Implementing Wastewater-Based Epidemiology for Long-Read Metagenomic Sequencing of Antimicrobial Resistance in Kampala, Uganda
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
LMICs | Low- and middle-income countries |
SSA | Sub-Saharan Africa |
WBE | Wastewater-based epidemiology |
AMR | Antimicrobial resistance |
MGE | Mobile genetic units |
ESP | Exclusion-based sample preparation |
RGI | Resistance Gene Identifier |
WIMP | What’s In My Pot |
PLWHA | People living with HIV/AIDS |
References
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- Dadgostar, P. Antimicrobial Resistance: Implications and Costs. Infect. Drug Resist. 2019, 12, 3903–3910. [Google Scholar] [CrossRef] [PubMed]
- Tiberi, S.; Utjesanovic, N.; Galvin, J.; Centis, R.; D’Ambrosio, L.; van den Boom, M.; Zumla, A.; Migliori, G.B. Drug resistant TB—Latest developments in epidemiology, diagnostics and management. Int. J. Infect. Dis. 2022, 124, S20–S25. [Google Scholar] [CrossRef] [PubMed]
- Maciej, B.; Aleksandra, M. Revealing antimicrobial resistance in stormwater with MinION. Chemosphere 2020, 258, 127392. [Google Scholar] [CrossRef]
- Mukherjee, M.; Laird, E.; Gentry, T.J.; Brooks, J.P.; Karthikeyan, R. Increased Antimicrobial and Multidrug Resistance Downstream of Wastewater Treatment Plants in an Urban Watershed. Front. Microbiol. 2021, 12, 657353. [Google Scholar] [CrossRef]
- Pokharel, S.; Raut, S.; Adhikari, B. Tackling antimicrobial resistance in low-income and middle-income countries. BMJ Glob. Health 2019, 4, e002104. [Google Scholar] [CrossRef]
- Vermeiren, K.; Van Rompaey, A.; Loopmans, M.; Serwajja, E.; Mukwaya, P. Urban growth of Kampala, Uganda: Pattern analysis and scenario development. Landsc. Urban Plan. 2012, 106, 199–206. [Google Scholar] [CrossRef]
- Schneeberger, P.H.H.; Fuhrimann, S.; Becker, S.L.; Pothier, J.F.; Duffy, B.; Beuret, C.; Frey, J.E.; Utzinger, J. Qualitative microbiome profiling along a wastewater system in Kampala, Uganda. Sci. Rep. 2019, 9, 17334. [Google Scholar] [CrossRef]
- UNICEF; WHO. Progress on Household Drinking Water, Sanitation and Hygiene 2000–2020: Five Years into the SDGs; World Health Organization (WHO): Geneva, Switzerland, 2021. [Google Scholar]
- Tumwebaze, I.K.; Sseviiri, H.; Bateganya, F.H.; Twesige, J.; Scott, R.; Kayaga, S.; Kulabako, R.; Howard, G. Access to and factors influencing drinking water and sanitation service levels in informal settlements: Evidence from Kampala, Uganda. Habitat Int. 2023, 136, 102829. [Google Scholar] [CrossRef]
- Okeke, I.N.; Aboderin, O.A.; Byarugaba, D.K.; Ojo, K.K.; Opintan, J.A. Growing problem of multidrug-resistant enteric pathogens in Africa. Emerg. Infect. Dis. 2007, 13, 1640–1646. [Google Scholar] [CrossRef]
- Iramiot, J.S.; Rwego, I.B.; Kansiime, C.; Asiimwe, B.B. Epidemiology and antibiotic susceptibility of Vibrio cholerae associated with the 2017 outbreak in Kasese district, Uganda. BMC Public Health 2019, 19, 1405. [Google Scholar] [CrossRef] [PubMed]
- Obakiro, S.B.; Kiyimba, K.; Paasi, G.; Napyo, A.; Anthierens, S.; Waako, P.; Royen, P.V.; Iramiot, J.S.; Goossens, H.; Kostyanev, T. Prevalence of antibiotic-resistant bacteria among patients in two tertiary hospitals in Eastern Uganda. J. Glob. Antimicrob. Resist. 2021, 25, 82–86. [Google Scholar] [CrossRef] [PubMed]
- Marimuthu Ragavan, R.; Narasingam, A. Drug-Resistant Bacterial Infections in HIV Patients. In Advances in HIV and AIDS Control; Samuel, O., Ed.; IntechOpen: Rijeka, Croatia, 2018; Chapter 5. [Google Scholar]
- Rashmi, K.S.; RaviKumar, K.L.; Bhagyashree, H.N. Asymptomatic bacteriuria in HIV/AIDS Patients: Occurrence and risk associated with Low CD4 Counts. J. Evol. Med. Dent. Sci. 2013, 2, 3358–3366. [Google Scholar]
- Nguyen, A.Q.; Vu, H.P.; Nguyen, L.N.; Wang, Q.; Djordjevic, S.P.; Donner, E.; Yin, H.; Nghiem, L.D. Monitoring antibiotic resistance genes in wastewater treatment: Current strategies and future challenges. Sci. Total Environ. 2021, 783, 146964. [Google Scholar] [CrossRef]
- Dehghan Banadaki, M.; Torabi, S.; Rockward, A.; Strike, W.D.; Noble, A.; Keck, J.W.; Berry, S.M. Simple SARS-CoV-2 concentration methods for wastewater surveillance in low resource settings. Sci. Total Environ. 2024, 912, 168782. [Google Scholar] [CrossRef]
- Dehghan Banadaki, M.; Torabi, S.; Strike, W.D.; Noble, A.; Keck, J.W.; Berry, S.M. Improving wastewater-based epidemiology performance through streamlined automation. J. Environ. Chem. Eng. 2023, 11, 109595. [Google Scholar] [CrossRef]
- Strike, W.; Amirsoleimani, A.; Olaleye, A.; Noble, A.; Lewis, K.; Faulkner, L.; Backus, S.; Lindeman, S.; Eterovich, K.; Fraley, M.; et al. Development and Validation of a Simplified Method for Analysis of SARS-CoV-2 RNA in University Dormitories. ACS EST Water 2022, 2, 1984–1991. [Google Scholar] [CrossRef]
- Torabi, S.; Amirsoleimani, A.; Dehghan Banadaki, M.; Strike, W.D.; Rockward, A.; Noble, A.; Liversedge, M.; Keck, J.W.; Berry, S.M. Stabilization of SARS-CoV-2 RNA in wastewater via rapid RNA extraction. Sci. Total Environ. 2023, 878, 162992. [Google Scholar] [CrossRef]
- de Koning, W.; Miladi, M.; Hiltemann, S.; Heikema, A.; Hays, J.P.; Flemming, S.; van den Beek, M.; Mustafa, D.A.; Backofen, R.; Grüning, B.; et al. NanoGalaxy: Nanopore long-read sequencing data analysis in Galaxy. GigaScience 2020, 9, giaa105. [Google Scholar] [CrossRef]
- Alcock, B.P.; Huynh, W.; Chalil, R.; Smith, K.W.; Raphenya, A.R.; Wlodarski, M.A.; Edalatmand, A.; Petkau, A.; Syed, S.A.; Tsang, K.K.; et al. CARD 2023: Expanded curation, support for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res. 2023, 51, D690–D699. [Google Scholar] [CrossRef]
- Santajit, S.; Indrawattana, N. Mechanisms of Antimicrobial Resistance in ESKAPE Pathogens. Biomed. Res. Int. 2016, 2016, 2475067. [Google Scholar] [CrossRef] [PubMed]
- Aruhomukama, D.; Najjuka, C.F.; Kajumbula, H.; Okee, M.; Mboowa, G.; Sserwadda, I.; Mayanja, R.; Joloba, M.L.; Kateete, D.P. blaVIM- and blaOXA-mediated carbapenem resistance among Acinetobacter baumannii and Pseudomonas aeruginosa isolates from the Mulago hospital intensive care unit in Kampala, Uganda. BMC Infect. Dis. 2019, 19, 853. [Google Scholar] [CrossRef] [PubMed]
- Blackwell, G.A.; Hall, R.M. The tet39 Determinant and the msrE-mphE Genes in Acinetobacter Plasmids Are Each Part of Discrete Modules Flanked by Inversely Oriented pdif (XerC–XerD) Sites. Antimicrob. Agents Chemother. 2017, 61. [Google Scholar] [CrossRef] [PubMed]
- Vijayakumar, S.; Wattal, C.; JK, O.; Bhattacharya, S.; Vasudevan, K.; Anandan, S.; Walia, K.; Veeraraghavan, B. Insights into the complete genomes of carbapenem-resistant Acinetobacter baumannii harbouring bla (OXA-23,) bla (OXA-420) and bla (NDM-1) genes using a hybrid-assembly approach. Access Microbiol. 2020, 2, e000140. [Google Scholar] [CrossRef]
- Koeleman, J.G.; Stoof, J.; Van Der Bijl, M.W.; Vandenbroucke-Grauls, C.M.; Savelkoul, P.H. Identification of epidemic strains of Acinetobacter baumannii by integrase gene PCR. J. Clin. Microbiol. 2001, 39, 8–13. [Google Scholar] [CrossRef]
- Taitt, C.R.; Leski, T.A.; Stockelman, M.G.; Craft, D.W.; Zurawski, D.V.; Kirkup, B.C.; Vora, G.J. Antimicrobial resistance determinants in Acinetobacter baumannii isolates taken from military treatment facilities. Antimicrob. Agents Chemother. 2014, 58, 767–781. [Google Scholar] [CrossRef]
- Wiradiputra, M.R.D.; Thirapanmethee, K.; Khuntayaporn, P.; Wanapaisan, P.; Chomnawang, M.T. Comparative genotypic characterization related to antibiotic resistance phenotypes of clinical carbapenem-resistant Acinetobacter baumannii MTC1106 (ST2) and MTC0619 (ST25). BMC Genom. 2023, 24, 689. [Google Scholar] [CrossRef]
- Gao, F.-Z.; He, L.-Y.; Chen, X.; Chen, J.-L.; Yi, X.; He, L.-X.; Huang, X.-Y.; Chen, Z.-Y.; Bai, H.; Zhang, M.; et al. Swine farm groundwater is a hidden hotspot for antibiotic-resistant pathogenic Acinetobacter. ISME Commun. 2023, 3, 34. [Google Scholar] [CrossRef]
- Kyriakidis, I.; Vasileiou, E.; Pana, Z.D.; Tragiannidis, A. Acinetobacter baumannii Antibiotic Resistance Mechanisms. Pathogens 2021, 10, 373. [Google Scholar] [CrossRef]
- Nebreda-Mayoral, T.; Miguel-Gómez, M.A.; March-Rosselló, G.A.; Puente-Fuertes, L.; Cantón-Benito, E.; Martínez-García, A.M.; Muñoz-Martín, A.B.; Orduña-Domingo, A. Bacterial/fungal infection in hospitalized patients with COVID-19 in a tertiary hospital in the Community of Castilla y León, Spain. Enferm. Infecc. Microbiol. Clin. (Engl. Ed.) 2020, 40, 158–165. [Google Scholar] [CrossRef]
- Mboowa, G.; Aruhomukama, D.; Sserwadda, I.; Kitutu, F.E.; Davtyan, H.; Owiti, P.; Kamau, E.M.; Enbiale, W.; Reid, A.; Bulafu, D.; et al. Increasing Antimicrobial Resistance in Surgical Wards at Mulago National Referral Hospital, Uganda, from 2014 to 2018-Cause for Concern? Trop. Med. Infect. Dis. 2021, 6, 82. [Google Scholar] [CrossRef] [PubMed]
- Kateete, D.P.; Nakanjako, R.; Namugenyi, J.; Erume, J.; Joloba, M.L.; Najjuka, C.F. Carbapenem resistant Pseudomonas aeruginosa and Acinetobacter baumannii at Mulago Hospital in Kampala, Uganda (2007–2009). Springerplus 2016, 5, 1308. [Google Scholar] [CrossRef]
- Crippen, C.S.; Jr, M.J.R.; Sanchez, S.; Szymanski, C.M. Multidrug Resistant Acinetobacter Isolates Release Resistance Determinants Through Contact-Dependent Killing and Bacteriophage Lysis. Front. Microbiol. 2020, 11, 1918. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control. Rapid Risk Assessment: Carbapenem-Resistant Acinetobacter baumannii in Healthcare Settings; European Centre for Disease Prevention and Control: Stockholm, Sweden, 2016. [Google Scholar]
- Yang, J.; Tang, Q.; Qi, T.; Chen, J.; Ji, Y.; Tang, Y.; Wang, Z.; Song, W.; Xun, J.; Liu, L.; et al. Characteristics and Outcomes of Acinetobacter baumannii Infections in Patients with HIV: A Matched Case-Control Study. Sci. Rep. 2018, 8, 15617. [Google Scholar] [CrossRef]
- Law, A.; Solano, O.; Brown, C.J.; Hunter, S.S.; Fagnan, M.; Top, E.M.; Stalder, T. Biosolids as a Source of Antibiotic Resistance Plasmids for Commensal and Pathogenic Bacteria. Front. Microbiol. 2021, 12, 606409. [Google Scholar] [CrossRef] [PubMed]
- UNAS. Antibiotic Resistance in Uganda: Situational Analysis and Recommendations; UNAS: Badrshein, Egypt, 2015. [Google Scholar]
- Gomi, R.; Matsumura, Y.; Yamamoto, M.; Tanaka, M.; Komakech, A.J.; Matsuda, T.; Harada, H. Genomic surveillance of antimicrobial-resistant Escherichia coli in fecal sludge and sewage in Uganda. bioRxiv 2023, 248, 540885. [Google Scholar] [CrossRef]
- Bougnom, B.P.; Piddock, L.J.V. Wastewater for Urban Agriculture: A Significant Factor in Dissemination of Antibiotic Resistance. Environ. Sci. Technol. 2017, 51, 5863–5864. [Google Scholar] [CrossRef]
- Eurien, D.; Mirembe, B.B.; Musewa, A.; Kisaakye, E.; Kwesiga, B.; Ogole, F.; Ayen, D.O.; Kadobera, D.; Bulage, L.; Ario, A.R.; et al. Cholera outbreak caused by drinking unprotected well water contaminated with faeces from an open storm water drainage: Kampala City, Uganda, January 2019. BMC Infect. Dis. 2021, 21, 1281. [Google Scholar] [CrossRef]
- Drechsel, P.; Dongus, S. Dynamics and sustainability of urban agriculture: Examples from sub-Saharan Africa. Sustain. Sci. 2010, 5, 69–78. [Google Scholar] [CrossRef]
- Atukunda, G. Urban Agriculture in Kampala, Uganda: Reviewing Research Impacts 1. In IDRC Cities Feeding People Report 29B; IDRC: Ottawa, ON, Canada, 2000. [Google Scholar]
S/N | Site | Gbs of Data | #Reads | #Trimmed Reads | #Contigs | Range Mean Depth | Range Contig Length | #ARGs | ARG-Bearing Contigs # | Range Mean Depth | Range Contig Length | Range #ARGs/ Contig |
---|---|---|---|---|---|---|---|---|---|---|---|---|
S1-J | JCRC | 0.918 | 368,007 | 337,838 | 798 | 3×–919× | 296 bp–511,847 bp | 31 | 18 | 4×–22× | 923 bp–90,589 bp | 1–9 |
S2-K | KAWAALA | 0.289 | 114,934 | 105,114 | 101 | 3×–1924× | 108 bp–941,881 bp | 7 | 4 | 5×–12× | 8006 bp–941,881 bp | 1–4 |
S3-M | MULAGO | 0.832 | 268,486 | 245,787 | 360 | 3×–748× | 508 bp–1,322,077 bp | 7 | 3 | 14×–18× | 6358 bp–58,121 bp | 1–5 |
Contig-ID | Contig Length (bp) | Mean Depth of Coverage | Accession # | Query Cover | %Siml | Organism | Accession # | Query Cover | %Siml | Organism | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | S1-J | Contig_37 | 44,316 | 22 | CP096936.1 | 17 | 92.94 | Pseudomonas aeruginosa plasmid | CP028568.2 | 17 | 92.95 | Aeromonas hydrophila chromosome |
2 | Contig_44 | 923 | 7 | CP053365.1 | 100 | 99.57 | Klebsiella pneumoniae plasmid | LC537594.1 | 100 | 99.57 | Acinetobacter lwoffii plasmid | |
3 | Contig_61 | 31,822 | 19 | CP051867.1 | 83 | 99.94 | Acinetobacter baumannii plasmid | CP028560.1 | 57 | 99.82 | Acinetobacter sp. plasmid | |
4 | Contig_62 | 41,771 | 13 | LC591943.1 | 75 | 99.15 | Acinetobacter variabilis plasmid | CP038646.1 | 75 | 99.28 | Acinetobacter baumannii plasmid | |
5 | Contig_65 | 4030 | 22 | CP051867.1 | 100 | 99.90 | Acinetobacter baumannii plasmid | CP079749.1 | 98 | 99.67 | Acinetobacter johnsonii plasmid | |
6 | Contig_79 | 4549 | 20 | CP051867.1 | 100 | 98.82 | Acinetobacter baumannii plasmid | AJ605332.1 | 67 | 98.47 | Pasteurella multocida ARGs dfrA20 and sul2 | |
7 | Contig_97 | 4081 | 7 | CP132737.1 | 41 | 99.52 | Klebsiella pneumoniae plasmid | CP132632.1 | 41 | 99.52 | Klebsiella pneumoniae plasmid | |
8 | Contig_103 | 35,592 | 11 | CP104579.1 | 27 | 99.30 | Pseudomonas oleovorans chromosome | LR698992.1 | 25 | 99.89 | Laribacter hongkongensis chromosome | |
9 | Contig_116 | 7031 | 13 | CP051867.1 | 98 | 99.89 | Acinetobacter baumannii plasmid | CP115643.1 | 50 | 99.86 | Acinetobacter baumannii chromosome | |
10 | Contig_154 | 90,589 | 8 | CP042464.1 | 96 | 95.83 | Segatella copri chromosome | CP102288.1 | 90 | 95.68 | Segatella copri chromosome | |
11 | Contig_160 | 5510 | 20 | CP042557.1 | 74 | 98.24 | Acinetobacter baumannii plasmid | MK413719.1 | 60 | 98.24 | Klebsiella pneumoniae plasmid | |
12 | Contig_163 | 23,722 | 4 | CP019041.1 | 84 | 98.52 | Acinetobacter junii chromosome | CP090382.1 | 99 | 97.63 | Acinetobacter towneri chromosome | |
13 | Contig_204 | 56,173 | 18 | CP055277.1 | 99 | 96.82 | Acinetobacter sp. chromosome | CP090416.1 | 98 | 96.54 | Acinetobacter johnsonii chromosome | |
14 | Contig_236 | 9742 | 8 | CP104863.1 | 33 | 97.67 | Stenotrophomonas maltophilia chromosome | MN366358.1 | 33 | 97.64 | Bacterium plasmid | |
15 | Contig_250 | 29,575 | 6 | AP025941.1 | 62 | 93.79 | Paraprevotella clara genome | CP120849.1 | 66 | 95.81 | Parabacteroides chongii chromosome | |
16 | Contig_340 | 1042 | 17 | MT011984.1 | 100 | 97.90 | Comamonas testosteroni plasmid | MK638972.1 | 100 | 97.90 | Escherichia coli plasmid | |
17 | Contig_388 | 11,301 | 6 | CP100430.1 | 59 | 98.62 | Streptococcus suis chromosome | LR698970.1 | 59 | 98.60 | Lachnospiraceae bacterium chromosome | |
18 | Contig_880 | 11,299 | 15 | CP033122.1 | 88 | 97.50 | Acinetobacter wuhouensis plasmid | CP032277.1 | 75 | 97.14 | Acinetobacter sp. plasmid | |
19 | S2-K | Contig_105 | 8006 | 5 | MN366358.1 | 93 | 98.62 | Bacterium plasmid | CP083711.1 | 76 | 98.81 | Enterobacter cloacae complex sp. plasmid |
20 | Contig_29 | 941,881 | 12 | * GTDB-Tk-v1.7.0 GCF_000368045.1 | 94 | 96.3 | Acinetobacter johnsonii | |||||
21 | Contig_34 | 8025 | 5 | CP053947.1 | 100 | 92.17 | Acinetobacter sp. | LC537318.1 | 100 | 92.16 | Acinetobacter lwoffii | |
22 | Contig_39 | 105,337 | 7 | CP045051.1 | 65 | 93.56 | Acinetobacter johnsonii chromosome | CP065666.1 | 69 | 94.90 | Acinetobacter johnsonii chromosome | |
23 | S3-M | Contig_27 | 58,121 | 16 | CP090180.1 | 93 | 97.75 | Acinetobacter johnsonii chromosome | CP031011.1 | 92 | 97.71 | Acinetobacter johnsonii chromosome |
24 | Contig_35 | 14,796 | 18 | CP035937.1 | 67 | 99.97 | Acinetobacter cumulans plasmid | CP053947.1 | 29 | 100 | Acinetobacter sp. WY4 chromosome | |
25 | Contig_79 | 6358 | 14 | CP065052.1 | 45 | 99.27 | Acinetobacter baumannii plasmid | CP053947.1 | 45 | 99.17 | Acinetobacter sp. WY4 chromosome |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strike, W.; Faleye, T.O.C.; Lubega, B.; Rockward, A.; Torabi, S.; Noble, A.; Banadaki, M.D.; Keck, J.; Mugerwa, H.; Scotch, M.; et al. Implementing Wastewater-Based Epidemiology for Long-Read Metagenomic Sequencing of Antimicrobial Resistance in Kampala, Uganda. Microorganisms 2025, 13, 1240. https://doi.org/10.3390/microorganisms13061240
Strike W, Faleye TOC, Lubega B, Rockward A, Torabi S, Noble A, Banadaki MD, Keck J, Mugerwa H, Scotch M, et al. Implementing Wastewater-Based Epidemiology for Long-Read Metagenomic Sequencing of Antimicrobial Resistance in Kampala, Uganda. Microorganisms. 2025; 13(6):1240. https://doi.org/10.3390/microorganisms13061240
Chicago/Turabian StyleStrike, William, Temitope O. C. Faleye, Brian Lubega, Alexus Rockward, Soroosh Torabi, Anni Noble, Mohammad Dehghan Banadaki, James Keck, Henry Mugerwa, Matthew Scotch, and et al. 2025. "Implementing Wastewater-Based Epidemiology for Long-Read Metagenomic Sequencing of Antimicrobial Resistance in Kampala, Uganda" Microorganisms 13, no. 6: 1240. https://doi.org/10.3390/microorganisms13061240
APA StyleStrike, W., Faleye, T. O. C., Lubega, B., Rockward, A., Torabi, S., Noble, A., Banadaki, M. D., Keck, J., Mugerwa, H., Scotch, M., & Berry, S. (2025). Implementing Wastewater-Based Epidemiology for Long-Read Metagenomic Sequencing of Antimicrobial Resistance in Kampala, Uganda. Microorganisms, 13(6), 1240. https://doi.org/10.3390/microorganisms13061240