, F.; Harrison, M.J.; Rea, M.C.; Cotter, P.D.; O’Sullivan, O.; Stanton, C.; Hill, C.; Shanahan, F.; Plant, B.J.; et al. The altered gut microbiota in adults with cystic fibrosis. BMC Microbiol. 2017, 17, 58. [Google Scholar] [CrossRef]
- Tam, R.Y.; van Dorst, J.M.; McKay, I.; Coffey, M.; Ooi, C.Y. Intestinal Inflammation and Alterations in the Gut Microbiota in Cystic Fibrosis: A Review of the Current Evidence, Pathophysiology and Future Directions. J. Clin. Med. 2022, 11, 649. [Google Scholar] [CrossRef]
- Kristensen, M.; Prevaes, S.; Kalkman, G.; Tramper-Stranders, G.A.; Hasrat, R.; de Winter-de Groot, K.M.; Janssens, H.M.; Tiddens, H.A.; van Westreenen, M.; Sanders, E.A.M.; et al. Development of the gut microbiota in early life: The impact of cystic fibrosis and antibiotic treatment. J. Cyst. Fibros. 2020, 19, 553–561. [Google Scholar] [CrossRef]
- Yamada, A.; Komaki, Y.; Komaki, F.; Micic, D.; Zullow, S.; Sakuraba, A. Risk of gastrointestinal cancers in patients with cystic fibrosis: A systematic review and meta-analysis. Lancet Oncol. 2018, 19, 758–767. [Google Scholar] [CrossRef]
- Maisonneuve, P.; Marshall, B.C.; Knapp, E.A.; Lowenfels, A.B. Cancer risk in cystic fibrosis: A 20-year nationwide study from the United States. J. Natl. Cancer Inst. 2013, 105, 122–129. [Google Scholar] [CrossRef]
- Ooi, C.Y.; Durie, P.R. Cystic fibrosis from the gastroenterologist’s perspective. Nat. Rev. Gastroenterol. Hepatol. 2016, 13, 175–185. [Google Scholar] [CrossRef]
- Garg, M.; Ooi, C.Y. The Enigmatic Gut in Cystic Fibrosis: Linking Inflammation, Dysbiosis, and the Increased Risk of Malignancy. Curr. Gastroenterol. Rep. 2017, 19, 6. [Google Scholar] [CrossRef]
- Wong, C.C.; Yu, J. Gut microbiota in colorectal cancer development and therapy. Nat. Rev. Clin. Oncol. 2023, 20, 429–452. [Google Scholar] [CrossRef]
- Yatsunenko, T.; Rey, F.E.; Manary, M.J.; Trehan, I.; Dominguez-Bello, M.G.; Contreras, M.; Magris, M.; Hidalgo, G.; Baldassano, R.N.; Anokhin, A.P.; et al. Human gut microbiome viewed across age and geography. Nature 2012, 486, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Matamouros, S.; Hayden, H.S.; Hager, K.R.; Brittnacher, M.J.; Lachance, K.; Weiss, E.J.; Pope, C.E.; Imhaus, A.F.; McNally, C.P.; Borenstein, E.; et al. Adaptation of commensal proliferating Escherichia coli to the intestinal tract of young children with cystic fibrosis. Proc. Natl. Acad. Sci. USA 2018, 115, 1605–1610. [Google Scholar] [CrossRef] [PubMed]
- Pakbin, B.; Brück, W.M.; Rossen, J.W.A. Virulence Factors of Enteric Pathogenic Escherichia coli: A Review. Int. J. Mol. Sci. 2021, 22, 9922. [Google Scholar] [CrossRef]
- Faïs, T.; Delmas, J.; Barnich, N.; Bonnet, R.; Dalmasso, G. Colibactin: More Than a New Bacterial Toxin. Toxins 2018, 10, 151. [Google Scholar] [CrossRef]
- Wilson, M.R.; Jiang, Y.; Villalta, P.W.; Stornetta, A.; Boudreau, P.D.; Carrá, A.; Brennan, C.A.; Chun, E.; Ngo, L.; Samson, L.D.; et al. The human gut bacterial genotoxin colibactin alkylates DNA. Science 2019, 363, eaar7785. [Google Scholar] [CrossRef]
- Nougayrède, J.P.; Homburg, S.; Taieb, F.; Boury, M.; Brzuszkiewicz, E.; Gottschalk, G.; Buchrieser, C.; Hacker, J.; Dobrindt, U.; Oswald, E. Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science 2006, 313, 848–851. [Google Scholar] [CrossRef]
- Pleguezuelos-Manzano, C.; Puschhof, J.; Rosendahl Huber, A.; van Hoeck, A.; Wood, H.M.; Nomburg, J.; Gurjao, C.; Manders, F.; Dalmasso, G.; Stege, P.B.; et al. Mutational signature in colorectal cancer caused by genotoxic pks(+) E. coli. Nature 2020, 580, 269–273. [Google Scholar] [CrossRef]
- Arthur, J.C.; Gharaibeh, R.Z.; Mühlbauer, M.; Perez-Chanona, E.; Uronis, J.M.; McCafferty, J.; Fodor, A.A.; Jobin, C. Microbial genomic analysis reveals the essential role of inflammation in bacteria-induced colorectal cancer. Nat. Commun. 2014, 5, 4724. [Google Scholar] [CrossRef]
- Dalmasso, G.; Cougnoux, A.; Delmas, J.; Darfeuille-Michaud, A.; Bonnet, R. The bacterial genotoxin colibactin promotes colon tumor growth by modifying the tumor microenvironment. Gut Microbes 2014, 5, 675–680. [Google Scholar] [CrossRef]
- Dougherty, M.W.; Jobin, C. Shining a Light on Colibactin Biology. Toxins 2021, 13, 346. [Google Scholar] [CrossRef]
- Eklöf, V.; Löfgren-Burström, A.; Zingmark, C.; Edin, S.; Larsson, P.; Karling, P.; Alexeyev, O.; Rutegård, J.; Wikberg, M.L.; Palmqvist, R. Cancer-associated fecal microbial markers in colorectal cancer detection. Int. J. Cancer 2017, 141, 2528–2536. [Google Scholar] [CrossRef] [PubMed]
- Coffey, M.J.; McKay, I.R.; Doumit, M.; Chuang, S.; Adams, S.; Stelzer-Braid, S.; Waters, S.A.; Kasparian, N.A.; Thomas, T.; Jaffe, A.; et al. Evaluating the Alimentary and Respiratory Tracts in Health and disease (EARTH) research programme: A protocol for prospective, longitudinal, controlled, observational studies in children with chronic disease at an Australian tertiary paediatric hospital. BMJ Open 2020, 10, e033916. [Google Scholar] [CrossRef] [PubMed]
- Watson, J.F.; Collins, C.E.; Sibbritt, D.W.; Dibley, M.J.; Garg, M.L. Reproducibility and comparative validity of a food frequency questionnaire for Australian children and adolescents. Int. J. Behav. Nutr. Phys. Act. 2009, 6, 62. [Google Scholar] [CrossRef]
- Chan, D.S.; Lau, R.; Aune, D.; Vieira, R.; Greenwood, D.C.; Kampman, E.; Norat, T. Red and processed meat and colorectal cancer incidence: Meta-analysis of prospective studies. PLoS ONE 2011, 6, e20456. [Google Scholar] [CrossRef]
- Aune, D.; Chan, D.S.M.; Lau, R.; Vieira, R.; Greenwood, D.C.; Kampman, E.; Norat, T. Dietary fibre, whole grains, and risk of colorectal cancer: Systematic review and dose-response meta-analysis of prospective studies. BMJ 2011, 343, d6617. [Google Scholar] [CrossRef]
- Wan, Y.; Wu, K.; Wang, L.; Yin, K.; Song, M.; Giovannucci, E.L.; Willett, W.C. Dietary fat and fatty acids in relation to risk of colorectal cancer. Eur. J. Nutr. 2022, 61, 1863–1873. [Google Scholar] [CrossRef]
- Nielsen, S.; Needham, B.; Leach, S.T.; Day, A.S.; Jaffe, A.; Thomas, T.; Ooi, C.Y. Disrupted progression of the intestinal microbiota with age in children with cystic fibrosis. Sci. Rep. 2016, 6, 24857. [Google Scholar] [CrossRef]
- Garnett, E.; Pagaduan, J.; Rajapakshe, D.; Tam, E.; Kellermayer, R.; Devaraj, S. Validation of the newly FDA-approved Buhlmann fCal Turbo assay for measurement of fecal calprotectin in a pediatric population. Pract. Lab. Med. 2020, 22, e00178. [Google Scholar] [CrossRef]
- Garg, M.; Leach, S.T.; Coffey, M.J.; Katz, T.; Strachan, R.; Pang, T.; Needham, B.; Lui, K.; Ali, F.; Day, A.S.; et al. Age-dependent variation of fecal calprotectin in cystic fibrosis and healthy children. J. Cyst. Fibros. 2017, 16, 631–636. [Google Scholar] [CrossRef] [PubMed]
- Arthur, J.C.; Perez-Chanona, E.; Mühlbauer, M.; Tomkovich, S.; Uronis, J.M.; Fan, T.J.; Campbell, B.J.; Abujamel, T.; Dogan, B.; Rogers, A.B.; et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 2012, 338, 120–123. [Google Scholar] [CrossRef]
- Tantawiwat, S.; Tansuphasiri, U.; Wongwit, W.; Wongchotigul, V.; Kitayaporn, D. Development of multiplex PCR for the detection of total coliform bacteria for Escherichia coli and Clostridium perfringens in drinking water. Southeast Asian J. Trop. Med. Public Health 2005, 36, 162–169. [Google Scholar] [PubMed]
- Anderson, M.J. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 2001, 26, 32–46. [Google Scholar] [CrossRef]
- Hadley, W. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Bruzzese, E.; Raia, V.; Gaudiello, G.; Polito, G.; Buccigrossi, V.; Formicola, V.; Guarino, A. Intestinal inflammation is a frequent feature of cystic fibrosis and is reduced by probiotic administration. Aliment. Pharmacol. Ther. 2004, 20, 813–819. [Google Scholar] [CrossRef]
- Wong, S.H.; Yu, J. Gut microbiota in colorectal cancer: Mechanisms of action and clinical applications. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 690–704. [Google Scholar] [CrossRef]
- Nooij, S.; Ducarmon, Q.R.; Laros, J.F.J.; Zwittink, R.D.; Norman, J.M.; Smits, W.K.; Verspaget, H.W.; Keller, J.J.; Terveer, E.M.; Kuijper, E.J. Fecal Microbiota Transplantation Influences Procarcinogenic Escherichia coli in Recipient Recurrent Clostridioides difficile Patients. Gastroenterology 2021, 161, 1218–1228.e15. [Google Scholar] [CrossRef]
- Clooney, A.G.; Eckenberger, J.; Laserna-Mendieta, E.; Sexton, K.A.; Bernstein, M.T.; Vagianos, K.; Sargent, M.; Ryan, F.J.; Moran, C.; Sheehan, D.; et al. Ranking microbiome variance in inflammatory bowel disease: A large longitudinal intercontinental study. Gut 2021, 70, 499–510. [Google Scholar] [CrossRef]
- Bondarev, V.; Richter, M.; Romano, S.; Piel, J.; Schwedt, A.; Schulz-Vogt, H.N. The genus Pseudovibrio contains metabolically versatile bacteria adapted for symbiosis. Environ. Microbiol. 2013, 15, 2095–2113. [Google Scholar] [CrossRef]
- Oliero, M.; Hajjar, R.; Cuisiniere, T.; Fragoso, G.; Calvé, A.; Dagbert, F.; Loungnarath, R.; Sebajang, H.; Schwenter, F.; Wassef, R.; et al. Prevalence of pks + bacteria and enterotoxigenic Bacteroides fragilis in patients with colorectal cancer. Gut Pathog. 2022, 14, 51. [Google Scholar] [CrossRef]
- Than, B.L.N.; Linnekamp, J.F.; Starr, T.K.; Largaespada, D.A.; Rod, A.; Zhang, Y.; Bruner, V.; Abrahante, J.; Schumann, A.; Luczak, T.; et al. CFTR is a tumor suppressor gene in murine and human intestinal cancer. Oncogene 2016, 35, 4191–4199. [Google Scholar] [CrossRef]
- McKay, I.; van Dorst, J.; Katz, T.; Doumit, M.; Prentice, B.; Owens, L.; Belessis, Y.; Chuang, S.; Jaffe, A.; Thomas, T.; et al. Diet and the gut-lung axis in cystic fibrosis—Direct & indirect links. Gut Microbes 2023, 15, 2156254. [Google Scholar] [CrossRef]
- Arima, K.; Zhong, R.; Ugai, T.; Zhao, M.; Haruki, K.; Akimoto, N.; Lau, M.C.; Okadome, K.; Mehta, R.S.; Väyrynen, J.P.; et al. Western-Style Diet, pks Island-Carrying Escherichia coli, and Colorectal Cancer: Analyses From Two Large Prospective Cohort Studies. Gastroenterology 2022, 163, 862–874. [Google Scholar] [CrossRef] [PubMed]
- Silpe, J.E.; Wong, J.W.H.; Owen, S.V.; Baym, M.; Balskus, E.P. The bacterial toxin colibactin triggers prophage induction. Nature 2022, 603, 315–320. [Google Scholar] [CrossRef] [PubMed]
1A: Baseline | Cystic Fibrosis Patients | Healthy Controls | p-Value | 95% CI | |||
---|---|---|---|---|---|---|---|
Number of participants | 55 | 55 | |||||
Male sex, n (%) | 26 (47%) | 26 (47%) | 1 | ||||
Mean age in years (SD) | 7.66 (5.1) | 7.78 (5.0) | 0.17 | (−0.29, 0.05) | |||
Exocrine pancreatic status | Cystic fibrosis patients | ||||||
Pancreatic sufficient (%) | 7 (13%) | ||||||
Pancreatic insufficient (%) | 48 (87%) | ||||||
Anthropometrics | |||||||
Mean weight z-scores (SD) | −0.24 (1.23) 0.00 (1.01) 0.39 (0.71) | ||||||
Mean height z-scores (SD) | |||||||
Mean BMI z-scores (SD) | |||||||
1B: Longitudinal | |||||||
Number of participants | 23 | ||||||
Male sex, n (%) | 10 (38%) | ||||||
Mean age at specified timepoint in years (SD) | T1 7.0 (4.2) | T2 7.8 (4.2) | T3 8.8 (3.9) | ||||
Exocrine pancreatic status | |||||||
Pancreatic sufficient (%) | 4 (17%) | ||||||
Pancreatic insufficient (%) | 19 (83%) |
Diagnosis | |||
---|---|---|---|
clbB Status | Cystic Fibrosis | Healthy Controls | Total |
Positive | 21 | 26 | 47 |
Negative | 34 | 29 | 63 |
Total | 55 | 55 | 110 |
Mean (SD) | p-Value | ||
---|---|---|---|
Calprotectin (mg/kg) | |||
clbB positive | 124 (154) | 0.6 | |
clbB negative | 158 (268) | ||
Shannon diversity (Shannon Index (H)) | |||
clbB positive | 2.78 (0.77) | 0.5 | |
clbB negative | 2.65 (0.74) | ||
Microbial richness | |||
clbB positive | 159 (76.5) | 0.5 | |
clbB negative | 147 (70.4) |
Timepoint 1 | Timepoint 2 | Timepoint 3 | |
---|---|---|---|
CF1 | + | ||
CF2 | + | ||
CF3 | - | - | - |
CF4 | + | + | + |
CF5 | + | - | + |
CF6 | - | - | - |
CF7 | - | + | - |
CF8 | - | - | + |
CF9 | |||
CF10 | - | ||
CF11 | - | - | + |
CF12 | + | + | + |
CF13 | + | - | + |
CF14 | - | + | - |
CF15 | - | + | |
CF16 | + | + | |
CF17 | - | - | + |
CF18 | + | - | + |
CF19 | + | + | + |
CF20 | - | + | - |
CF21 | + | - | |
CF22 | + | - | + |
CF23 | - | - | + |
p-Value | Standard Error | Estimate | T-Value | ||
---|---|---|---|---|---|
Richness | |||||
Timepoint 2 | 0.9 | 10.8 | 1.79 | 0.16 | |
Timepoint 3 | 0.135 | 11.1 | 16.9 | 1.52 | |
Sex | 0.5 | 12.4 | 8.17 | 0.66 | |
Age | 0.0589 | 1.52 | 3.04 | 2.00 | |
Variance of intercepts | 412.9 | 20.3 | |||
Variance of residuals | 1330.1 | 36.5 | |||
Shannon Diversity | |||||
Timepoint 2 | 0.178 | 0.16 | −0.22 | −1.37 | |
Timepoint 3 | 0.5 | 0.17 | 0.10 | 0.61 | |
Sex | 0.2 | 0.21 | 0.27 | 1.29 | |
Age | 0.6 | 0.025 | 0.013 | 0.51 | |
Variance of intercepts | 0.154 | 0.0393 | |||
Variance of residuals | 0.295 | 0.543 | |||
Chao1 | |||||
Timepoint 2 | 0.9 | 14.5 | 0.49 | 0.034 | |
Timepoint 3 | 0.2 | 14.8 | 17.7 | 1.20 | |
Sex | 0.4 | 14.2 | 10.4 | 0.73 | |
Age | 0.0306 * | 1.75 | 4.07 | 2.32 | |
Variance of intercepts | 344.9 | 18.6 | |||
Variance of residuals | 2381.7 | 48.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chan, C.; Coffey, M.; Murphy, C.; McKay, I.; Abdu, J.; Paida, K.; Tam, R.Y.; Wrigley-Carr, H.; Prentice, B.; Owens, L.; et al. The Prevalence of Polyketide Synthase-Positive E. coli in Cystic Fibrosis. Microorganisms 2025, 13, 681. https://doi.org/10.3390/microorganisms13030681
Chan C, Coffey M, Murphy C, McKay I, Abdu J, Paida K, Tam RY, Wrigley-Carr H, Prentice B, Owens L, et al. The Prevalence of Polyketide Synthase-Positive E. coli in Cystic Fibrosis. Microorganisms. 2025; 13(3):681. https://doi.org/10.3390/microorganisms13030681
Chicago/Turabian StyleChan, Christopher, Michael Coffey, Caitlin Murphy, Isabelle McKay, Jumaana Abdu, Keerti Paida, Rachel Y. Tam, Hannah Wrigley-Carr, Bernadette Prentice, Louisa Owens, and et al. 2025. "The Prevalence of Polyketide Synthase-Positive E. coli in Cystic Fibrosis" Microorganisms 13, no. 3: 681. https://doi.org/10.3390/microorganisms13030681
APA StyleChan, C., Coffey, M., Murphy, C., McKay, I., Abdu, J., Paida, K., Tam, R. Y., Wrigley-Carr, H., Prentice, B., Owens, L., Belessis, Y., Chuang, S., Jaffe, A., van Dorst, J., & Ooi, C. Y. (2025). The Prevalence of Polyketide Synthase-Positive E. coli in Cystic Fibrosis. Microorganisms, 13(3), 681. https://doi.org/10.3390/microorganisms13030681