Zero-Valent Iron and Sand Filtration Reduces Levels of Cyclospora cayetanensis Surrogates, Eimeria tenella and Eimeria acervulina, in Water
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Construction of Sand and ZVI Filters
2.2.1. Laboratory-Scale Filter
2.2.2. Field-Scale Filter
2.3. Propagation and Preparation of Eimeria spp. Inoculum
2.4. Animal Ethics Statement
2.5. Water Inoculation and Filtration
2.5.1. Lab-Scale Filter Experiments
2.5.2. Field-Scale Filter Experiments
2.6. Eimeria Oocyst Enumeration
2.7. Statistical Analysis
3. Results
3.1. Lab-Scale Filters
3.2. Field-Scale Filters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Almeria, S.; Cinar, H.N.; Dubey, J.P. Cyclospora cayetanensis and Cyclosporiasis: An Update. Microorganisms 2019, 7, 317. [Google Scholar] [CrossRef] [PubMed]
- Mathison, B.A.; Pritt, B.S. Cyclosporiasis-Updates on Clinical Presentation, Pathology, Clinical Diagnosis, and Treatment. Microorganisms 2021, 9, 1863. [Google Scholar] [CrossRef] [PubMed]
- Chacin-Bonilla, L. Epidemiology of Cyclospora cayetanensis: A review focusing in endemic areas. Acta Trop. 2010, 115, 181–193. [Google Scholar] [CrossRef]
- Almeria, S.; Chacin-Bonilla, L.; Maloney, J.G.; Santin, M. Cyclospora cayetanensis: A Perspective (2020–2023) with Emphasis on Epidemiology and Detection Methods. Microorganisms 2023, 11, 2171. [Google Scholar] [CrossRef] [PubMed]
- Hadjilouka, A.; Tsaltas, D. Cyclospora cayetanensis-Major Outbreaks from Ready to Eat Fresh Fruits and Vegetables. Foods 2020, 9, 1703. [Google Scholar] [CrossRef] [PubMed]
- FDA. Outbreak Investigation of Cyclospora: Bagged Salads (June 2020). Available online: https://www.fda.gov/food/outbreaks-foodborne-illness/outbreak-investigation-cyclospora-bagged-salads-june-2020 (accessed on 6 September 2024).
- Casillas, S.M.; Bennett, C.; Straily, A. Notes from the Field: Multiple Cyclosporiasis Outbreaks-United States, 2018. MMWR Morb. Mortal. Wkly. Rep. 2018, 67, 1101–1102. [Google Scholar] [CrossRef]
- CDC. Surveillance of Cyclosporiasis. Available online: https://www.cdc.gov/cyclosporiasis/php/surveillance/index.html (accessed on 6 September 2024).
- FDA. FDA Sampling Assignment Update Identifies Cyclospora in Herbs. Available online: https://www.fda.gov/food/cfsan-constituent-updates/fda-sampling-assignment-update-identifies-cyclospora-herbs (accessed on 6 September 2024).
- Naganathan, T.; O’Connor, A.; Sargeant, J.M.; Shapiro, K.; Totton, S.; Winder, C.; Greer, A.L. The prevalence of Cyclospora cayetanensis in water: A systematic review and meta-analysis. Epidemiol. Infect. 2022, 150, e15. [Google Scholar] [CrossRef]
- Sathyanarayanan, L.; Ortega, Y. Effects of pesticides on sporulation of Cyclospora cayetanensis and viability of Cryptosporidium parvum. J. Food Prot. 2004, 67, 1044–1049. [Google Scholar] [CrossRef]
- Ortega, Y.R.; Mann, A.; Torres, M.P.; Cama, V. Efficacy of gaseous chlorine dioxide as a sanitizer against Cryptosporidium parvum, Cyclospora cayetanensis, and Encephalitozoon intestinalis on produce. J. Food Prot. 2008, 71, 2410–2414. [Google Scholar] [CrossRef]
- Ortega, Y.R.; Liao, J. Microwave inactivation of Cyclospora cayetanensis sporulation and viability of Cryptosporidium parvum oocysts. J. Food Prot. 2006, 69, 1957–1960. [Google Scholar] [CrossRef]
- Zawawy, E.; El-Said, D.; Ali, S.; Fathy, F. Disinfection efficacy of sodium dichloroisocyanurate (NADCC) against common food-borne intestinal protozoa. J. Egypt. Soc. Parasitol. 2010, 40, 165–185. [Google Scholar]
- Hussein, E.M.; Ahmed, S.A.; Mokhtar, A.B.; Elzagawy, S.M.; Yahi, S.H.; Hussein, A.M.; El-Tantawey, F. Antiprotozoal activity of magnesium oxide (MgO) nanoparticles against Cyclospora cayetanensis oocysts. Parasitol. Int. 2018, 67, 666–674. [Google Scholar] [CrossRef]
- Sathyanarayanan, L.; Ortega, Y. Effects of Temperature and Different Food Matrices on Cyclospora cayetanensis Oocyst Sporulation. J. Parasitol. 2006, 92, 218–222. [Google Scholar] [CrossRef] [PubMed]
- Ortega, Y.R.; Sanchez, R. Update on Cyclospora cayetanensis, a food-borne and waterborne parasite. Clin. Microbiol. Rev. 2010, 23, 218–234. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Daverey, A.; Sharma, A. Slow sand filtration for water and wastewater treatment—A review. Environ. Technol. Rev. 2017, 6, 47–58. [Google Scholar] [CrossRef]
- Ellis, K.V.; Wood, W.E. Slow sand filtration. Crit. Rev. Environ. Control 1985, 15, 315–354. [Google Scholar] [CrossRef]
- Guchi, E. Review on Slow Sand Filtration in Removing Microbial Contamination and Particles from Drinking Water. Am. J. Food Nutr. 2015, 3, 47–55. [Google Scholar] [CrossRef]
- Waller, P.; Yitayew, M. Agricultural Drip Irrigation. In Irrigation and Drainage Engineering; Waller, P., Yitayew, M., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 289–304. [Google Scholar]
- Kniel, K. Analysis of the Presence of Cyclospora in Waters of the Mid-Atlantic States and Evaluation of Removal and Inactivation by Filtration. Available online: https://www.centerforproducesafety.org/assets/research-database/Kniel-2019-Final-Report.pdf (accessed on 8 September 2024).
- You, Y.; Han, J.; Chiu, P.C.; Jin, Y. Removal and Inactivation of Waterborne Viruses Using Zerovalent Iron. Environ. Sci. Technol. 2005, 39, 9263–9269. [Google Scholar] [CrossRef]
- Bradley, I.; Straub, A.; Maraccini, P.; Markazi, S.; Nguyen, T.H. Iron oxide amended biosand filters for virus removal. Water Res. 2011, 45, 4501–4510. [Google Scholar] [CrossRef]
- George, D.; Mansoor Ahammed, M. Effect of zero-valent iron amendment on the performance of biosand filters. Water Supply 2019, 19, 1612–1618. [Google Scholar] [CrossRef]
- Yeager, C.; Tucker, M.; Gutierrez, A.; O’Brien, C.; Sharma, M.; Fournet, V.; Dubey, J.P.; Jenkins, M.; Kniel, K.; Rosenthal, B.M. Filters comprised of sand and Zero Valent Iron hold promise as tools to mitigate risk posed by Cyclospora cayetanensis oocysts. Food Waterborne Parasitol. 2024, 37, e00243. [Google Scholar] [CrossRef] [PubMed]
- Ingram, D.T.; Callahan, M.T.; Ferguson, S.; Hoover, D.G.; Chiu, P.C.; Shelton, D.R.; Millner, P.D.; Camp, M.J.; Patel, J.R.; Kniel, K.E.; et al. Use of zero-valent iron biosand filters to reduce Escherichia coli O157:H12 in irrigation water applied to spinach plants in a field setting. J. Appl. Microbiol. 2011, 112, 551–560. [Google Scholar] [CrossRef] [PubMed]
- Anderson-Coughlin, B.L.; Litt, P.K.; Kim, S.; Craighead, S.; Kelly, A.J.; Chiu, P.; Sharma, M.; Kniel, K.E. Zero-Valent Iron Filtration Reduces Microbial Contaminants in Irrigation Water and Transfer to Raw Agricultural Commodities. Microorganisms 2021, 9, 2009. [Google Scholar] [CrossRef]
- Marik, C.M.; Anderson-Coughlin, B.; Gartley, S.; Craighead, S.; Bradshaw, R.; Kulkarni, P.; Sharma, M.; Kniel, K.E. The efficacy of zero valent iron-sand filtration on the reduction of Escherichia coli and Listeria monocytogenes in surface water for use in irrigation. Environ. Res. 2019, 173, 33–39. [Google Scholar] [CrossRef]
- Kulkarni, P.; Raspanti, G.A.; Bui, A.Q.; Bradshaw, R.N.; Kniel, K.E.; Chiu, P.C.; Sharma, M.; Sapkota, A.; Sapkota, A.R. Zerovalent iron-sand filtration can reduce the concentration of multiple antimicrobials in conventionally treated reclaimed water. Environ. Res. 2019, 172, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Bradshaw, R.; Kulkarni, P.; Allard, S.; Chiu, P.C.; Sapkota, A.R.; Newell, M.J.; Handy, E.T.; East, C.L.; Kniel, K.E.; et al. Zero-Valent Iron-Sand Filtration Reduces Escherichia coli in Surface Water and Leafy Green Growing Environments. Front. Sustain. Food Syst. 2020, 4, 112. [Google Scholar] [CrossRef]
- Kim, S.; Eckart, K.; Sabet, S.; Chiu, P.C.; Sapkota, A.R.; Handy, E.T.; East, C.L.; Kniel, K.E.; Sharma, M. Escherichia coli Reduction in Water by Zero-Valent Iron–Sand Filtration Is Based on Water Quality Parameters. Water 2021, 13, 2702. [Google Scholar] [CrossRef]
- Shi, C.; Wei, J.; Jin, Y.; Kniel, K.E.; Chiu, P.C. Removal of viruses and bacteriophages from drinking water using zero-valent iron. Sep. Purif. Technol. 2012, 84, 72–78. [Google Scholar] [CrossRef]
- Shearer, A.E.H.; Kniel, K.E. Enhanced Removal of Norovirus Surrogates, Murine Norovirus and Tulane Virus, from Aqueous Systems by Zero-Valent Iron. J. Food Prot. 2018, 81, 1432–1438. [Google Scholar] [CrossRef]
- Dubey, J.P.; Khan, A.; Rosenthal, B.M. Life Cycle and Transmission of Cyclospora cayetanensis: Knowns and Unknowns. Microorganisms 2022, 10, 118. [Google Scholar] [CrossRef]
- Augendre, L.; Costa, D.; Escotte-Binet, S.; Aubert, D.; Villena, I.; Dumètre, A.; La Carbona, S. Surrogates of foodborne and waterborne protozoan parasites: A review. Food Waterborne Parasitol. 2023, 33, e00212. [Google Scholar] [CrossRef] [PubMed]
- Pieniazek, N.J.; Herwaldt, B.L. Reevaluating the molecular taxonomy: Is human-associated Cyclospora a mammalian Eimeria species? Emerg. Infect. Dis. 1997, 3, 381–383. [Google Scholar] [CrossRef] [PubMed]
- Reiman, D.A.; Schmidt, T.M.; Gajadhar, A.; Sogin, M.; Cross, J.; Yoder, K.; Sethabutr, O.; Echeverria, P. Molecular Phylogenetic Analysis of Cyclospora, the Human Intestinal Pathogen, Suggests that It Is Closely Related to Eimeria Species. J. Infect. Dis. 1996, 173, 440–445. [Google Scholar] [CrossRef] [PubMed]
- Tucker, M.S.; Khan, A.; Jenkins, M.C.; Dubey, J.P.; Rosenthal, B.M. Hastening Progress in Cyclospora Requires Studying Eimeria Surrogates. Microorganisms 2022, 10, 1977. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.B.; Lee, E.-H. Coccidial Contamination of Raspberries: Mock Contamination with Eimeria acervulina as a Model for Decontamination Treatment Studies. J. Food Prot. 2001, 64, 1854–1857. [Google Scholar] [CrossRef]
- Kniel, K.E.; Shearer, A.E.H.; Cascarino, J.L.; Wilkins, G.C.; Jenkins, M.C. High Hydrostatic Pressure and UV Light Treatment of Produce Contaminated with Eimeria acervulina as a Cyclospora cayetanensis Surrogate. J. Food Prot. 2007, 70, 2837–2842. [Google Scholar] [CrossRef]
- Baumann, A.A.; Myers, A.K.; Khajeh-Kazerooni, N.; Rosenthal, B.; Jenkins, M.; O’Brien, C.; Fuller, L.; Morgan, M.; Lenaghan, S.C. Aqueous Ozone Exposure Inhibits Sporulation in the Cyclospora cayetanensis Surrogate Eimeria acervulina. J. Food Prot. 2024, 87, 100260. [Google Scholar] [CrossRef]
- Conway, D.P.; McKenzie, M.E. Introduction to Coccidiosis. In Poultry Coccidiosis: Diagnostic and Testing Procedures, 3rd ed.; Blackwell Publishing: Ames, IA, USA, 2007; pp. 7–16. [Google Scholar]
- CDC. Healthy Housing Reference Manual. Available online: https://stacks.cdc.gov/view/cdc/21748 (accessed on 23 September 2024).
- Goyal, M.R. Micro Irrigation: Filtration Systems. In Sustainable Micro Irrigation: Principles and Practices, 1st ed.; Goyal, M.R., Ed.; Apple Academic Press: New York, NY, USA, 2014. [Google Scholar]
- Ryley, J.F.; Meade, R.; Hazelhurst, J.; Robinson, T.E. Methods in coccidiosis research: Separation of oocysts from faeces. Parasitology 1976, 73, 311–326. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B (Methodol.) 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, M.; He, L.; Li, M.; Zhang, X.; Liu, F.; Tong, M. Bacterial capture and inactivation in sand filtration systems with addition of zero-valent iron as permeable layer under both slow and fast filtration conditions. J. Hazard. Mater. 2022, 436, 129122. [Google Scholar] [CrossRef]
- Lu, P.; Amburgey, J.E. A pilot-scale study of Cryptosporidium-sized microsphere removals from swimming pools via sand filtration. J. Water Health 2015, 14, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Wood, M.; Simmonds, L.; MacAdam, J.; Hassard, F.; Jarvis, P.; Chalmers, R.M. Role of filtration in managing the risk from Cryptosporidium in commercial swimming pools—A review. J. Water Health 2019, 17, 357–370. [Google Scholar] [CrossRef] [PubMed]
- Murphy, J.L.; Hlavsa, M.C.; Carter, B.C.; Miller, C.; Jothikumar, N.; Gerth, T.R.; Beach, M.J.; Hill, V.R. Pool water quality and prevalence of microbes in filter backwash from metro-Atlanta swimming pools. J. Water Health 2017, 16, 87–92. [Google Scholar] [CrossRef]
- Karanis, P.; Schoenen, D.; Seitz, H.M. Giardia and Cryptosporidium in backwash water from rapid sand filters used for drinking water production. Zentralblatt Bakteriol. 1996, 284, 107–114. [Google Scholar] [CrossRef]
- Dandie, C.E.; Ogunniyi, A.D.; Ferro, S.; Hall, B.; Drigo, B.; Chow, C.W.K.; Venter, H.; Myers, B.; Deo, P.; Donner, E.; et al. Disinfection options for irrigation water: Reducing the risk of fresh produce contamination with human pathogens. Crit. Rev. Environ. Sci. Technol. 2020, 50, 2144–2174. [Google Scholar] [CrossRef]
- Dumètre, A.; Aubert, D.; Puech, P.-H.; Hohweyer, J.; Azas, N.; Villena, I. Interaction Forces Drive the Environmental Transmission of Pathogenic Protozoa. Appl. Environ. Microbiol. 2012, 78, 905–912. [Google Scholar] [CrossRef]
- Kuznar, Z.A.; Elimelech, M. Role of Surface Proteins in the Deposition Kinetics of Cryptosporidium parvum Oocysts. Langmuir 2005, 21, 710–716. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.N.; Walker, S.L.; Bradford, S.A. Coupled factors influencing the transport and retention of Cryptosporidium parvum oocysts in saturated porous media. Water Res. 2010, 44, 1213–1223. [Google Scholar] [CrossRef]
- Hsu, B.-M.; Huang, C.; Pan, J.R. Filtration behaviors of giardia and cryptosporidium—Ionic strength and pH effects. Water Res. 2001, 35, 3777–3782. [Google Scholar] [CrossRef]
- Harrington, G.W.; Xagoraraki, I.; Assavasilavasukul, P.; Standridge, J.H. Effect of Filtration Conditions on Removal of Emerging waterborne pathogens. J. AWWA 2003, 95, 95–104. [Google Scholar] [CrossRef]
- Tufenkji, N.; Dixon, D.R.; Considine, R.; Drummond, C.J. Multi-scale Cryptosporidium/sand interactions in water treatment. Water Res. 2006, 40, 3315–3331. [Google Scholar] [CrossRef] [PubMed]
- Weber-Shirk, M.L.; Dick, R.I. Physical—Chemical mechanisms in slow sand filters. J. AWWA 1997, 89, 87–100. [Google Scholar] [CrossRef]
- Yildiz, B.S. Performance assessment of modified biosand filter with an extra disinfection layer. J. Water Supply Res. Technol.-Aqua 2016, 65, 266–276. [Google Scholar] [CrossRef]
- Winoa. Zero Valent Iron (ZVI). Available online: https://www.winoa.com/wp-content/uploads/2023/08/Zero-valent-iron-BRO-W-abrasives-en-UNITED-STATES-2023-2.pdf (accessed on 12 September 2024).
- Bradford, S.A.; Bettahar, M. Straining, Attachment, and Detachment of Cryptosporidium Oocysts in Saturated Porous Media. J. Environ. Qual. 2005, 34, 469–478. [Google Scholar] [CrossRef]
Fraction | Volume (mL) | 100% Sand | 50% ZVI/50% Sand |
---|---|---|---|
1 a | 100 | 0.05 ± 0.03 a | 0.004 ± 0.006 a |
2 | 200 | 28.84 ± 5.16 a | 0.06 ± 0.08 b |
3 | 200 | 11.94 ± 3.14 a | 0.03 ± 0.03 b |
4 | 200 | 2.38 ± 0.23 a | 0.01 ± 0.02 b |
5 | 200 | 0.91 ± 0.20 a | 0.003 ± 0.003 b |
6 | 200 | 0.60 ± 0.27 a | 0.01 ± 0.02 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutierrez, A.; Tucker, M.S.; Yeager, C.; Fournet, V.; Jenkins, M.C.; Dubey, J.P.; Kniel, K.E.; Rosenthal, B.M.; Sharma, M. Zero-Valent Iron and Sand Filtration Reduces Levels of Cyclospora cayetanensis Surrogates, Eimeria tenella and Eimeria acervulina, in Water. Microorganisms 2024, 12, 2344. https://doi.org/10.3390/microorganisms12112344
Gutierrez A, Tucker MS, Yeager C, Fournet V, Jenkins MC, Dubey JP, Kniel KE, Rosenthal BM, Sharma M. Zero-Valent Iron and Sand Filtration Reduces Levels of Cyclospora cayetanensis Surrogates, Eimeria tenella and Eimeria acervulina, in Water. Microorganisms. 2024; 12(11):2344. https://doi.org/10.3390/microorganisms12112344
Chicago/Turabian StyleGutierrez, Alan, Matthew S. Tucker, Christina Yeager, Valsin Fournet, Mark C. Jenkins, Jitender P. Dubey, Kalmia E. Kniel, Benjamin M. Rosenthal, and Manan Sharma. 2024. "Zero-Valent Iron and Sand Filtration Reduces Levels of Cyclospora cayetanensis Surrogates, Eimeria tenella and Eimeria acervulina, in Water" Microorganisms 12, no. 11: 2344. https://doi.org/10.3390/microorganisms12112344
APA StyleGutierrez, A., Tucker, M. S., Yeager, C., Fournet, V., Jenkins, M. C., Dubey, J. P., Kniel, K. E., Rosenthal, B. M., & Sharma, M. (2024). Zero-Valent Iron and Sand Filtration Reduces Levels of Cyclospora cayetanensis Surrogates, Eimeria tenella and Eimeria acervulina, in Water. Microorganisms, 12(11), 2344. https://doi.org/10.3390/microorganisms12112344