Fruit and Vegetable Juices as Functional Carriers for Probiotic Delivery: Microbiological, Nutritional, and Sensory Perspectives
Abstract
:1. Introduction
2. Factors Influencing Probiotic Fermentation in Fruit and Vegetable Juices
- Strain-Specific Characteristics: Different probiotic strains confer distinct metabolic profiles and sensory outcomes in fermented beverages. Therefore, strain selection is a fundamental determinant of fermentation success.
- pH and Acidity: The initial and dynamic pH values of juices play a pivotal role. Many fruit juices are inherently acidic, and fermentation further lowers pH levels due to organic acid production, potentially compromising probiotic survival. Titratable acidity, water activity, and the presence of salts, sugars, and other compounds also modulate the microbial environment [36].
- Processing and Fermentation Conditions: The survival of probiotics is also affected by juice pre-treatment and fermentation parameters such as temperature, duration, and cooling rate after fermentation [37].
3. Key Probiotic Strains Used in Juice Fermentation
3.1. Application of Lactobacillus Strains in Juice Fermentation
3.2. Bacillus Genus and Its Role in Fermented Juices
3.3. Bifidobacterium Genus and Its Application in Juice Fermentation
3.4. Lactococcus Genus, Health Benefits, and Functional Potential
3.5. Streptococcus thermophilus: Its Comparative Performance, Limitations, and Recommendations
3.6. Use of Multi-Strain Probiotic Mixtures
3.6.1. Considerations for Strain Compatibility and Technological Viability
3.6.2. Safety Considerations
4. Environmental Parameters: pH and Related Factors for Viability
4.1. Strategies to Enhance Probiotic Viability in Acidic Conditions
4.2. Microencapsulation
4.3. Sensory Acceptability
4.4. Strain Selection
4.5. Inclusion of Antioxidants
4.6. Storage Conditions
5. Thermal Processing of Juices
5.1. Emerging Thermal Technologies
5.2. Non-Thermal Alternatives
6. Impact of Probiotic Fermentation on the Physicochemical and Sensory Properties of Juices
7. Future Perspectives and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Panghal, A.; Janghu, S.; Virkar, K.; Gat, Y.; Kumar, V.; Chhikara, N. Potential Non-Dairy Probiotic Products—A Healthy Approach. Food Biosci. 2018, 21, 80–89. [Google Scholar] [CrossRef]
- Markowiak, P.; Śliżewska, K. Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients 2017, 9, 1021. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; Athmaselvi, K.A. Stress Tolerance and Physicochemical Properties of Encapsulation Processes for Lactobacillus rhamnosus in Pomegranate (Punica granatum L.) Fruit Juice. Food Sci. Biotechnol. 2016, 25, 125–129. [Google Scholar] [CrossRef] [PubMed]
- Vaithilingam, M.; Chandrasekaran, S.; Mehra, A.; Prakash, S.; Agarwal, A.; Ethiraj, S.; Vaithiyanathan, S. Fermentation of Beet Juice Using Lactic Acid Bacteria and Its Cytotoxic Activity Against Human Liver Cancer Cell Lines HepG2. Curr. Bioact. Compd. 2016, 12, 258–263. [Google Scholar] [CrossRef]
- Vera-Santander, V.E.; Hernández-Figueroa, R.H.; Jiménez-Munguía, M.T.; Mani-López, E.; López-Malo, A. Health Benefits of Consuming Foods with Bacterial Probiotics, Postbiotics, and Their Metabolites: A Review. Molecules 2023, 28, 1230. [Google Scholar] [CrossRef] [PubMed]
- Prado, F.C.; Parada, J.L.; Pandey, A.; Soccol, C.R. Trends in Non-Dairy Probiotic Beverages. Food Res. Int. 2008, 41, 111–123. [Google Scholar] [CrossRef]
- Stanton, C.; Ross, R.P.; Fitzgerald, G.F.; Sinderen, D. Van. Fermented Functional Foods Based on Probiotics and Their Biogenic Metabolites. Curr. Opin. Biotechnol. 2005, 16, 198–203. [Google Scholar] [CrossRef]
- Agrawal, R. Probiotics: An Emerging Food Supplement with Health Benefits. Food Biotechnol. 2005, 19, 227–246. [Google Scholar] [CrossRef]
- Naseem, Z.; Mir, S.A.; Wani, S.M.; Rouf, M.A.; Bashir, I.; Zehra, A. Probiotic-Fortified Fruit Juices: Health Benefits, Challenges, and Future Perspective. Nutrition 2023, 115, 112154. [Google Scholar] [CrossRef]
- Probiotics in Food, Beverages, Dietary Supplements and Animal Feed. Available online: https://www.globenewswire.com/news-release/2025/01/15/3009865/28124/en/Probiotics-in-Food-Beverages-Dietary-Supplements-and-Animal-Feed-Markets-A-102-Billion-Opportunity-by-2029.html (accessed on 27 May 2025).
- Corbo, M.R.; Bevilacqua, A.; Petruzzi, L.; Casanova, F.P.; Sinigaglia, M. Functional Beverages: The Emerging Side of Functional Foods. Compr. Rev. Food Sci. Food Saf. 2014, 13, 1192–1206. [Google Scholar] [CrossRef]
- Tripathi, M.K.; Giri, S.K. Probiotic Functional Foods: Survival of Probiotics during Processing and Storage. J. Funct. Foods 2014, 9, 225–241. [Google Scholar] [CrossRef]
- Shori, A.B. Influence of Food Matrix on the Viability of Probiotic Bacteria: A Review Based on Dairy and Non-Dairy Beverages. Food Biosci. 2016, 13, 1–8. [Google Scholar] [CrossRef]
- Dinkçi, N.; Akdeniz, V.; Akalin, A.S. Survival of Probiotics in Functional Foods during Shelf Life. In Food Quality and Shelf Life; Elsevier: Amsterdam, The Netherlands, 2019; pp. 201–233. [Google Scholar] [CrossRef]
- Wootton-Beard, P.C.; Moran, A.; Ryan, L. Stability of the Total Antioxidant Capacity and Total Polyphenol Content of 23 Commercially Available Vegetable Juices before and after in Vitro Digestion Measured by FRAP, DPPH, ABTS and Folin–Ciocalteu Methods. Food Res. Int. 2011, 44, 217–224. [Google Scholar] [CrossRef]
- Hernandez, E.; Pandiella, S. Development of Probiotics and Prebiotics. 2013, pp. 21–60. Available online: https://zenodo.org/records/11237311 (accessed on 27 May 2025). [CrossRef]
- Vijaya Kumar, B.; Vijayendra, S.V.N.; Reddy, O.V.S. Trends in Dairy and Non-Dairy Probiotic Products—A Review. J. Food Sci. Technol. 2015, 52, 6112–6124. [Google Scholar] [CrossRef]
- Charalampopoulos, D.; Pandiella, S.S. Survival of Human Derived Lactobacillus Plantarum in Fermented Cereal Extracts during Refrigerated Storage. LWT-Food Sci. Technol. 2010, 43, 431–435. [Google Scholar] [CrossRef]
- Kumar, S.; Rattu, G.; Mitharwal, S.; Chandra, A.; Kumar, S.; Kaushik, A.; Mishra, V.; Nema, P.K. Trends in Non-dairy-based Probiotic Food Products: Advances and Challenges. J. Food Process. Preserv. 2022, 46, e16578. [Google Scholar] [CrossRef]
- Martins, E.M.F.; Ramos, A.M.; Vanzela, E.S.L.; Stringheta, P.C.; de Oliveira Pinto, C.L.; Martins, J.M. Products of Vegetable Origin: A New Alternative for the Consumption of Probiotic Bacteria. Food Res. Int. 2013, 51, 764–770. [Google Scholar] [CrossRef]
- Pimentel, T.C.; Klososki, S.J.; Rosset, M.; Barão, C.E.; Marcolino, V.A. Fruit Juices as Probiotic Foods. In Sports and Energy Drinks; Elsevier: Amsterdam, The Netherlands, 2019; pp. 483–513. [Google Scholar] [CrossRef]
- Salmerón, I.; Thomas, K.; Pandiella, S.S. Effect of Potentially Probiotic Lactic Acid Bacteria on the Physicochemical Composition and Acceptance of Fermented Cereal Beverages. J. Funct. Foods 2015, 15, 106–115. [Google Scholar] [CrossRef]
- Patel, A. Probiotic Fruit and Vegetable Juices-Recent Advances and Future Perspective. Int. Food Res. J. 2017, 24, 1850–1857. [Google Scholar]
- Saarela, M.H.; Alakomi, H.-L.; Puhakka, A.; Mättö, J. Effect of the Fermentation PH on the Storage Stability of Lactobacillus rhamnosus Preparations and Suitability of In Vitro Analyses of Cell Physiological Functions to Predict It. J. Appl. Microbiol. 2009, 106, 1204–1212. [Google Scholar] [CrossRef]
- Mousavi, Z.E.; Mousavi, S.M.; Razavi, S.H.; Hadinejad, M.; Emam-Djomeh, Z.; Mirzapour, M. Effect of Fermentation of Pomegranate Juice by Lactobacillus plantarum and Lactobacillus acidophilus on the Antioxidant Activity and Metabolism of Sugars, Organic Acids and Phenolic Compounds. Food Biotechnol. 2013, 27, 1–13. [Google Scholar] [CrossRef]
- Kumar, B.V.; Sreedharamurthy, M.; Reddy, O.V.S. Probiotication of Mango and Sapota Juices Using Lactobacillus plantarum NCDC LP 20. Nutrafoods 2015, 14, 97–106. [Google Scholar] [CrossRef]
- Lillo-Pérez, S.; Guerra-Valle, M.; Orellana-Palma, P.; Petzold, G. Probiotics in Fruit and Vegetable Matrices: Opportunities for Nondairy Consumers. LWT 2021, 151, 112106. [Google Scholar] [CrossRef]
- Pimentel, T.C.; Madrona, G.S.; Garcia, S.; Prudencio, S.H. Probiotic Viability, Physicochemical Characteristics and Acceptability during Refrigerated Storage of Clarified Apple Juice Supplemented with Lactobacillus paracasei ssp. paracasei and Oligofructose in Different Package Type. LWT-Food Sci. Technol. 2015, 63, 415–422. [Google Scholar] [CrossRef]
- Nazzaro, F.; Fratianni, F.; Sada, A.; Orlando, P. Synbiotic Potential of Carrot Juice Supplemented with Lactobacillus Spp. and Inulin or Fructooligosaccharides. J. Sci. Food Agric. 2008, 88, 2271–2276. [Google Scholar] [CrossRef]
- White, J.; Hekmat, S. Development of Probiotic Fruit Juices Using Lactobacillus rhamnosus GR-1 Fortified with Short Chain and Long Chain Inulin Fiber. Fermentation 2018, 4, 27. [Google Scholar] [CrossRef]
- de Andrade, R.M.; Silva, S.; Costa, C.M.d.S.F.; Veiga, M.; Costa, E.; Ferreira, M.S.L.; Gonçalves, E.C.B.d.A.; Pintado, M.E. Potential Prebiotic Effect of Fruit and Vegetable Byproducts Flour Using in Vitro Gastrointestinal Digestion. Food Res. Int. 2020, 137, 109354. [Google Scholar] [CrossRef] [PubMed]
- Lacombe, A.; Wu, V.C.H. The Potential of Berries to Serve as Selective Inhibitors of Pathogens and Promoters of Beneficial Microorganisms. Food Qual. Saf. 2017, 1, 3–12. [Google Scholar] [CrossRef]
- Suriyaprom, S.; Mosoni, P.; Leroy, S.; Kaewkod, T.; Desvaux, M.; Tragoolpua, Y. Antioxidants of Fruit Extracts as Antimicrobial Agents against Pathogenic Bacteria. Antioxidants 2022, 11, 602. [Google Scholar] [CrossRef]
- Kranz, S.; Guellmar, A.; Olschowsky, P.; Tonndorf-Martini, S.; Heyder, M.; Pfister, W.; Reise, M.; Sigusch, B. Antimicrobial Effect of Natural Berry Juices on Common Oral Pathogenic Bacteria. Antibiotics 2020, 9, 533. [Google Scholar] [CrossRef]
- Ranadheera, C.; Vidanarachchi, J.; Rocha, R.; Cruz, A.; Ajlouni, S. Probiotic Delivery through Fermentation: Dairy vs. Non-Dairy Beverages. Fermentation 2017, 3, 67. [Google Scholar] [CrossRef]
- Barat, A.; Ozcan, T. Growth of Probiotic Bacteria and Characteristics of Fermented Milk Containing Fruit Matrices. Int. J. Dairy Technol. 2018, 71 (Suppl. S1), 120–129. [Google Scholar] [CrossRef]
- Agirman, B.; Yildiz, I.; Polat, S.; Erten, H. The Evaluation of Black Carrot, Green Cabbage, Grape, and Apple Juices as Substrates for the Production of Functional Water Kefir-like Beverages. Food Sci. Nutr. 2024, 12, 6595–6611. [Google Scholar] [CrossRef] [PubMed]
- Ayed, L.; M’hir, S.; Hamdi, M. Microbiological, Biochemical, and Functional Aspects of Fermented Vegetable and Fruit Beverages. J. Chem. 2020, 2020, 5790432. [Google Scholar] [CrossRef]
- Skryplonek, K.; Jasińska, M. Fermented Probiotic Beverages Based on Acid Whey. Acta Sci. Pol. Technol. Aliment. 2015, 14, 397–405. [Google Scholar] [CrossRef]
- Garcia, C.; Remize, F. Lactic Acid Fermentation of Fruit and Vegetable Juices and Smoothies: Innovation and Health Aspects. In Lactic Acid Bacteria in Food Biotechnology; Elsevier: Amsterdam, The Netherlands, 2022; pp. 27–46. [Google Scholar] [CrossRef]
- Terpou, A.; Papadaki, A.; Lappa, I.K.; Kachrimanidou, V.; Bosnea, L.A.; Kopsahelis, N. Probiotics in Food Systems: Significance and Emerging Strategies Towards Improved Viability and Delivery of Enhanced Beneficial Value. Nutrients 2019, 11, 1591. [Google Scholar] [CrossRef] [PubMed]
- da Silva Vale, A.; Venturim, B.C.; da Silva Rocha, A.R.F.; Martin, J.G.P.; Maske, B.L.; Balla, G.; De Dea Lindner, J.; Soccol, C.R.; de Melo Pereira, G.V. Exploring Microbial Diversity of Non-Dairy Fermented Beverages with a Focus on Functional Probiotic Microorganisms. Fermentation 2023, 9, 496. [Google Scholar] [CrossRef]
- Yoon, K.Y.; Woodams, E.E.; Hang, Y.D. Fermentation of Beet Juice by Beneficial Lactic Acid Bacteria. LWT-Food Sci. Technol. 2005, 38, 73–75. [Google Scholar] [CrossRef]
- Buruleanu, L.; Nicolescu, C.L.; Avram, D.; Bratu, M.G.; Manea, I. Survival of Probiotic Bacteria during Lactic Acid Fermentation of Vegetable Juices. J. Agroaliment. Process. Technol. 2009, 15, 132–139. [Google Scholar]
- do Espírito Santo, A.P.; Perego, P.; Converti, A.; Oliveira, M.N. Influence of Food Matrices on Probiotic Viability—A Review Focusing on the Fruity Bases. Trends Food Sci. Technol. 2011, 22, 377–385. [Google Scholar] [CrossRef]
- Fessard, A.; Bourdon, E.; Payet, B.; Remize, F. Identification, Stress Tolerance, and Antioxidant Activity of Lactic Acid Bacteria Isolated from Tropically Grown Fruits and Leaves. Can. J. Microbiol. 2016, 62, 550–561. [Google Scholar] [CrossRef]
- Fessard, A.; Remize, F. Genetic and Technological Characterization of Lactic Acid Bacteria Isolated from Tropically Grown Fruits and Vegetables. Int. J. Food Microbiol. 2019, 301, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Ouwehand, A.C.; Salminen, S.; Isolauri, E. Probiotics: An Overview of Beneficial Effects. In Lactic Acid Bacteria: Genetics, Metabolism and Applications; Springer: Dordrecht, The Netherlands, 2002; pp. 279–289. [Google Scholar] [CrossRef]
- Giraffa, G. Lactobacillus Helveticus: Importance in Food and Health. Front. Microbiol. 2014, 5, 338. [Google Scholar] [CrossRef]
- Ahmed, Z.; Vohra, M.S.; Khan, M.N.; Ahmed, A.; Khan, T.A. Antimicrobial Role of Lactobacillus Species as Potential Probiotics against Enteropathogenic Bacteria in Chickens. J. Infect. Dev. Ctries. 2019, 13, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Scourboutakos, M.; Franco-Arellano, B.; Murphy, S.; Norsen, S.; Comelli, E.; L’Abbé, M. Mismatch between Probiotic Benefits in Trials versus Food Products. Nutrients 2017, 9, 400. [Google Scholar] [CrossRef] [PubMed]
- Bontsidis, C.; Mallouchos, A.; Terpou, A.; Nikolaou, A.; Batra, G.; Mantzourani, I.; Alexopoulos, A.; Plessas, S. Microbiological and Chemical Properties of Chokeberry Juice Fermented by Novel Lactic Acid Bacteria with Potential Probiotic Properties during Fermentation at 4 °C for 4 Weeks. Foods 2021, 10, 768. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, H.; Lei, H. Phenolics Profile, Antioxidant Activity and Flavor Volatiles of Pear Juice: Influence of Lactic Acid Fermentation Using Three Lactobacillus Strains in Monoculture and Binary Mixture. Foods 2021, 11, 11. [Google Scholar] [CrossRef]
- Özcan, T.; Yilmaz Ersan, L.; Akpinar Bayizit, A.; Delikanli Kiyak, B.; Keser, G.; Ciniviz, M.; Barat, A. Probiotic Fermentation and Organic Acid Profile in Milk Based Lactic Beverages Containing Potential Prebiotic Apple Constituents. J. Agric. Sci. 2023, 29, 734–742. [Google Scholar] [CrossRef]
- Hossain, M.A.; Hoque, M.M.; Hossain, M.M.; Kabir, M.H.; Yasin, M.; Islam, M.A. Biochemical, Microbiological and Organoleptic Properties of Probiotic Pineapple Juice Developed by Lactic Acid Bacteria. J. Sci. Res. 2020, 12, 743–750. [Google Scholar] [CrossRef]
- Dimitrovski, D.; Velickova, E.; Langerholc, T.; Winkelhausen, E. Apple Juice as a Medium for Fermentation by the Probiotic Lactobacillus plantarum PCS 26 Strain. Ann. Microbiol. 2015, 65, 2161–2170. [Google Scholar] [CrossRef]
- Zoghi, A.; Khosravi-Darani, K.; Sohrabvandi, S.; Attar, H.; Alavi, S.A. Effect of Probiotics on Patulin Removal from Synbiotic Apple Juice. J. Sci. Food Agric. 2017, 97, 2601–2609. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Zhang, M.; Wang, X.; Bai, X.; Yue, T.; Gao, Z. Cloudy Apple Juice Fermented by Lactobacillus Prevents Obesity via Modulating Gut Microbiota and Protecting Intestinal Tract Health. Nutrients 2021, 13, 971. [Google Scholar] [CrossRef]
- Chen, W.; Xie, C.; He, Q.; Sun, J.; Bai, W. Improvement in Color Expression and Antioxidant Activity of Strawberry Juice Fermented with Lactic Acid Bacteria: A Phenolic-Based Research. Food Chem. X 2023, 17, 100535. [Google Scholar] [CrossRef] [PubMed]
- Maia, M.S.; Domingos, M.M.; de São José, J.F.B. Viability of Probiotic Microorganisms and the Effect of Their Addition to Fruit and Vegetable Juices. Microorganisms 2023, 11, 1335. [Google Scholar] [CrossRef]
- Li, P.; Chen, J.; Guo, C.; Li, W.; Gao, Z. Lactobacillus Co-Fermentation of Cerasus humilis Juice Alters Chemical Properties, Enhances Antioxidant Activity, and Improves Gut Microbiota. Food Funct. 2023, 14, 8248–8260. [Google Scholar] [CrossRef]
- Marnpae, M.; Balmori, V.; Kamonsuwan, K.; Nungarlee, U.; Charoensiddhi, S.; Thilavech, T.; Suantawee, T.; Sivapornnukul, P.; Chanchaem, P.; Payungporn, S.; et al. Modulation of the Gut Microbiota and Short-Chain Fatty Acid Production by Gac Fruit Juice and Its Fermentation in in Vitro Colonic Fermentation. Food Funct. 2024, 15, 3640–3652. [Google Scholar] [CrossRef]
- Chung, H.-J.; Lee, H.; Na, G.; Jung, H.; Kim, D.-G.; Shin, S.-I.; Jung, S.-E.; Choi, I.; Lee, J.-H.; Sim, J.-H.; et al. Metabolic and Lipidomic Profiling of Vegetable Juices Fermented with Various Probiotics. Biomolecules 2020, 10, 725. [Google Scholar] [CrossRef]
- Hyronimus, B.; Le Marrec, C.; Hadj Sassi, A.; Deschamps, A. Acid and Bile Tolerance of Spore-Forming Lactic Acid Bacteria. Int. J. Food Microbiol. 2000, 61, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Fares, C.; Menga, V.; Martina, A.; Pellegrini, N.; Scazzina, F.; Torriani, S. Nutritional Profile and Cooking Quality of a New Functional Pasta Naturally Enriched in Phenolic Acids, Added with β-Glucan and Bacillus Coagulans GBI-30, 6086. J. Cereal. Sci. 2015, 65, 260–266. [Google Scholar] [CrossRef]
- Pilevar, Z.; Hosseini, H. Effects of Starter Cultures on the Properties of Meat Products: A Review. Annu. Res. Rev. Biol. 2017, 17, 1–17. [Google Scholar] [CrossRef]
- Konuray, G.; Erginkaya, Z. Potential Use of Bacillus Coagulans in the Food Industry. Foods 2018, 7, 92. [Google Scholar] [CrossRef] [PubMed]
- Matei lațiu, M.C.; Buza, V.; Chirilă, F.; Boros, Z.; Lațiu, C.; Szakacs, A.R.; Ștefănuț, L.C. In Vitro Qualitative Assessment of Tolerance to Simulated Gastric Juice, Bile, Fructose, Glucose and Lactose for Different Probiotic Bacteria. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca. Vet. Med. 2022, 79. [Google Scholar] [CrossRef] [PubMed]
- Majeed, M.; Natarajan, S.; Arumugam, S.; Ali, F.; Pande, A.; Karri, S.K. Evaluation of Anti-Diarrhoeal Activity of Bacillus Coagulans MTCC 5856 and Its Effect on Gastrointestinal Motility in Wistar Rats. Int. J. Pharma. Bio. Sci. 2016, 7, 311–316. [Google Scholar]
- Othman, M.; Ariff, A.B.; Rios-Solis, L.; Halim, M. Extractive Fermentation of Lactic Acid in Lactic Acid Bacteria Cultivation: A Review. Front. Microbiol. 2017, 8, 2285. [Google Scholar] [CrossRef]
- Elshaghabee, F.M.F.; Rokana, N.; Gulhane, R.D.; Sharma, C.; Panwar, H. Bacillus as Potential Probiotics: Status, Concerns, and Future Perspectives. Front. Microbiol. 2017, 8, 1490. [Google Scholar] [CrossRef]
- Ebrahimi, E.; Golshahi, M.; Yazdi, S.; Mehdi Pirnia, M. Evaluation of the Effect of Fruit Juice Containing Bacillus Coagulans Probiotic Supplement on the Level of Immunoglobulins A, M and Lymphocytes in Two-Speed Athletes. In Functional Foods—Phytochemicals and Health Promoting Potential; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Almada-Érix, C.N.; Almada, C.N.; Cabral, L.; Barros de Medeiros, V.P.; Roquetto, A.R.; Santos-Junior, V.A.; Fontes, M.; Gonçalves, A.E.S.S.; dos Santos, A.; Lollo, P.C.; et al. Orange Juice and Yogurt Carrying Probiotic Bacillus coagulans GBI-30 6086: Impact of Intake on Wistar Male Rats Health Parameters and Gut Bacterial Diversity. Front. Microbiol. 2021, 12, 623951. [Google Scholar] [CrossRef]
- Sireswar, S.; Montet, D.; Dey, G. Principal Component Analysis for Clustering Probiotic-Fortified Beverage Matrices Efficient in Elimination of Shigella Sp. Fermentation 2018, 4, 34. [Google Scholar] [CrossRef]
- Saud, S.; Xiaojuan, T.; Fahad, S. The Consequences of Fermentation Metabolism on the Qualitative Qualities and Biological Activity of Fermented Fruit and Vegetable Juices. Food Chem. X 2024, 21, 101209. [Google Scholar] [CrossRef] [PubMed]
- Gordon, L.; Chauhan, R.P.; Zhao, J.-Y.; Chu, K.-K.; Han, P.-Y.; Yang, Z.; Tang, Y.; Kong, W.; Long, Y.; Zong, L.-D.; et al. Academic Editors: Michelle Detection of Coronaviruses and Genomic Characterization of Gammacoronaviruses from Overwintering Black-Headed Gulls (Chroicocephalus ridibundus) in Yunnan Province, China. Microorganisms 2025, 13, 874. [Google Scholar] [CrossRef]
- Serpa, J.; Caiado, F.; Carvalho, T.; Torre, C.; Gonçalves, L.G.; Casalou, C.; Lamosa, P.; Rodrigues, M.; Zhu, Z.; Lam, E.W.F.; et al. Butyrate-Rich Colonic Microenvironment Is a Relevant Selection Factor for Metabolically Adapted Tumor Cells. J. Biol. Chem. 2010, 285, 39211–39223. [Google Scholar] [CrossRef]
- Matera, M. Bifidobacteria, Lactobacilli… When, How and Why to Use Them. Glob. Pediatr. 2024, 8, 100139. [Google Scholar] [CrossRef]
- Arboleya, S.; Watkins, C.; Stanton, C.; Ross, R.P. Gut Bifidobacteria Populations in Human Health and Aging. Front. Microbiol. 2016, 7. [Google Scholar] [CrossRef] [PubMed]
- Kujawska, M.; La Rosa, S.L.; Roger, L.C.; Pope, P.B.; Hoyles, L.; McCartney, A.L.; Hall, L.J. Succession of Bifidobacterium longum Strains in Response to a Changing Early Life Nutritional Environment Reveals Dietary Substrate Adaptations. iScience 2020, 23, 101368. [Google Scholar] [CrossRef]
- Kaktcham, P.M.; Kujawska, M.; Kouam, E.M.F.; Piame, L.T.; Tientcheu, M.L.T.; Mueller, J.; Felsl, A.; Truppel, B.-A.; Ngoufack, F.Z.; Hall, L.J. Genomic Insights into the Beneficial Potential of Bifidobacterium and Enterococcus Strains Isolated from Cameroonian Infants. Microb. Genom. 2025, 11, 001354. [Google Scholar] [CrossRef] [PubMed]
- Michalik, M.; Podbielska-Kubera, A.; Basińska, A.M.; Szewc, M.; Gałęcka, M.; Schwiertz, A. Alteration of Indicator Gut Microbiota in Patients with Chronic Sinusitis. Immun. Inflamm. Dis. 2023, 11, e996. [Google Scholar] [CrossRef]
- Oh, S.; Yap, G.C.; Hong, P.-Y.; Huang, C.-H.; Aw, M.M.; Shek, L.P.-C.; Liu, W.-T.; Lee, B.W. Immune-Modulatory Genomic Properties Differentiate Gut Microbiota of Infants with and without Eczema. PLoS ONE 2017, 12, e0184955. [Google Scholar] [CrossRef]
- Güler, M.A.; Çetin, B.; Albayrak, B.; Meral-Aktaş, H.; Tekgündüz, K.Ş.; Kara, M.; Işlek, A. Isolation, Identification, and in Vitro Probiotic Characterization of Forty Novel Bifidobacterium Strains from Neonatal Feces in Erzurum Province, Türkiye. J. Sci. Food Agric. 2024, 104, 4165–4175. [Google Scholar] [CrossRef]
- Zeng, Z.; Luo, J.Y.; Zuo, F.L.; Yu, R.; Zhang, Y.; Ma, H.Q.; Chen, S.W. Bifidobacteria Possess Inhibitory Activity against Dipeptidyl Peptidase-IV. Lett. Appl. Microbiol. 2016, 62, 250–255. [Google Scholar] [CrossRef]
- Simamora, A.; Santoso, A.W.; Timotius, K.H. α-Glucosidase Inhibitory Effect of Fermented Fruit Juice of Morinda citrifolia L and Combination Effect with Acarbose. Curr. Res. Nutr. Food Sci. J. 2019, 7, 218–226. [Google Scholar] [CrossRef]
- Odamaki, T.; Horigome, A.; Sugahara, H.; Hashikura, N.; Minami, J.; Xiao, J.; Abe, F. Comparative Genomics Revealed Genetic Diversity and Species/Strain-Level Differences in Carbohydrate Metabolism of Three Probiotic Bifidobacterial Species. Int. J. Genom. 2015, 2015, 567809. [Google Scholar] [CrossRef]
- Tenea, G.N. Metabiotics Signature through Genome Sequencing and In Vitro Inhibitory Assessment of a Novel Lactococcus Lactis Strain UTNCys6-1 Isolated from Amazonian Camu-Camu Fruits. Int. J. Mol. Sci. 2023, 24, 6127. [Google Scholar] [CrossRef] [PubMed]
- Qiao, W.; Liu, F.; Wan, X.; Qiao, Y.; Li, R.; Wu, Z.; Saris, P.E.J.; Xu, H.; Qiao, M. Genomic Features and Construction of Streamlined Genome Chassis of Nisin Z Producer Lactococcus Lactis N8. Microorganisms 2021, 10, 47. [Google Scholar] [CrossRef]
- Purk, L.; Kitsiou, M.; Ioannou, C.; El Kadri, H.; Costello, K.M.; Gutierrez Merino, J.; Klymenko, O.; Velliou, E.G. Unravelling the Impact of Fat Content on the Microbial Dynamics and Spatial Distribution of Foodborne Bacteria in Tri-Phasic Viscoelastic 3D Models. Sci. Rep. 2023, 13, 21811. [Google Scholar] [CrossRef]
- Biswas, P.; Khan, A.; Mallick, A.I. Targeted Bioimaging of Microencapsulated Recombinant LAB Vector Expressing Fluorescent Reporter Protein: A Non-Invasive Approach for Microbial Tracking. ACS Biomater. Sci. Eng. 2024, 10, 5210–5225. [Google Scholar] [CrossRef]
- Siroli, L.; Camprini, L.; Pisano, M.B.; Patrignani, F.; Lanciotti, R. Volatile Molecule Profiles and Anti-Listeria monocytogenes Activity of Nisin Producers Lactococcus lactis Strains in Vegetable Drinks. Front. Microbiol. 2019, 10, 563. [Google Scholar] [CrossRef] [PubMed]
- Ozdogan, D.K.; Akcelik, N.; Aslim, B.; Suludere, Z.; Akcelik, M. Probiotic and Antioxidative Properties of L. Lactis LL27 Isolated from Milk. Biotechnol. Biotechnol. Equip. 2012, 26, 2750–2758. [Google Scholar] [CrossRef]
- Boumaiza, M.; Colarusso, A.; Parrilli, E.; Garcia-Fruitós, E.; Casillo, A.; Arís, A.; Corsaro, M.M.; Picone, D.; Leone, S.; Tutino, M.L. Getting Value from the Waste: Recombinant Production of a Sweet Protein by Lactococcus lactis Grown on Cheese Whey. Microb. Cell Fact. 2018, 17, 126. [Google Scholar] [CrossRef]
- Jeon, H.-J.; Yeom, Y.; Kim, Y.-S.; Kim, E.; Shin, J.-H.; Seok, P.R.; Woo, M.J.; Kim, Y. Effect of Vitamin C on Azoxymethane (AOM)/Dextran Sulfate Sodium (DSS)-Induced Colitis-Associated Early Colon Cancer in Mice. Nutr. Res. Pract. 2018, 12, 101. [Google Scholar] [CrossRef]
- Gaudu, P.; Yamamoto, Y.; Jensen, P.R.; Hammer, K.; Lechardeur, D.; Gruss, A. Genetics of Lactococci. Microbiol. Spectr. 2019, 7, 10-1128. [Google Scholar] [CrossRef]
- Li, W.; Ren, M.; Duo, L.; Li, J.; Wang, S.; Sun, Y.; Li, M.; Ren, W.; Hou, Q.; Yu, J.; et al. Fermentation Characteristics of Lactococcus lactis Subsp. Lactis Isolated From Naturally Fermented Dairy Products and Screening of Potential Starter Isolates. Front. Microbiol. 2020, 11, 1794. [Google Scholar] [CrossRef]
- Saizen, A.; Stipkovits, L.; Muto, Y.; Serventi, L. Fermentation of Peanut Slurry with Lactococcus lactis Species, Leuconostoc and Propionibacterium freudenreichii Subsp. Globosum Enhanced Protein Digestibility. Foods 2023, 12, 3447. [Google Scholar] [CrossRef] [PubMed]
- Cuvas-Limon, R.B.; Ferreira-Santos, P.; Cruz, M.; Teixeira, J.A.; Belmares, R.; Nobre, C. Effect of Gastrointestinal Digestion on the Bioaccessibility of Phenolic Compounds and Antioxidant Activity of Fermented Aloe Vera Juices. Antioxidants 2022, 11, 2479. [Google Scholar] [CrossRef] [PubMed]
- Olaide, A.O.; Lihan, S.; Husain, A.A.S.A.; Saat, R.; Mohammad, F.S.; Adewale, I.A.; Abideen, W.A. Use of the Lactococcus lactis IO-1 for Developing a Novel Functional Beverage from Coconut Water. Ann. Univ. Dunarea Jos Galati Fascicle VI-Food Technol. 2020, 44, 118–131. [Google Scholar] [CrossRef]
- Zhao, R.; Chen, Z.; Liang, J.; Dou, J.; Guo, F.; Xu, Z.; Wang, T. Advances in Genetic Tools and Their Application in Streptococcus thermophilus. Foods 2023, 12, 3119. [Google Scholar] [CrossRef]
- Martinović, A.; Cocuzzi, R.; Arioli, S.; Mora, D. Streptococcus Thermophilus: To Survive, or Not to Survive the Gastrointestinal Tract, That Is the Question! Nutrients 2020, 12, 2175. [Google Scholar] [CrossRef]
- Cui, Y.; Jiang, X.; Hao, M.; Qu, X.; Hu, T. New Advances in Exopolysaccharides Production of Streptococcus thermophilus. Arch. Microbiol. 2017, 199, 799–809. [Google Scholar] [CrossRef]
- Ruiz-Barba, J.L.; Jiménez-Díaz, R. A Novel Lactobacillus Pentosus-Paired Starter Culture for Spanish-Style Green Olive Fermentation. Food Microbiol. 2012, 30, 253–259. [Google Scholar] [CrossRef]
- Wouters, D.; Bernaert, N.; Anno, N.; Van Droogenbroeck, B.; De Loose, M.; Van Bockstaele, E.; De Vuyst, L. Application’ and Validation of Autochthonous Lactic Acid Bacteria Starter Cultures for Controlled Leek Fermentations and Their Influence on the Antioxidant Properties of Leek. Int. J. Food Microbiol. 2013, 165, 121–133. [Google Scholar] [CrossRef]
- Moon, S.H.; Moon, J.S.; Chang, H.C. Rapid Manufacture and Quality Evaluation of Long-Term Fermented Kimchi (Mukeunji) Using Lactobacillus Sakei SC1. Food Sci. Biotechnol. 2015, 24, 1797–1804. [Google Scholar] [CrossRef]
- Xiong, T.; Li, X.; Guan, Q.; Peng, F.; Xie, M. Starter Culture Fermentation of Chinese Sauerkraut: Growth, Acidification and Metabolic Analyses. Food Control 2014, 41, 122–127. [Google Scholar] [CrossRef]
- Jung, J.Y.; Lee, S.H.; Lee, H.J.; Seo, H.-Y.; Park, W.-S.; Jeon, C.O. Effects of Leuconostoc Mesenteroides Starter Cultures on Microbial Communities and Metabolites during Kimchi Fermentation. Int. J. Food Microbiol. 2012, 153, 378–387. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-J.; Choi, Y.-J.; Lee, M.J.; Park, S.J.; Oh, S.J.; Yun, Y.-R.; Min, S.G.; Seo, H.-Y.; Park, S.-H.; Lee, M.-A. Effects of Combining Two Lactic Acid Bacteria as a Starter Culture on Model Kimchi Fermentation. Food Res. Int. 2020, 136, 109591. [Google Scholar] [CrossRef]
- Cai, W.; Tang, F.; Zhao, X.; Guo, Z.; Zhang, Z.; Dong, Y.; Shan, C. Different Lactic Acid Bacteria Strains Affecting the Flavor Profile of Fermented Jujube Juice. J. Food Process. Preserv. 2019, 43. [Google Scholar] [CrossRef]
- McFarland, L.V. Meta-Analysis of Probiotics for the Prevention of Traveler’s Diarrhea. Travel. Med. Infect. Dis. 2007, 5, 97–105. [Google Scholar] [CrossRef]
- Doron, S.I.; Hibberd, P.L.; Gorbach, S.L. Probiotics for Prevention of Antibiotic-Associated Diarrhea. J. Clin. Gastroenterol. 2008, 42 (Suppl. S2), S58–S63. [Google Scholar] [CrossRef]
- Bujna, E.; Farkas, N.A.; Tran, A.M.; Dam, M.S.; Nguyen, Q.D. Lactic Acid Fermentation of Apricot Juice by Mono- and Mixed Cultures of Probiotic Lactobacillus and Bifidobacterium Strains. Food Sci. Biotechnol. 2017, 27, 547–554. [Google Scholar] [CrossRef]
- Johnson, M.E. Mesophilic and Thermophilic Cultures Used in Traditional Cheesemaking. Microbiol. Spectr. 2013, 1. [Google Scholar] [CrossRef]
- Liu, X.; Guo, W.; Cui, S.; Tang, X.; Zhao, J.; Zhang, H.; Mao, B.; Chen, W. A Comprehensive Assessment of the Safety of Blautia Producta DSM 2950. Microorganisms 2021, 9, 908. [Google Scholar] [CrossRef] [PubMed]
- Zawistowska-Rojek, A.; Tyski, S. Are Probiotic Really Safe for Humans? Pol. J. Microbiol. 2018, 67, 251–258. [Google Scholar] [CrossRef]
- Nualkaekul, S.; Salmeron, I.; Charalampopoulos, D. Investigation of the Factors Influencing the Survival of Bifidobacterium longum in Model Acidic Solutions and Fruit Juices. Food Chem. 2011, 129, 1037–1044. [Google Scholar] [CrossRef]
- Perricone, M.; Bevilacqua, A.; Altieri, C.; Sinigaglia, M.; Corbo, M. Challenges for the Production of Probiotic Fruit Juices. Beverages 2015, 1, 95–103. [Google Scholar] [CrossRef]
- Malik, M.; Bora, J.; Sharma, V. Growth Studies of Potentially Probiotic Lactic Acid Bacteria (Lactobacillus plantarum, Lactobacillus acidophilus, and Lactobacillus casei) in Carrot and Beetroot Juice Substrates. J. Food Process. Preserv. 2019, 43, e14214. [Google Scholar] [CrossRef]
- Zhu, W.; Lyu, F.; Naumovski, N.; Ajlouni, S.; Ranadheera, C.S. Functional Efficacy of Probiotic Lactobacillus sanfranciscensis in Apple, Orange and Tomato Juices with Special Reference to Storage Stability and In Vitro Gastrointestinal Survival. Beverages 2020, 6, 13. [Google Scholar] [CrossRef]
- Bhat, A.R.; Irorere, V.U.; Bartlett, T.; Hill, D.; Kedia, G.; Charalampopoulos, D.; Nualkaekul, S.; Radecka, I. Improving Survival of Probiotic Bacteria Using Bacterial Poly-γ-Glutamic Acid. Int. J. Food Microbiol. 2015, 196, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Mokhtari, S.; Jafari, S.M.; Khomeiri, M. Survival of Encapsulated Probiotics in Pasteurized Grape Juice and Evaluation of Their Properties during Storage. Food Sci. Technol. Int. 2019, 25, 120–129. [Google Scholar] [CrossRef]
- Sohail, A.; Turner, M.S.; Prabawati, E.K.; Coombes, A.G.A.; Bhandari, B. Evaluation of Lactobacillus rhamnosus GG and Lactobacillus acidophilus NCFM Encapsulated Using a Novel Impinging Aerosol Method in Fruit Food Products. Int. J. Food Microbiol. 2012, 157, 162–166. [Google Scholar] [CrossRef]
- Marcelli, B.; Karsens, H.; Nijland, M.; Oudshoorn, R.; Kuipers, O.P.; Kok, J. Employing Lytic Phage-Mediated Horizontal Gene Transfer in Lactococcus Lactis. PLoS ONE 2020, 15, e0238988. [Google Scholar] [CrossRef]
- Mahmud, S.; Khan, S.; Khan, M.R.; Islam, J.; Sarker, U.K.; Hasan, G.M.M.A.; Ahmed, M. Viability and Stability of Microencapsulated Probiotic Bacteria by Freeze-drying under in Vitro Gastrointestinal Conditions. J. Food Process. Preserv. 2022, 46, e17123. [Google Scholar] [CrossRef]
- Rahman, M.; Emon, D.; Toma, M.; Nupur, A.; Karmoker, P.; Iqbal, A.; Aziz, M.; Alim, M. Recent Advances in Probiotication of Fruit and Vegetable Juices. J. Adv. Vet. Anim. Res. 2023, 10, 522. [Google Scholar] [CrossRef]
- King, V.A.E.; Huang, H.Y.; Tsen, J.H. Fermentation of Tomato Juice by Cell Immobilized Lactobacillus acidophilus. Mid-Taiwan J. Med. 2007, 12, 1–7. [Google Scholar]
- Osaro-Matthew, R.C.; Itaman, V.O.; Ughala, E.; Obike-Martins, V.; Igwe, G. Viability of Probiotic Lactic Acid Bacteria in Malay Apple (Syzygium malaccense) during Fermentation and Storage. Bio-Research 2024, 22, 2255–2263. [Google Scholar] [CrossRef]
- Alsharafani, M.A.M.; Abdullah, T.; Jabur, Z.A.; Hassan, A.A.; Alhendi, A.S.; Abdulmawjood, A.; Khan, I.U.H. Assessing Synergistic Effect of Jerusalem Artichoke Juice and Antioxidant Compounds on Enhanced Viability and Persistence of Bifidobacterium Species, Palatability, and Shelf Life. Food Sci. Nutr. 2022, 10, 1994–2008. [Google Scholar] [CrossRef]
- Yu, Y.; Wu, J.; Xiao, G.; Xu, Y.; Tang, D.; Chen, Y.; Zhang, Y. Combined Effect of Dimethyl Dicarbonate (DMDC) and Nisin on Indigenous Microorganisms of Litchi Juice and Its Microbial Shelf Life. J. Food Sci. 2013, 78, M1236–M1241. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.L.F.; Maciel, T.C.; Rodrigues, S. Probiotic Beverage from Cashew Apple Juice Fermented with Lactobacillus casei. Food Res. Int. 2011, 44, 1276–1283. [Google Scholar] [CrossRef]
- Raju, S.; Deka, S.C. Influence of Thermosonication Treatments on Bioactive Compounds and Sensory Quality of Fruit (Haematocarpus validus) Juice. J. Food Process. Preserv. 2018, 42, e13701. [Google Scholar] [CrossRef]
- Manzoor, M.F.; Xu, B.; Khan, S.; Shukat, R.; Ahmad, N.; Imran, M.; Rehman, A.; Karrar, E.; Aadil, R.M.; Korma, S.A. Impact of High-Intensity Thermosonication Treatment on Spinach Juice: Bioactive Compounds, Rheological, Microbial, and Enzymatic Activities. Ultrason. Sonochem 2021, 78, 105740. [Google Scholar] [CrossRef] [PubMed]
- Sasikumar, R.; Pradhan, D.; Deka, S.C. Effects of Thermosonication Process on Inactivation of Escherichia coli and Saccharomyces cerevisiae and Its Survival Kinetics Modeling in Khoonphal (Haematocarpus validus) Juice to Extend Its Shelf Life. J. Food Process. Preserv. 2019, 43, e14220. [Google Scholar] [CrossRef]
- Vignali, G.; Gozzi, M.; Pelacci, M.; Stefanini, R. Non-Conventional Stabilization for Fruit and Vegetable Juices: Overview, Technological Constraints, and Energy Cost Comparison. Food Bioproc. Technol. 2022, 15, 1729–1747. [Google Scholar] [CrossRef]
- Silva, L.P.; Gonzales-Barron, U.; Cadavez, V.; Sant’Ana, A.S. Modeling the Effects of Temperature and PH on the Resistance of Alicyclobacillus acidoterrestris in Conventional Heat-Treated Fruit Beverages through a Meta-Analysis Approach. Food Microbiol. 2015, 46, 541–552. [Google Scholar] [CrossRef]
- de Castro Oliveira, W.; Hungaro, H.M.; Paiva, A.D.; Mantovani, H.C. Modeling Heat-Resistance of Alicyclobacillus acidoterrestris in Different Fruit Juices: Combined Effects of PH and Temperature. Braz. Arch. Biol. Technol. 2023, 66, e23220566. [Google Scholar] [CrossRef]
- Chandra, R.D.; Prihastyanti, M.N.U.; Lukitasari, D.M. Effects of PH, High Pressure Processing, and Ultraviolet Light on Carotenoids, Chlorophylls, and Anthocyanins of Fresh Fruit and Vegetable Juices. eFood 2021, 2, 113–124. [Google Scholar] [CrossRef]
- Dogan, K.; Akman, P.K.; Tornuk, F. Role of Non-thermal Treatments and Fermentation with Probiotic Lactobacillus plantarum on in Vitro Bioaccessibility of Bioactives from Vegetable Juice. J. Sci. Food Agric. 2021, 101, 4779–4788. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Li, W.; Dong, G. Dung Beetle Optimizer Algorithm and Machine Learning-Based Genome Analysis of Lactococcus lactis: Predicting Electronic Sensory Properties of Fermented Milk. Foods 2024, 13, 1958. [Google Scholar] [CrossRef]
- Fusieger, A.; Martins, M.C.F.; de Freitas, R.; Nero, L.A.; de Carvalho, A.F. Technological Properties of Lactococcus lactis Subsp. Lactis Bv. Diacetylactis Obtained from Dairy and Non-Dairy Niches. Braz. J. Microbiol. 2020, 51, 313–321. [Google Scholar] [CrossRef]
- Zhang, L.; Jin, Q.; Luo, J.; Wu, J.; Wang, S.; Wang, Z.; Gong, S.; Zhang, W.; Lan, X. Intracellular Expression of Antifreeze Peptides in Food Grade Lactococcus lactis and Evaluation of Their Cryoprotective Activity. J. Food Sci. 2018, 83, 1311–1320. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Teng, J.; Lyu, Y.; Hu, X.; Zhao, Y.; Wang, M. Enhanced Antioxidant Activity for Apple Juice Fermented with Lactobacillus Plantarum ATCC14917. Molecules 2018, 24, 51. [Google Scholar] [CrossRef]
- Filannino, P.; Cardinali, G.; Rizzello, C.G.; Buchin, S.; De Angelis, M.; Gobbetti, M.; Di Cagno, R. Metabolic Responses of Lactobacillus Plantarum Strains during Fermentation and Storage of Vegetable and Fruit Juices. Appl. Environ. Microbiol. 2014, 80, 2206–2215. [Google Scholar] [CrossRef]
- Plessas, S.; Mantzourani, I.; Terpou, A.; Bekatorou, A. Assessment of the Physicochemical, Antioxidant, Microbial, and Sensory Attributes of Yogurt-Style Products Enriched with Probiotic-Fermented Aronia melanocarpa Berry Juice. Foods 2023, 13, 111. [Google Scholar] [CrossRef]
- Koh, J.; Kim, Y.; Oh, J. Chemical Characterization of Tomato Juice Fermented with Bifidobacteria. J. Food Sci. 2010, 75, C428–C432. [Google Scholar] [CrossRef]
- Dunkley, K.E.; Hekmat, S. Development of Probiotic Vegetable Juice Using Lactobacillus rhamnosus GR-1. Nutr. Food Sci. 2019, 50, 955–968. [Google Scholar] [CrossRef]
- Chukwuemeka, I.C.; Odinakachi, O.H.; Kalu, A.D. Bio-Preservation of Processed Watermelon (Citrullus lanatus) Juice Using Lactobacillus Species Isolated from Processed Fermented Maize (Akamu). GSC Biol. Pharm. Sci. 2020, 10, 126–136. [Google Scholar] [CrossRef]
- Goderska, K.; Dombhare, K.; Radziejewska-Kubzdela, E. Probiotics in Vegetable Juices: Tomato (Solanum Lycopersicum), Carrot (Daucus Carota, Subsp. Sativus) and Beetroot Juice (Beta Vulgaris). 29 September 2021. Available online: https://www.researchsquare.com/article/rs-907042/v1 (accessed on 27 May 2025). [CrossRef]
- Orike, E.L.; Olajugbagbe, T.E.; Omafuvbe, B.O.; Animasahun, T.O. Effect of Storage on Probiotic Viability, Physicochemical and Sensory Properties of Probiotic-Enriched Orange Juice. Eur. J. Nutr. Food Saf. 2024, 16, 304–312. [Google Scholar] [CrossRef]
- Tuerhong, N.; Wang, L.; Cui, J.; Shataer, D.; Yan, H.; Dong, X.; Gao, Z.; Zhang, M.; Qin, Y.; Lu, J. Targeted Screening of Lactiplantibacillus Plantarum Strains Isolated from Tomatoes and Its Application in Tomato Fermented Juice. Foods 2024, 13, 3569. [Google Scholar] [CrossRef]
- Dimitrovski, D.; Dimitrovska-Vetadjoka, M.; Hristov, H.; Doneva-Shapceska, D. Developing Probiotic Pumpkin Juice by Fermentation with Commercial Probiotic Strain Lactobacillus casei 431. J. Food Process. Preserv. 2021, 45, e15245. [Google Scholar] [CrossRef]
- Tamminen, M.; Salminen, S.; Ouwehand, A.C. Fermentation of Carrot Juice by Probiotics: Viability and Preservation of Adhesion. Int. J. Biotechnol. Wellness Ind. 2013, 2, 10. [Google Scholar] [CrossRef]
- Foss, K.; Starowicz, M.; Kłębukowska, L.; Sawicki, T. Effect of Lactic Acid Fermentation of Red Beetroot Juice on Volatile Compounds Profile and Content. Eur. Food Res. Technol. 2023, 249, 2401–2418. [Google Scholar] [CrossRef]
- Mousavi, Z.E.; Mousavi, S.M.; Razavi, S.H.; Emam-Djomeh, Z.; Kiani, H. Fermentation of Pomegranate Juice by Probiotic Lactic Acid Bacteria. World J. Microbiol. Biotechnol. 2011, 27, 123–128. [Google Scholar] [CrossRef]
- Nguyen, B.T.; Bujna, E.; Fekete, N.; Tran, A.T.M.; Rezessy-Szabo, J.M.; Prasad, R.; Nguyen, Q.D. Probiotic Beverage from Pineapple Juice Fermented with Lactobacillus and Bifidobacterium Strains. Front. Nutr. 2019, 6, 54. [Google Scholar] [CrossRef]
- Champagne, C.P.; Gardner, N.J. Effect of Storage in a Fruit Drink on Subsequent Survival of Probiotic Lactobacilli to Gastro-Intestinal Stresses. Food Res. Int. 2008, 41, 539–543. [Google Scholar] [CrossRef]
- Fonteles, T.V.; Costa, M.G.M.; de Jesus, A.L.T.; Rodrigues, S. Optimization of the Fermentation of Cantaloupe Juice by Lactobacillus casei NRRL B-442. Food Bioproc. Tech. 2012, 5, 2819–2826. [Google Scholar] [CrossRef]
- de Souza Neves Ellendersen, L.; Granato, D.; Bigetti Guergoletto, K.; Wosiacki, G. Development and Sensory Profile of a Probiotic Beverage from Apple Fermented with Lactobacillus casei. Eng. Life Sci. 2012, 12, 475–485. [Google Scholar] [CrossRef]
- Xu, X.; Bao, Y.; Wu, B.; Lao, F.; Hu, X.; Wu, J. Chemical Analysis and Flavor Properties of Blended Orange, Carrot, Apple and Chinese Jujube Juice Fermented by Selenium-Enriched Probiotics. Food Chem. 2019, 289, 250–258. [Google Scholar] [CrossRef] [PubMed]
- da Costa, G.M.; de Carvalho Silva, J.V.; Mingotti, J.D.; Barão, C.E.; Klososki, S.J.; Pimentel, T.C. Effect of Ascorbic Acid or Oligofructose Supplementation on L. Paracasei Viability, Physicochemical Characteristics and Acceptance of Probiotic Orange Juice. LWT 2017, 75, 195–201. [Google Scholar] [CrossRef]
- Pakbin, B.; Razavi, S.H.; Mahmoudi, R.; Gajarbeygi, P. Producing Probiotic Peach Juice. Biotechnol. Health Sci. 2014, 1, e24683. [Google Scholar] [CrossRef]
- Nguyen, T.T.G.; Nguyen, T.K.; Tran, N.N.; Dong, T.A.D.; Nguyen, P.M. Cashew Apple Juice Anacardium Occidentale L Probiotic Fermented from Lactobacillus acidophilus. Eur. J. Sustain. Dev. 2013, 2, 99–109. [Google Scholar] [CrossRef]
- Bevilacqua, A.; Campaniello, D.; Corbo, M.R.; Maddalena, L.; Sinigaglia, M. Suitability of Bifidobacterium Spp. and Lactobacillus plantarum as Probiotics Intended for Fruit Juices Containing Citrus Extracts. J. Food Sci. 2013, 78, M1764–M1771. [Google Scholar] [CrossRef]
- Nagpal, R.; Kumar, A.; Kumar, M. Fortification and Fermentation of Fruit Juices with Probiotic Lactobacilli. Ann. Microbiol. 2012, 62, 1573–1578. [Google Scholar] [CrossRef]
- Jost, S.; Herzig, C.; Birringer, M. A Balancing Act—20 Years of Nutrition and Health Claims Regulation in Europe: A Historical Perspective and Reflection. Foods 2025, 14, 1651. [Google Scholar] [CrossRef]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. The International Scientific Association for Probiotics and Prebiotics Consensus Statement on the Scope and Appropriate Use of the Term Probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef]
- Tee, E.S.; Hardinsyah; Au, C.S.S. Status of Probiotic Regulations in Southeast Asia Countries. Malays. J. Nutr. 2021, 27, 507. [Google Scholar] [CrossRef]
Probiotic Strains | Juices Used in Fermentation | Main Advantages | Main Limitations | References |
---|---|---|---|---|
Lactobacillus spp. (L. plantarum, L. acidophilus, L. casei, L. rhamnosus, L. paracasei, L. fermentum, L. reuteri) | Apple, aronia, beetroot, carrot, pear, pineapple, pomegranate, pumpkin, strawberry, tomato | High viability in juice matrices Enhance antioxidant activity SCFA production Detoxify patulin Improve biochemical and sensory juice properties | pH sensitivity for some strains Need tailored fermentation conditions | [53,54,55,56,57,59,119,150,155] |
Lactiplantibacillus plantarum | Apple, aronia, beetroot, carrot, grape, pineapple, pomegranate, tomato | Excellent acid tolerance Boosts esterase activity and aroma Strong metabolic activity Maintains high LAB counts after fermentation | Oxidative sensitivity in long-term storage | [55,56,110,144,151] |
Bacillus spp. (B. coagulans) | Orange, mixed fruit/vegetable | Spore-forming and acid-tolerant Enhance immunity and gut microbiota Inhibit pathogens Increase shelf life | Safety and sensory effects need control Spore germination risk | [60,72,73,74,75] |
Bifidobacterium spp. (B. longum, B. breve, B. infantis, B. bifidum, B. lactis) | Fruit and vegetable juices enriched with oligosaccharides (e.g., apple, berry—assumed, pear, tropical) | SCFA production with anti-inflammatory effects Enhance gut barrier and regulate colonic pH Improve nutrient bioavailability and inhibit pathogens Improve sensory and functional quality of fermented juices | Oxygen-sensitive, viability affected by pH, temperature Fermentation behavior varies across strains | [65,67,69,72,73] |
Lactococcus lactis | Aloe, apple, carrot, coconut, grape | SCFA production Improves taste and aroma Improves gut health Reduces antinutritional factors Enhances nutrient bioavailability | Limited juice use compared with dairy Sensory effects strain dependent | [92,97,99,100,141] |
Streptococcus thermophilus | Jujube | SCFA production | Inferior flavor vs. L. plantarum Narrow substrate applicability | [110] |
Leuconostoc spp. (heterofermentative LABs) | Cabbage, spinach, vegetable | Enhance traditional fermented flavors (e.g., kimchi) Complex aroma profile | Less explored in direct juice fermentations | [106,108] |
General LAB (Lactic Acid Bacteria) | Beetroot, cabbage, carrot, grape, pineapple, spinach tomato | Boost antioxidants and shelf life Versatile across many matrices Support probiotic viability | Function is highly strain-specific Monitoring fermentation dynamics critical | [63,145,146,147,156] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Žvirdauskienė, R.; Jonikė, V.; Bašinskienė, L.; Čižeikienė, D. Fruit and Vegetable Juices as Functional Carriers for Probiotic Delivery: Microbiological, Nutritional, and Sensory Perspectives. Microorganisms 2025, 13, 1272. https://doi.org/10.3390/microorganisms13061272
Žvirdauskienė R, Jonikė V, Bašinskienė L, Čižeikienė D. Fruit and Vegetable Juices as Functional Carriers for Probiotic Delivery: Microbiological, Nutritional, and Sensory Perspectives. Microorganisms. 2025; 13(6):1272. https://doi.org/10.3390/microorganisms13061272
Chicago/Turabian StyleŽvirdauskienė, Renata, Vesta Jonikė, Loreta Bašinskienė, and Dalia Čižeikienė. 2025. "Fruit and Vegetable Juices as Functional Carriers for Probiotic Delivery: Microbiological, Nutritional, and Sensory Perspectives" Microorganisms 13, no. 6: 1272. https://doi.org/10.3390/microorganisms13061272
APA StyleŽvirdauskienė, R., Jonikė, V., Bašinskienė, L., & Čižeikienė, D. (2025). Fruit and Vegetable Juices as Functional Carriers for Probiotic Delivery: Microbiological, Nutritional, and Sensory Perspectives. Microorganisms, 13(6), 1272. https://doi.org/10.3390/microorganisms13061272