Exploring Factors Driving the Uneven Distribution of Aspergillus terreus in an Austrian Hotspot Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Scheme and Sampling Area
2.2. Soil Sampling
2.3. Soil Properties
2.4. Soil Extraction Plating Method
2.5. Soil Immersion Tube Method
2.6. DNA Extraction and qPCR
2.7. Publicly Available Data for Tyrol
2.8. Antifungal Susceptibility Testing
2.9. Data Analysis and Statistics
3. Results
3.1. Distribution of A. terreus Across Tyrol
3.2. Comparison of Soil Immersion Tube Method and A. terreus Specific qPCR
3.3. Physicochemical Soil Parameters
3.4. Analysis of Publicly Available Data and Factors Influencing the Distribution Pattern of A. terreus
3.5. Distribution of A. terreus Across Austria
3.6. Antifungal Susceptibility Testing
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fernandez, M.S.; Rojas, F.D.; Cattana, M.E.; Sosa Mde, L.; Mangiaterra, M.L.; Giusiano, G.E. Aspergillus terreus complex: An emergent opportunistic agent of Onychomycosis. Mycoses 2013, 56, 477–481. [Google Scholar] [CrossRef] [PubMed]
- Fedorova, N.D.; Khaldi, N.; Joardar, V.S.; Maiti, R.; Amedeo, P.; Anderson, M.J.; Crabtree, J.; Silva, J.C.; Badger, J.H.; Albarraq, A.; et al. Genomic islands in the pathogenic filamentous fungus Aspergillus fumigatus. PLoS Genet. 2008, 4, e1000046. [Google Scholar] [CrossRef] [PubMed]
- Slesiona, S.; Gressler, M.; Mihlan, M.; Zaehle, C.; Schaller, M.; Barz, D.; Hube, B.; Jacobsen, I.D.; Brock, M. Persistence versus escape: Aspergillus terreus and Aspergillus fumigatus employ different strategies during interactions with macrophages. PLoS ONE 2012, 7, e31223. [Google Scholar] [CrossRef]
- Hachem, R.; Gomes, M.Z.; El Helou, G.; El Zakhem, A.; Kassis, C.; Ramos, E.; Jiang, Y.; Chaftari, A.M.; Raad, I.I. Invasive aspergillosis caused by Aspergillus terreus: An emerging opportunistic infection with poor outcome independent of azole therapy. J. Antimicrob. Chemother. 2014, 69, 3148–3155. [Google Scholar] [CrossRef]
- Krishnan, S.; Manavathu, E.K.; Chandrasekar, P.H. Aspergillus flavus: An emerging non-fumigatus Aspergillus species of significance. Mycoses 2009, 52, 206–222. [Google Scholar] [CrossRef] [PubMed]
- Vahedi Shahandashti, R.; Lass-Florl, C. Antifungal Resistance in Aspergillus terreus: A Current Scenario. Fungal Genet. Biol. 2019, 131, 103247. [Google Scholar] [CrossRef]
- Balajee, S.A. Aspergillus terreus complex. Med. Mycol. 2009, 47 (Suppl. S1), S42–S46. [Google Scholar] [CrossRef]
- Lass-Florl, C.; Grif, K.; Kontoyiannis, D.P. Molecular typing of Aspergillus terreus isolates collected in Houston, Texas, and Innsbruck, Austria: Evidence of great genetic diversity. J. Clin. Microbiol. 2007, 45, 2686–2690. [Google Scholar] [CrossRef]
- Lackner, M.; Coassin, S.; Haun, M.; Binder, U.; Kronenberg, F.; Haas, H.; Jank, M.; Maurer, E.; Meis, J.F.; Hagen, F.; et al. Geographically Predominant Genotypes of Aspergillus terreus Species Complex in Austria: S Microsatellite Typing Study. Clin. Microbiol. Infect. 2016, 22, 270–276. [Google Scholar] [CrossRef]
- Dietl, A.-M.; Vahedi-Shahandashti, R.; Kandelbauer, C.; Kraak, B.; Lackner, M.; Houbraken, J.; Lass-Flörl, C. The Environmental Spread of Aspergillus terreus in Tyrol, Austria. Microorganisms 2021, 9, 539. [Google Scholar] [CrossRef]
- Blum, G.; Perkhofer, S.; Grif, K.; Mayr, A.; Kropshofer, G.; Nachbaur, D.; Kafka-Ritsch, R.; Dierich, M.P.; Lass-Florl, C. A 1-year Aspergillus terreus surveillance study at the University Hospital of Innsbruck: Molecular typing of environmental and clinical isolates. Clin. Microbiol. Infect. 2008, 14, 1146–1151. [Google Scholar] [CrossRef] [PubMed]
- Steixner, S.; Vahedi Shahandashti, R.; Siller, A.; Ulmer, H.; Reider, N.; Schennach, H.; Lass-Florl, C. Aspergillus terreus Antibody Serosurveillance in Tyrol: A Population-Based, Cross-Sectional Study of a Healthy Population. J. Fungi 2023, 9, 1008. [Google Scholar] [CrossRef] [PubMed]
- Vahedi-Shahandashti, R.; Houbraken, J.; Birch, M.; Lass-Florl, C. Novel Antifungals and Aspergillus Section Terrei with Potpourri Susceptibility Profiles to Conventional Antifungals. J. Fungi 2023, 9, 649. [Google Scholar] [CrossRef]
- Lass-Florl, C.; Griff, K.; Mayr, A.; Petzer, A.; Gastl, G.; Bonatti, H.; Freund, M.; Kropshofer, G.; Dierich, M.P.; Nachbaur, D. Epidemiology and outcome of infections due to Aspergillus terreus: 10-year single centre experience. Br. J. Haematol. 2005, 131, 201–207. [Google Scholar] [CrossRef]
- Blum, G.; Perkhofer, S.; Haas, H.; Schrettl, M.; Wurzner, R.; Dierich, M.P.; Lass-Florl, C. Potential Basis for Amphotericin B Resistance in Aspergillus terreus. Antimicrob. Agents Chemother. 2008, 52, 1553–1555. [Google Scholar] [CrossRef]
- Zoran, T.; Sartori, B.; Sappl, L.; Aigner, M.; Sanchez-Reus, F.; Rezusta, A.; Chowdhary, A.; Taj-Aldeen, S.J.; Arendrup, M.C.; Oliveri, S.; et al. Azole-Resistance in Aspergillus terreus and Related Species: An Emerging Problem or a Rare Phenomenon? Front. Microbiol. 2018, 9, 516. [Google Scholar] [CrossRef] [PubMed]
- Arendrup, M.C.; Jensen, R.H.; Grif, K.; Skov, M.; Pressler, T.; Johansen, H.K.; Lass-Florl, C. In vivo emergence of Aspergillus terreus with reduced azole susceptibility and a Cyp51a M217I alteration. J. Infect. Dis. 2012, 206, 981–985. [Google Scholar] [CrossRef]
- Herbrecht, R.; Denning, D.W.; Patterson, T.F.; Bennett, J.E.; Greene, R.E.; Oestmann, J.W.; Kern, W.V.; Marr, K.A.; Ribaud, P.; Lortholary, O.; et al. Voriconazole versus amphotericin B for primary therapy of invasive aspergillosis. N. Engl. J. Med. 2002, 347, 408–415. [Google Scholar] [CrossRef]
- Chesters, C.G.C. A method of isolating soil fungi. Trans. Br. Mycol. Soc. 1940, 24, 352–355. [Google Scholar] [CrossRef]
- European Committee on Antimicrobial Susceptibility Testing. EUCAST Method for Susceptibility Testing of Moulds. Available online: https://www.eucast.org/astoffungi/methodsinantifungalsusceptibilitytesting/ast_of_moulds (accessed on 11 July 2024).
- Land Tirol-data.tirol.gv.at eGrundkarte Tirol. Available online: http://wmts.kartetirol.at/wmts (accessed on 7 November 2024).
- Bundesforschungs- und Ausbildungszentrum für Wald, N.u.L.B. “eBOD”—Digitale Bodenkarte Österreichs. Available online: https://bodenkarte.at (accessed on 20 June 2024).
- Austria, G. INCA Stundendaten. Available online: https://data.hub.geosphere.at/dataset/inca-v1-1h-1km (accessed on 18 December 2024).
- Statistics Austria. STATAtlas. Available online: https://www.statistik.at/atlas/ (accessed on 20 December 2024).
- European Committee on Antimicrobial Susceptibility Testing. Overview of Antifungal ECOFFs and Clinical Breakpoints for Yeasts, Moulds and Dermatophytes Using the EUCAST E.Def 7.4, E.Def 9.4 and E.Def 11.0 Procedures. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/AFST/Clinical_breakpoints/BP_ECOFF_v5.0.pdf (accessed on 8 February 2025).
- Guinea, J.; Pelaez, T.; Alcala, L.; Bouza, E. Outdoor Environmental Levels of Aspergillus spp. Conidia Over a Wide Geographical Area. Med. Mycol. 2006, 44, 349–356. [Google Scholar] [CrossRef]
- Ebner, M.R.; Haselwandter, K.; Frank, A. Seasonal Fluctuations of Airborne Fungal Allergens. Mycol. Res. 1989, 92, 170–176. [Google Scholar] [CrossRef]
- Burke, D.J. Effects of annual and interannual environmental variability on soil fungi associated with an old-growth, temperate hardwood forest. FEMS Microbiol. Ecol. 2015, 91, fiv053. [Google Scholar] [CrossRef]
- Voriskova, J.; Brabcova, V.; Cajthaml, T.; Baldrian, P. Seasonal dynamics of fungal communities in a temperate oak forest soil. New Phytol. 2014, 201, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Yuan, Y.; Zhang, X.; Huhe; Cheng, Y.; Borjigin, S. Comparison of the Responses of Soil Fungal Community to Straw, Inorganic Fertilizer, and Compost in a Farmland in the Loess Plateau. Microbiol. Spectr. 2022, 10, e02230-21. [Google Scholar] [CrossRef] [PubMed]
- Pontiroli, A.; Travis, E.R.; Sweeney, F.P.; Porter, D.; Gaze, W.H.; Mason, S.; Hibberd, V.; Holden, J.; Courtenay, O.; Wellington, E.M. Pathogen quantitation in complex matrices: A multi-operator comparison of DNA extraction methods with a novel assessment of PCR inhibition. PLoS ONE 2011, 6, e17916. [Google Scholar] [CrossRef]
- Brandt, J.; Albertsen, M. Investigation of Detection Limits and the Influence of DNA Extraction and Primer Choice on the Observed Microbial Communities in Drinking Water Samples Using 16S rRNA Gene Amplicon Sequencing. Front. Microbiol. 2018, 9, 2140. [Google Scholar] [CrossRef]
- Khan, S.R.; Kumar, J.I.N.; Kumar, R.N.; Patel, J.G. Physicochemical properties, heavy metal content and fungal characterization of an old gasoline-contaminated soil site in Anand, Gujarat, India. Environ. Exp. Biol. 2013, 11, 137–143. [Google Scholar]
- Rajitha, P.B.; Naik, P. Optimization of Growth Medium and Physicochemical Parameters for High-Yield Biomass Production and Active Metabolites from Aspergillus terreus. Res. J. Pharm. Technol. 2021, 14, 2924–2930. [Google Scholar] [CrossRef]
- Cao, P.-L.; Lu, M.; Tian, K.; Lü, S.-T.; Yang, H.-S.; Yao, X.; Li, L.-P.; Yue, H.-T. Soil fungi distribution patterns under different levels of disturbance in the wetland of Napahai Plateau. Chin. J. Plant Ecol. 2014, 38, 1166–1173. [Google Scholar] [CrossRef]
- Pang, K.L.; Chiang, M.W.; Guo, S.Y.; Shih, C.Y.; Dahms, H.U.; Hwang, J.S.; Cha, H.J. Growth study under combined effects of temperature, pH and salinity and transcriptome analysis revealed adaptations of Aspergillus terreus NTOU4989 to the extreme conditions at Kueishan Island Hydrothermal Vent Field, Taiwan. PLoS ONE 2020, 15, e0233621. [Google Scholar] [CrossRef]
- Gressler, M.; Meyer, F.; Heine, D.; Hortschansky, P.; Hertweck, C.; Brock, M. Phytotoxin production in Aspergillus terreus is regulated by independent environmental signals. Elife 2015, 4, e07861. [Google Scholar] [CrossRef]
- Akilandeswari, P.; Pradeep, B.V. Aspergillus Terreus Kmbf1501 a Potential Pigment Producer under Submerged Fermentation. Int. J. Pharm. Pharm. Sci. 2017, 9, 38–43. [Google Scholar] [CrossRef]
- Rousk, J.; Baath, E. Growth of Saprotrophic Fungi and Bacteria in Soil. FEMS Microbiol. Ecol. 2011, 78, 17–30. [Google Scholar] [CrossRef]
- Zablotowicz, R.M.; Abbas, H.K.; Locke, M.A. Population ecology of Aspergillus flavus associated with Mississippi Delta soils. Food Addit. Contam. 2007, 24, 1102–1108. [Google Scholar] [CrossRef]
- Grishkan, I.; Beharav, A.; Kirzhner, V.; Nevo, E. Adaptive spatiotemporal distribution of soil microfungi in ‘Evolution Canyon’ III, Nahal Shaharut, extreme southern Negev Desert, Israel. Biol. J. Linn. Soc. 2007, 90, 263–277. [Google Scholar] [CrossRef]
- Pikuła, D. Environmental aspects of managing the organic matter in agriculture. Econ. Reg. Stud. 2015, 8, 98–112. [Google Scholar]
- Wu, D.; Zhang, M.; Peng, M.; Sui, X.; Li, W.; Sun, G. Variations in Soil Functional Fungal Community Structure Associated With Pure and Mixed Plantations in Typical Temperate Forests of China. Front. Microbiol. 2019, 10, 1636. [Google Scholar] [CrossRef]
- Ni, Y.; Yang, T.; Zhang, K.; Shen, C.; Chu, H. Fungal Communities Along a Small-Scale Elevational Gradient in an Alpine Tundra Are Determined by Soil Carbon Nitrogen Ratios. Front. Microbiol. 2018, 9, 1815. [Google Scholar] [CrossRef]
- Garbeva, P.; van Veen, J.A.; van Elsas, J.D. Microbial diversity in soil: Selection microbial populations by plant and soil type and implications for disease suppressiveness. Annu. Rev. Phytopathol. 2004, 42, 243–270. [Google Scholar] [CrossRef]
- Custodio, V.; Gonin, M.; Stabl, G.; Bakhoum, N.; Oliveira, M.M.; Gutjahr, C.; Castrillo, G. Sculpting the soil microbiota. Plant J. 2022, 109, 508–522. [Google Scholar] [CrossRef]
- Nazir, R.; Warmink, J.A.; Boersma, H.; van Elsas, J.D. Mechanisms that promote bacterial fitness in fungal-affected soil microhabitats. FEMS Microbiol. Ecol. 2010, 71, 169–185. [Google Scholar] [CrossRef]
- Erlandson, S.R.; Savage, J.A.; Cavender-Bares, J.M.; Peay, K.G. Soil moisture and chemistry influence diversity of ectomycorrhizal fungal communities associating with willow along an hydrologic gradient. FEMS Microbiol. Ecol. 2016, 92, fiv148. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Y.; Wang, Y.; Zhang, Y.; Shen, Y.; He, X.; Xiao, C. A Natural Moisture Gradient Affects Soil Fungal Communities on the South Shore of Hulun Lake, Inner Mongolia, China. J. Fungi 2023, 9, 549. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, P.U.; Bennett, A.E.; Tack, A.J.M.; Singh, B. The impact of elevated temperature and drought on the ecology and evolution of plant–soil microbe interactions. J. Ecol. 2019, 108, 337–352. [Google Scholar] [CrossRef]
- Tedersoo, L.; Bahram, M.; Polme, S.; Koljalg, U.; Yorou, N.S.; Wijesundera, R.; Villarreal Ruiz, L.; Vasco-Palacios, A.M.; Thu, P.Q.; Suija, A.; et al. Fungal biogeography. Global diversity and geography of soil fungi. Science 2014, 346, 1256688. [Google Scholar] [CrossRef]
- Espinel-Ingroff, A.; Johnson, E.; Hockey, H.; Troke, P. Activities of voriconazole, itraconazole and amphotericin B in vitro against 590 moulds from 323 patients in the voriconazole Phase III clinical studies. J. Antimicrob. Chemother. 2008, 61, 616–620. [Google Scholar] [CrossRef]
- Baddley, J.W.; Marr, K.A.; Andes, D.R.; Walsh, T.J.; Kauffman, C.A.; Kontoyiannis, D.P.; Ito, J.I.; Balajee, S.A.; Pappas, P.G.; Moser, S.A. Patterns of susceptibility of Aspergillus isolates recovered from patients enrolled in the Transplant-Associated Infection Surveillance Network. J. Clin. Microbiol. 2009, 47, 3271–3275. [Google Scholar] [CrossRef] [PubMed]
- Blum, G.; Hortnagl, C.; Jukic, E.; Erbeznik, T.; Pumpel, T.; Dietrich, H.; Nagl, M.; Speth, C.; Rambach, G.; Lass-Florl, C. New insight into amphotericin B resistance in Aspergillus terreus. Antimicrob. Agents Chemother. 2013, 57, 1583–1588. [Google Scholar] [CrossRef] [PubMed]
- Blatzer, M.; Blum, G.; Jukic, E.; Posch, W.; Gruber, P.; Nagl, M.; Binder, U.; Maurer, E.; Sarg, B.; Lindner, H.; et al. Blocking Hsp70 enhances the efficiency of amphotericin B treatment against resistant Aspergillus terreus strains. Antimicrob. Agents Chemother. 2015, 59, 3778–3788. [Google Scholar] [CrossRef]
- Vahedi-Shahandashti, R.; Dietl, A.M.; Binder, U.; Nagl, M.; Wurzner, R.; Lass-Florl, C. Aspergillus terreus and the Interplay with Amphotericin B: From Resistance to Tolerance? Antimicrob. Agents Chemother. 2022, 66, e02274-21. [Google Scholar] [CrossRef]
- Eisele, D.; Blatzer, M.; Dietl, A.M.; Binder, U.; Muller, C.; Hagen, F.; Sae-Ong, T.; Schauble, S.; Panagiotou, G.; Vahedi-Shahandashti, R.; et al. Aspergillus terreus sectorization: A morphological phenomenon shedding light on amphotericin B resistance mechanism. mBio 2025, 16, e0392624. [Google Scholar] [CrossRef]
- Espinel-Ingroff, A.; Diekema, D.J.; Fothergill, A.; Johnson, E.; Pelaez, T.; Pfaller, M.A.; Rinaldi, M.G.; Canton, E.; Turnidge, J. Wild-type MIC distributions and epidemiological cutoff values for the triazoles and six Aspergillus spp. for the CLSI broth microdilution method (M38-A2 document). J. Clin. Microbiol. 2010, 48, 3251–3257. [Google Scholar] [CrossRef]
- Canete-Gibas, C.F.; Patterson, H.P.; Sanders, C.J.; Mele, J.; Fan, H.; David, M.; Wiederhold, N.P. Species Distribution and Antifungal Susceptibilities of Aspergillus Section Terrei Isolates in Clinical Samples from the United States and Description of Aspergillus pseudoalabamensis sp. nov. Pathogens 2023, 12, 579. [Google Scholar] [CrossRef] [PubMed]
- Guinea, J.; Pelaez, T.; Recio, S.; Torres-Narbona, M.; Bouza, E. In vitro antifungal activities of isavuconazole (BAL4815), voriconazole, and fluconazole against 1,007 isolates of zygomycete, Candida, Aspergillus, Fusarium, and Scedosporium species. Antimicrob. Agents Chemother. 2008, 52, 1396–1400. [Google Scholar] [CrossRef]
- Espinel-Ingroff, A.; Chowdhary, A.; Gonzalez, G.M.; Lass-Florl, C.; Martin-Mazuelos, E.; Meis, J.; Pelaez, T.; Pfaller, M.A.; Turnidge, J. Multicenter study of isavuconazole MIC distributions and epidemiological cutoff values for Aspergillus spp. for the CLSI M38-A2 broth microdilution method. Antimicrob. Agents Chemother. 2013, 57, 3823–3828. [Google Scholar] [CrossRef]
- Jorgensen, K.M.; Astvad, K.M.T.; Hare, R.K.; Arendrup, M.C. EUCAST Susceptibility Testing of Isavuconazole: MIC Data for Contemporary Clinical Mold and Yeast Isolates. Antimicrob. Agents Chemother. 2019, 63, e00073-19. [Google Scholar] [CrossRef] [PubMed]
- Berger, S.; El Chazli, Y.; Babu, A.F.; Coste, A.T. Azole Resistance in Aspergillus fumigatus: A Consequence of Antifungal Use in Agriculture? Front. Microbiol. 2017, 8, 1024. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, L.N.; Heick, T.M. Azole Use in Agriculture, Horticulture, and Wood Preservation—Is It Indispensable? Front. Cell Infect. Microbiol. 2021, 11, 730297. [Google Scholar] [CrossRef]
- Chowdhary, A.; Kathuria, S.; Xu, J.; Sharma, C.; Sundar, G.; Singh, P.K.; Gaur, S.N.; Hagen, F.; Klaassen, C.H.; Meis, J.F. Clonal expansion and emergence of environmental multiple-triazole-resistant Aspergillus fumigatus strains carrying the TR34/L98H mutations in the cyp51A gene in India. PLoS ONE 2012, 7, e52871. [Google Scholar] [CrossRef]
- Rivelli Zea, S.M.; Toyotome, T. Azole-resistant Aspergillus fumigatus as an emerging worldwide pathogen. Microbiol. Immunol. 2022, 66, 135–144. [Google Scholar] [CrossRef]
- Hagiwara, D.; Watanabe, A.; Kamei, K.; Goldman, G.H. Epidemiological and Genomic Landscape of Azole Resistance Mechanisms in Aspergillus Fungi. Front. Microbiol. 2016, 7, 1382. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schobert, J.; Illmer, P.; Vahedi-Shahandashti, R.; Lass-Flörl, C. Exploring Factors Driving the Uneven Distribution of Aspergillus terreus in an Austrian Hotspot Region. Microorganisms 2025, 13, 1218. https://doi.org/10.3390/microorganisms13061218
Schobert J, Illmer P, Vahedi-Shahandashti R, Lass-Flörl C. Exploring Factors Driving the Uneven Distribution of Aspergillus terreus in an Austrian Hotspot Region. Microorganisms. 2025; 13(6):1218. https://doi.org/10.3390/microorganisms13061218
Chicago/Turabian StyleSchobert, Jan, Paul Illmer, Roya Vahedi-Shahandashti, and Cornelia Lass-Flörl. 2025. "Exploring Factors Driving the Uneven Distribution of Aspergillus terreus in an Austrian Hotspot Region" Microorganisms 13, no. 6: 1218. https://doi.org/10.3390/microorganisms13061218
APA StyleSchobert, J., Illmer, P., Vahedi-Shahandashti, R., & Lass-Flörl, C. (2025). Exploring Factors Driving the Uneven Distribution of Aspergillus terreus in an Austrian Hotspot Region. Microorganisms, 13(6), 1218. https://doi.org/10.3390/microorganisms13061218