The Prevalence of Polyketide Synthase-Positive E. coli in Cystic Fibrosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Dietary Surveys and Analysis
2.3. DNA Extraction and Sequencing
2.4. Fecal Calprotectin
2.5. Identification of E. coli and pks-Producing E. coli
2.6. Statistical Analysis
3. Results
3.1. Demographics
3.2. Microbiome Diversity and Inflammation
3.3. Prevalence of pks+ E. coli at Baseline
3.4. Prevalence of pks+ E. coli in a Longitudinal Analysis of the CF Cohort
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coffey, M.J.; Nielsen, S.; Wemheuer, B.; Kaakoush, N.O.; Garg, M.; Needham, B.; Pickford, R.; Jaffe, A.; Thomas, T.; Ooi, C.Y. Gut Microbiota in Children With Cystic Fibrosis: A Taxonomic and Functional Dysbiosis. Sci. Rep. 2019, 9, 18593. [Google Scholar] [CrossRef] [PubMed]
- Manor, O.; Levy, R.; Pope, C.E.; Hayden, H.S.; Brittnacher, M.J.; Carr, R.; Radey, M.C.; Hager, K.R.; Heltshe, S.L.; Ramsey, B.W.; et al. Metagenomic evidence for taxonomic dysbiosis and functional imbalance in the gastrointestinal tracts of children with cystic fibrosis. Sci. Rep. 2016, 6, 22493. [Google Scholar] [CrossRef] [PubMed]
- Burke, D.G.; Fouhy, F.; Harrison, M.J.; Rea, M.C.; Cotter, P.D.; O’Sullivan, O.; Stanton, C.; Hill, C.; Shanahan, F.; Plant, B.J.; et al. The altered gut microbiota in adults with cystic fibrosis. BMC Microbiol. 2017, 17, 58. [Google Scholar] [CrossRef]
- Tam, R.Y.; van Dorst, J.M.; McKay, I.; Coffey, M.; Ooi, C.Y. Intestinal Inflammation and Alterations in the Gut Microbiota in Cystic Fibrosis: A Review of the Current Evidence, Pathophysiology and Future Directions. J. Clin. Med. 2022, 11, 649. [Google Scholar] [CrossRef]
- Kristensen, M.; Prevaes, S.; Kalkman, G.; Tramper-Stranders, G.A.; Hasrat, R.; de Winter-de Groot, K.M.; Janssens, H.M.; Tiddens, H.A.; van Westreenen, M.; Sanders, E.A.M.; et al. Development of the gut microbiota in early life: The impact of cystic fibrosis and antibiotic treatment. J. Cyst. Fibros. 2020, 19, 553–561. [Google Scholar] [CrossRef]
- Yamada, A.; Komaki, Y.; Komaki, F.; Micic, D.; Zullow, S.; Sakuraba, A. Risk of gastrointestinal cancers in patients with cystic fibrosis: A systematic review and meta-analysis. Lancet Oncol. 2018, 19, 758–767. [Google Scholar] [CrossRef]
- Maisonneuve, P.; Marshall, B.C.; Knapp, E.A.; Lowenfels, A.B. Cancer risk in cystic fibrosis: A 20-year nationwide study from the United States. J. Natl. Cancer Inst. 2013, 105, 122–129. [Google Scholar] [CrossRef]
- Ooi, C.Y.; Durie, P.R. Cystic fibrosis from the gastroenterologist’s perspective. Nat. Rev. Gastroenterol. Hepatol. 2016, 13, 175–185. [Google Scholar] [CrossRef]
- Garg, M.; Ooi, C.Y. The Enigmatic Gut in Cystic Fibrosis: Linking Inflammation, Dysbiosis, and the Increased Risk of Malignancy. Curr. Gastroenterol. Rep. 2017, 19, 6. [Google Scholar] [CrossRef]
- Wong, C.C.; Yu, J. Gut microbiota in colorectal cancer development and therapy. Nat. Rev. Clin. Oncol. 2023, 20, 429–452. [Google Scholar] [CrossRef]
- Yatsunenko, T.; Rey, F.E.; Manary, M.J.; Trehan, I.; Dominguez-Bello, M.G.; Contreras, M.; Magris, M.; Hidalgo, G.; Baldassano, R.N.; Anokhin, A.P.; et al. Human gut microbiome viewed across age and geography. Nature 2012, 486, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Matamouros, S.; Hayden, H.S.; Hager, K.R.; Brittnacher, M.J.; Lachance, K.; Weiss, E.J.; Pope, C.E.; Imhaus, A.F.; McNally, C.P.; Borenstein, E.; et al. Adaptation of commensal proliferating Escherichia coli to the intestinal tract of young children with cystic fibrosis. Proc. Natl. Acad. Sci. USA 2018, 115, 1605–1610. [Google Scholar] [CrossRef] [PubMed]
- Pakbin, B.; Brück, W.M.; Rossen, J.W.A. Virulence Factors of Enteric Pathogenic Escherichia coli: A Review. Int. J. Mol. Sci. 2021, 22, 9922. [Google Scholar] [CrossRef]
- Faïs, T.; Delmas, J.; Barnich, N.; Bonnet, R.; Dalmasso, G. Colibactin: More Than a New Bacterial Toxin. Toxins 2018, 10, 151. [Google Scholar] [CrossRef]
- Wilson, M.R.; Jiang, Y.; Villalta, P.W.; Stornetta, A.; Boudreau, P.D.; Carrá, A.; Brennan, C.A.; Chun, E.; Ngo, L.; Samson, L.D.; et al. The human gut bacterial genotoxin colibactin alkylates DNA. Science 2019, 363, eaar7785. [Google Scholar] [CrossRef]
- Nougayrède, J.P.; Homburg, S.; Taieb, F.; Boury, M.; Brzuszkiewicz, E.; Gottschalk, G.; Buchrieser, C.; Hacker, J.; Dobrindt, U.; Oswald, E. Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science 2006, 313, 848–851. [Google Scholar] [CrossRef]
- Pleguezuelos-Manzano, C.; Puschhof, J.; Rosendahl Huber, A.; van Hoeck, A.; Wood, H.M.; Nomburg, J.; Gurjao, C.; Manders, F.; Dalmasso, G.; Stege, P.B.; et al. Mutational signature in colorectal cancer caused by genotoxic pks(+) E. coli. Nature 2020, 580, 269–273. [Google Scholar] [CrossRef]
- Arthur, J.C.; Gharaibeh, R.Z.; Mühlbauer, M.; Perez-Chanona, E.; Uronis, J.M.; McCafferty, J.; Fodor, A.A.; Jobin, C. Microbial genomic analysis reveals the essential role of inflammation in bacteria-induced colorectal cancer. Nat. Commun. 2014, 5, 4724. [Google Scholar] [CrossRef]
- Dalmasso, G.; Cougnoux, A.; Delmas, J.; Darfeuille-Michaud, A.; Bonnet, R. The bacterial genotoxin colibactin promotes colon tumor growth by modifying the tumor microenvironment. Gut Microbes 2014, 5, 675–680. [Google Scholar] [CrossRef]
- Dougherty, M.W.; Jobin, C. Shining a Light on Colibactin Biology. Toxins 2021, 13, 346. [Google Scholar] [CrossRef]
- Eklöf, V.; Löfgren-Burström, A.; Zingmark, C.; Edin, S.; Larsson, P.; Karling, P.; Alexeyev, O.; Rutegård, J.; Wikberg, M.L.; Palmqvist, R. Cancer-associated fecal microbial markers in colorectal cancer detection. Int. J. Cancer 2017, 141, 2528–2536. [Google Scholar] [CrossRef] [PubMed]
- Coffey, M.J.; McKay, I.R.; Doumit, M.; Chuang, S.; Adams, S.; Stelzer-Braid, S.; Waters, S.A.; Kasparian, N.A.; Thomas, T.; Jaffe, A.; et al. Evaluating the Alimentary and Respiratory Tracts in Health and disease (EARTH) research programme: A protocol for prospective, longitudinal, controlled, observational studies in children with chronic disease at an Australian tertiary paediatric hospital. BMJ Open 2020, 10, e033916. [Google Scholar] [CrossRef] [PubMed]
- Watson, J.F.; Collins, C.E.; Sibbritt, D.W.; Dibley, M.J.; Garg, M.L. Reproducibility and comparative validity of a food frequency questionnaire for Australian children and adolescents. Int. J. Behav. Nutr. Phys. Act. 2009, 6, 62. [Google Scholar] [CrossRef]
- Chan, D.S.; Lau, R.; Aune, D.; Vieira, R.; Greenwood, D.C.; Kampman, E.; Norat, T. Red and processed meat and colorectal cancer incidence: Meta-analysis of prospective studies. PLoS ONE 2011, 6, e20456. [Google Scholar] [CrossRef]
- Aune, D.; Chan, D.S.M.; Lau, R.; Vieira, R.; Greenwood, D.C.; Kampman, E.; Norat, T. Dietary fibre, whole grains, and risk of colorectal cancer: Systematic review and dose-response meta-analysis of prospective studies. BMJ 2011, 343, d6617. [Google Scholar] [CrossRef]
- Wan, Y.; Wu, K.; Wang, L.; Yin, K.; Song, M.; Giovannucci, E.L.; Willett, W.C. Dietary fat and fatty acids in relation to risk of colorectal cancer. Eur. J. Nutr. 2022, 61, 1863–1873. [Google Scholar] [CrossRef]
- Nielsen, S.; Needham, B.; Leach, S.T.; Day, A.S.; Jaffe, A.; Thomas, T.; Ooi, C.Y. Disrupted progression of the intestinal microbiota with age in children with cystic fibrosis. Sci. Rep. 2016, 6, 24857. [Google Scholar] [CrossRef]
- Garnett, E.; Pagaduan, J.; Rajapakshe, D.; Tam, E.; Kellermayer, R.; Devaraj, S. Validation of the newly FDA-approved Buhlmann fCal Turbo assay for measurement of fecal calprotectin in a pediatric population. Pract. Lab. Med. 2020, 22, e00178. [Google Scholar] [CrossRef]
- Garg, M.; Leach, S.T.; Coffey, M.J.; Katz, T.; Strachan, R.; Pang, T.; Needham, B.; Lui, K.; Ali, F.; Day, A.S.; et al. Age-dependent variation of fecal calprotectin in cystic fibrosis and healthy children. J. Cyst. Fibros. 2017, 16, 631–636. [Google Scholar] [CrossRef] [PubMed]
- Arthur, J.C.; Perez-Chanona, E.; Mühlbauer, M.; Tomkovich, S.; Uronis, J.M.; Fan, T.J.; Campbell, B.J.; Abujamel, T.; Dogan, B.; Rogers, A.B.; et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 2012, 338, 120–123. [Google Scholar] [CrossRef]
- Tantawiwat, S.; Tansuphasiri, U.; Wongwit, W.; Wongchotigul, V.; Kitayaporn, D. Development of multiplex PCR for the detection of total coliform bacteria for Escherichia coli and Clostridium perfringens in drinking water. Southeast Asian J. Trop. Med. Public Health 2005, 36, 162–169. [Google Scholar] [PubMed]
- Anderson, M.J. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 2001, 26, 32–46. [Google Scholar] [CrossRef]
- Hadley, W. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Bruzzese, E.; Raia, V.; Gaudiello, G.; Polito, G.; Buccigrossi, V.; Formicola, V.; Guarino, A. Intestinal inflammation is a frequent feature of cystic fibrosis and is reduced by probiotic administration. Aliment. Pharmacol. Ther. 2004, 20, 813–819. [Google Scholar] [CrossRef]
- Wong, S.H.; Yu, J. Gut microbiota in colorectal cancer: Mechanisms of action and clinical applications. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 690–704. [Google Scholar] [CrossRef]
- Nooij, S.; Ducarmon, Q.R.; Laros, J.F.J.; Zwittink, R.D.; Norman, J.M.; Smits, W.K.; Verspaget, H.W.; Keller, J.J.; Terveer, E.M.; Kuijper, E.J. Fecal Microbiota Transplantation Influences Procarcinogenic Escherichia coli in Recipient Recurrent Clostridioides difficile Patients. Gastroenterology 2021, 161, 1218–1228.e15. [Google Scholar] [CrossRef]
- Clooney, A.G.; Eckenberger, J.; Laserna-Mendieta, E.; Sexton, K.A.; Bernstein, M.T.; Vagianos, K.; Sargent, M.; Ryan, F.J.; Moran, C.; Sheehan, D.; et al. Ranking microbiome variance in inflammatory bowel disease: A large longitudinal intercontinental study. Gut 2021, 70, 499–510. [Google Scholar] [CrossRef]
- Bondarev, V.; Richter, M.; Romano, S.; Piel, J.; Schwedt, A.; Schulz-Vogt, H.N. The genus Pseudovibrio contains metabolically versatile bacteria adapted for symbiosis. Environ. Microbiol. 2013, 15, 2095–2113. [Google Scholar] [CrossRef]
- Oliero, M.; Hajjar, R.; Cuisiniere, T.; Fragoso, G.; Calvé, A.; Dagbert, F.; Loungnarath, R.; Sebajang, H.; Schwenter, F.; Wassef, R.; et al. Prevalence of pks + bacteria and enterotoxigenic Bacteroides fragilis in patients with colorectal cancer. Gut Pathog. 2022, 14, 51. [Google Scholar] [CrossRef]
- Than, B.L.N.; Linnekamp, J.F.; Starr, T.K.; Largaespada, D.A.; Rod, A.; Zhang, Y.; Bruner, V.; Abrahante, J.; Schumann, A.; Luczak, T.; et al. CFTR is a tumor suppressor gene in murine and human intestinal cancer. Oncogene 2016, 35, 4191–4199. [Google Scholar] [CrossRef]
- McKay, I.; van Dorst, J.; Katz, T.; Doumit, M.; Prentice, B.; Owens, L.; Belessis, Y.; Chuang, S.; Jaffe, A.; Thomas, T.; et al. Diet and the gut-lung axis in cystic fibrosis—Direct & indirect links. Gut Microbes 2023, 15, 2156254. [Google Scholar] [CrossRef]
- Arima, K.; Zhong, R.; Ugai, T.; Zhao, M.; Haruki, K.; Akimoto, N.; Lau, M.C.; Okadome, K.; Mehta, R.S.; Väyrynen, J.P.; et al. Western-Style Diet, pks Island-Carrying Escherichia coli, and Colorectal Cancer: Analyses From Two Large Prospective Cohort Studies. Gastroenterology 2022, 163, 862–874. [Google Scholar] [CrossRef] [PubMed]
- Silpe, J.E.; Wong, J.W.H.; Owen, S.V.; Baym, M.; Balskus, E.P. The bacterial toxin colibactin triggers prophage induction. Nature 2022, 603, 315–320. [Google Scholar] [CrossRef] [PubMed]
1A: Baseline | Cystic Fibrosis Patients | Healthy Controls | p-Value | 95% CI | |||
---|---|---|---|---|---|---|---|
Number of participants | 55 | 55 | |||||
Male sex, n (%) | 26 (47%) | 26 (47%) | 1 | ||||
Mean age in years (SD) | 7.66 (5.1) | 7.78 (5.0) | 0.17 | (−0.29, 0.05) | |||
Exocrine pancreatic status | Cystic fibrosis patients | ||||||
Pancreatic sufficient (%) | 7 (13%) | ||||||
Pancreatic insufficient (%) | 48 (87%) | ||||||
Anthropometrics | |||||||
Mean weight z-scores (SD) | −0.24 (1.23) 0.00 (1.01) 0.39 (0.71) | ||||||
Mean height z-scores (SD) | |||||||
Mean BMI z-scores (SD) | |||||||
1B: Longitudinal | |||||||
Number of participants | 23 | ||||||
Male sex, n (%) | 10 (38%) | ||||||
Mean age at specified timepoint in years (SD) | T1 7.0 (4.2) | T2 7.8 (4.2) | T3 8.8 (3.9) | ||||
Exocrine pancreatic status | |||||||
Pancreatic sufficient (%) | 4 (17%) | ||||||
Pancreatic insufficient (%) | 19 (83%) |
Diagnosis | |||
---|---|---|---|
clbB Status | Cystic Fibrosis | Healthy Controls | Total |
Positive | 21 | 26 | 47 |
Negative | 34 | 29 | 63 |
Total | 55 | 55 | 110 |
Mean (SD) | p-Value | ||
---|---|---|---|
Calprotectin (mg/kg) | |||
clbB positive | 124 (154) | 0.6 | |
clbB negative | 158 (268) | ||
Shannon diversity (Shannon Index (H)) | |||
clbB positive | 2.78 (0.77) | 0.5 | |
clbB negative | 2.65 (0.74) | ||
Microbial richness | |||
clbB positive | 159 (76.5) | 0.5 | |
clbB negative | 147 (70.4) |
Timepoint 1 | Timepoint 2 | Timepoint 3 | |
---|---|---|---|
CF1 | + | ||
CF2 | + | ||
CF3 | - | - | - |
CF4 | + | + | + |
CF5 | + | - | + |
CF6 | - | - | - |
CF7 | - | + | - |
CF8 | - | - | + |
CF9 | |||
CF10 | - | ||
CF11 | - | - | + |
CF12 | + | + | + |
CF13 | + | - | + |
CF14 | - | + | - |
CF15 | - | + | |
CF16 | + | + | |
CF17 | - | - | + |
CF18 | + | - | + |
CF19 | + | + | + |
CF20 | - | + | - |
CF21 | + | - | |
CF22 | + | - | + |
CF23 | - | - | + |
p-Value | Standard Error | Estimate | T-Value | ||
---|---|---|---|---|---|
Richness | |||||
Timepoint 2 | 0.9 | 10.8 | 1.79 | 0.16 | |
Timepoint 3 | 0.135 | 11.1 | 16.9 | 1.52 | |
Sex | 0.5 | 12.4 | 8.17 | 0.66 | |
Age | 0.0589 | 1.52 | 3.04 | 2.00 | |
Variance of intercepts | 412.9 | 20.3 | |||
Variance of residuals | 1330.1 | 36.5 | |||
Shannon Diversity | |||||
Timepoint 2 | 0.178 | 0.16 | −0.22 | −1.37 | |
Timepoint 3 | 0.5 | 0.17 | 0.10 | 0.61 | |
Sex | 0.2 | 0.21 | 0.27 | 1.29 | |
Age | 0.6 | 0.025 | 0.013 | 0.51 | |
Variance of intercepts | 0.154 | 0.0393 | |||
Variance of residuals | 0.295 | 0.543 | |||
Chao1 | |||||
Timepoint 2 | 0.9 | 14.5 | 0.49 | 0.034 | |
Timepoint 3 | 0.2 | 14.8 | 17.7 | 1.20 | |
Sex | 0.4 | 14.2 | 10.4 | 0.73 | |
Age | 0.0306 * | 1.75 | 4.07 | 2.32 | |
Variance of intercepts | 344.9 | 18.6 | |||
Variance of residuals | 2381.7 | 48.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chan, C.; Coffey, M.; Murphy, C.; McKay, I.; Abdu, J.; Paida, K.; Tam, R.Y.; Wrigley-Carr, H.; Prentice, B.; Owens, L.; et al. The Prevalence of Polyketide Synthase-Positive E. coli in Cystic Fibrosis. Microorganisms 2025, 13, 681. https://doi.org/10.3390/microorganisms13030681
Chan C, Coffey M, Murphy C, McKay I, Abdu J, Paida K, Tam RY, Wrigley-Carr H, Prentice B, Owens L, et al. The Prevalence of Polyketide Synthase-Positive E. coli in Cystic Fibrosis. Microorganisms. 2025; 13(3):681. https://doi.org/10.3390/microorganisms13030681
Chicago/Turabian StyleChan, Christopher, Michael Coffey, Caitlin Murphy, Isabelle McKay, Jumaana Abdu, Keerti Paida, Rachel Y. Tam, Hannah Wrigley-Carr, Bernadette Prentice, Louisa Owens, and et al. 2025. "The Prevalence of Polyketide Synthase-Positive E. coli in Cystic Fibrosis" Microorganisms 13, no. 3: 681. https://doi.org/10.3390/microorganisms13030681
APA StyleChan, C., Coffey, M., Murphy, C., McKay, I., Abdu, J., Paida, K., Tam, R. Y., Wrigley-Carr, H., Prentice, B., Owens, L., Belessis, Y., Chuang, S., Jaffe, A., van Dorst, J., & Ooi, C. Y. (2025). The Prevalence of Polyketide Synthase-Positive E. coli in Cystic Fibrosis. Microorganisms, 13(3), 681. https://doi.org/10.3390/microorganisms13030681