Gut Microbiome Development in Rock Pigeons: Effects of Food Restriction Early in Life
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Sample Size
2.2. Formation of Experimental Clutches
2.3. Collection of First Feces and Formation of Experimental Broods
2.4. Food Treatment
2.5. Nestling Development and Cloacal Swabs
2.6. DNA Isolation and 16s rRNA Gene Amplicon Sequencing
2.7. Sequence Data Processing
2.8. Statistical Analyses
2.8.1. Effects of Food Restriction on Nestling Growth
2.8.2. Contamination and Rarefication
2.8.3. Effects of Food Restriction on Alpha Diversity
2.8.4. Effects of Food Restriction on Community Composition
2.8.5. Effects of Food Restriction on Taxonomic Composition
2.8.6. Effects of Food Restriction on Potential Pathogens
3. Results
3.1. Effects of Food Restriction on Nestling Development
3.2. Food Restriction Affects Alpha Diversity
3.3. Food Restriction Affects Community Composition
3.4. Effects of Food Restriction on the Taxonomic Composition
3.5. Effects of Food Restriction on Potential Pathogens
4. Discussion
4.1. Effects of Food Restriction on Alpha and Beta Diversity
4.2. Effects of Food Restriction on Taxon Composition Development
4.3. Potential Implications for Avian Ecological Studies
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GM | gut microbiome |
References
- Gebhardt-Henrich, S.; Richner, H. Causes of Growth Variation and Its Consequences for Fitness. In Avian Growth and Development. Evolution Within the Altricial-Precocial Spectrum; Oxford University Press: New York, NY, USA, 1998. [Google Scholar]
- de Zwaan, D.R.; Drake, A.; Greenwood, J.L.; Martin, K. Timing and Intensity of Weather Events Shape Nestling Development Strategies in Three Alpine Breeding Songbirds. Front. Ecol. Evol. 2020, 8, 570034. [Google Scholar] [CrossRef]
- Ardia, D.R. The Effects of Nestbox Thermal Environment on Fledging Success and Haematocrit in Tree Swallows. Avian Biol. Res. 2013, 6, 99–103. [Google Scholar] [CrossRef]
- Cornell, A.; Williams, T.D. Variation in Developmental Trajectories of Physiological and Somatic Traits in a Common Songbird Approaching Fledging. J. Exp. Biol. 2017, 220, 4060–4067. [Google Scholar] [CrossRef]
- Ricklefs, R.E.; Starck, J.M.; Konarzewski, M. Internal Constraints on Growth in Birds. In Avian Growth and Development; Starck, J.M., Ricklefs, R.E., Eds.; Oxford University Press: New York, NY, USA, 1998; ISBN 978-0-19-510608-4. [Google Scholar]
- Macke, E.; Tasiemski, A.; Massol, F.; Callens, M.; Decaestecker, E. Life History and Eco-Evolutionary Dynamics in Light of the Gut Microbiota. Oikos 2017, 126, 508–531. [Google Scholar] [CrossRef]
- Krishnamurthy, H.K.; Pereira, M.; Bosco, J.; George, J.; Jayaraman, V.; Krishna, K.; Wang, T.; Bei, K.; Rajasekaran, J.J. Gut Commensals and Their Metabolites in Health and Disease. Front. Microbiol. 2023, 14, 1244293. [Google Scholar] [CrossRef]
- Kabat, A.M.; Srinivasan, N.; Maloy, K.J. Modulation of Immune Development and Function by Intestinal Microbiota. Trends Immunol. 2014, 35, 507–517. [Google Scholar] [CrossRef]
- Gomez de Agüero, M.; Ganal-Vonarburg, S.C.; Fuhrer, T.; Rupp, S.; Uchimura, Y.; Li, H.; Steinert, A.; Heikenwalder, M.; Hapfelmeier, S.; Sauer, U.; et al. The Maternal Microbiota Drives Early Postnatal Innate Immune Development. Science 2016, 351, 1296–1302. [Google Scholar] [CrossRef]
- Smith, C.J. Emerging Roles for Microglia and Microbiota in the Development of Social Circuits. Brain Behav. Immun. Health 2021, 16, 100296. [Google Scholar] [CrossRef]
- Bruckner, J.J.; Stednitz, S.J.; Grice, M.Z.; Zaidan, D.; Massaquoi, M.S.; Larsch, J.; Tallafuss, A.; Guillemin, K.; Washbourne, P.; Eisen, J.S. The Microbiota Promotes Social Behavior by Modulating Microglial Remodeling of Forebrain Neurons. PLoS Biol. 2022, 20, e3001838. [Google Scholar] [CrossRef]
- Ding, J.; Dai, R.; Yang, L.; He, C.; Xu, K.; Liu, S.; Zhao, W.; Xiao, L.; Luo, L.; Zhang, Y.; et al. Inheritance and Establishment of Gut Microbiota in Chickens. Front. Microbiol. 2017, 8, 1976. [Google Scholar] [CrossRef]
- Dietz, M.W.; Salles, J.F.; Hsu, B.-Y.; Dijkstra, C.; Groothuis, T.G.G.; van der Velde, M.; Verkuil, Y.I.; Tieleman, B.I. Prenatal Transfer of Gut Bacteria in Rock Pigeon. Microorganisms 2020, 8, 61. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Wang, Z.; Jian, Y.; Zhang, L.; Zhou, C.; Liu, L.; Liu, H. Establishment and Maturation of Gut Microbiota in White King Pigeon Squabs: Role of Pigeon Milk. Front. Microbiol. 2025, 15, 1481529. [Google Scholar] [CrossRef]
- Kohl, K.D. Diversity and Function of the Avian Gut Microbiota. J. Comp. Physiol. B 2012, 182, 591–602. [Google Scholar] [CrossRef]
- Milani, C.; Duranti, S.; Bottacini, F.; Casey, E.; Turroni, F.; Mahony, J.; Belzer, C.; Delgado Palacio, S.; Arboleya Montes, S.; Mancabelli, L.; et al. The First Microbial Colonizers of the Human Gut: Composition, Activities, and Health Implications of the Infant Gut Microbiota. Microbiol. Mol. Biol. Rev. 2017, 81, e00036-17. [Google Scholar] [CrossRef] [PubMed]
- Reyman, M.; van Houten, M.A.; van Baarle, D.; Bosch, A.A.T.M.; Man, W.H.; Chu, M.L.J.N.; Arp, K.; Watson, R.L.; Sanders, E.A.M.; Fuentes, S.; et al. Impact of Delivery Mode-Associated Gut Microbiota Dynamics on Health in the First Year of Life. Nat. Commun. 2019, 10, 4997. [Google Scholar] [CrossRef]
- Grond, K.; Lanctot, R.B.; Jumpponen, A.; Sandercock, B.K. Recruitment and Establishment of the Gut Microbiome in Arctic Shorebirds. FEMS Microbiol. Ecol. 2017, 93, fix142. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Chen, C.-K.; Chen, Y.-Y.; Fang, A.; Shaw, G.T.-W.; Hung, C.-M.; Wang, D. Maternal Gut Microbes Shape the Early-Life Assembly of Gut Microbiota in Passerine Chicks via Nests. Microbiome 2020, 8, 129. [Google Scholar] [CrossRef] [PubMed]
- Xue, C.; Xie, Q.; Zhang, C.; Hu, Y.; Song, X.; Jia, Y.; Shi, X.; Chen, Y.; Liu, Y.; Zhao, L.; et al. Vertical Transmission of the Gut Microbiota Influences Glucose Metabolism in Offspring of Mice with Hyperglycaemia in Pregnancy. Microbiome 2022, 10, 122. [Google Scholar] [CrossRef]
- Houtz, J.L.; Melo, M.; Therrien, J.-F.; Cornell, A. Disentangling Relationships between Physiology, Morphology, Diet, and Gut Microbial Diversity in American Kestrel Nestlings. J. Avian Biol. 2023, 2023, e03019. [Google Scholar] [CrossRef]
- Pereira, H.; Chakarov, N.; Hoffman, J.I.; Rinaud, T.; Ottensmann, M.; Gladow, K.-P.; Tobias, B.; Caspers, B.A.; Maraci, Ö.; Krüger, O. Early-Life Factors Shaping the Gut Microbiota of Common Buzzard Nestlings. Anim. Microbiome 2024, 6, 27. [Google Scholar] [CrossRef]
- Bodawatta, K.H.; Hird, S.M.; Grond, K.; Poulsen, M.; Jønsson, K.A. Avian Gut Microbiomes Taking Flight. Trends Microbiol. 2022, 30, 268–280. [Google Scholar] [CrossRef] [PubMed]
- Finney, S.K.; Wanless, S.; Harris, M.P. The Effect of Weather Conditions on the Feeding Behaviour of a Diving Bird, the Common Guillemot Uria aalge. J. Avian Biol. 1999, 30, 23–30. [Google Scholar] [CrossRef]
- Ramos, J.A.; Pacheco, C. Chick Growth and Provisioning of Surviving and Nonsurviving White-Tailed Tropicbirds (Phaethon lepturus). Wilson Bull. 2003, 115, 414–422. [Google Scholar] [CrossRef]
- Sommer, F.; Ståhlman, M.; Ilkayeva, O.; Arnemo, J.M.; Kindberg, J.; Josefsson, J.; Newgard, C.B.; Fröbert, O.; Bäckhed, F. The Gut Microbiota Modulates Energy Metabolism in the Hibernating Brown Bear Ursus Arctos. Cell Rep. 2016, 14, 1655–1661. [Google Scholar] [CrossRef]
- Groisman, E.A.; Han, W.; Krypotou, E. Advancing the Fitness of Gut Commensal Bacteria. Science 2023, 382, 766–768. [Google Scholar] [CrossRef]
- Lowther, P.E.; Johnston, R.F. Rock Pigeon (Columba livia), Version 1.0. In Birds of the World; Cornell Lab of Ornithology: Ithaca, NY, USA, 2020. [Google Scholar] [CrossRef]
- Jacquin, L.; Blottière, L.; Haussy, C.; Perret, S.; Gasparini, J. Prenatal and Postnatal Parental Effects on Immunity and Growth in “lactating” Pigeons. Funct. Ecol. 2012, 26, 866–875. [Google Scholar] [CrossRef]
- Ding, J.; Liao, N.; Zheng, Y.; Yang, L.; Zhou, H.; Xu, K.; Han, C.; Luo, H.; Qin, C.; Tang, C.; et al. The Composition and Function of Pigeon Milk Microbiota Transmitted from Parent Pigeons to Squabs. Front. Microbiol. 2020, 11, 1789. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.-L.; He, Y.-A.; Jiang, S.-G.; Wang, X.-Q.; Yan, H.-C.; Tan, H.-Z.; Gao, C.-Q. Chemical Composition of Pigeon Crop Milk and Factors Affecting Its Production: A Review. Poult. Sci. 2023, 102, 102681. [Google Scholar] [CrossRef]
- Hsu, B. Maternal Hormones Meet Environmental Variability: Context-Dependent Effects of Maternal Hormones in Avian Egg Yolks. Ph.D. Thesis, University of Goningen, Groningen, The Netherlands, 2016. [Google Scholar]
- Hsu, B.-Y.; Dijkstra, C.; Groothuis, T.G.G. No Escape from Mother’s Will: Effects of Maternal Testosterone on Offspring Reproductive Behaviour Far into Adulthood. Anim. Behav. 2016, 117, 135–144. [Google Scholar] [CrossRef]
- Groothuis, T.G.G.; Müller, W.; von Engelhardt, N.; Carere, C.; Eising, C. Maternal Hormones as a Tool to Adjust Offspring Phenotype in Avian Species. Neurosci. Biobehav. Rev. 2005, 29, 329–352. [Google Scholar] [CrossRef]
- Bowden, R.M.; Smithee, L.; Paitz, R.T. A Modified Yolk Biopsy Technique Improves Survivorship of Turtle Eggs. Physiol. Biochem. Zool. 2009, 82, 611–615. [Google Scholar] [CrossRef] [PubMed]
- Goerlich, V.C.; Dijkstra, C.; Boonekamp, J.J.; Groothuis, T.G.G. Change in Body Mass Can Overrule the Effects of Maternal Testosterone on Primary Offspring Sex Ratio of First Eggs in Homing Pigeons. Physiol. Biochem. Zool. 2010, 83, 490–500. [Google Scholar] [CrossRef] [PubMed]
- Hsu, B.-Y.; Dijkstra, C.; Groothuis, T.G.G. Organizing Effects of Adverse Early-Life Condition on Body Mass, Compensatory Growth and Reproduction: Experimental Studies in Rock Pigeons. J. Avian Biol. 2017, 48, 1166–1176. [Google Scholar] [CrossRef]
- Hsu, B.-Y.; Dijkstra, C.; Darras, V.M.; de Vries, B.; Groothuis, T.G.G. Maternal Adjustment or Constraint: Differential Effects of Food Availability on Maternal Deposition of Macro-Nutrients, Steroids and Thyroid Hormones in Rock Pigeon Eggs. Ecol. Evol. 2016, 6, 397–411. [Google Scholar] [CrossRef]
- Quince, C.; Lanzen, A.; Davenport, R.J.; Turnbaugh, P.J. Removing Noise from Pyrosequenced Amplicons. BMC Bioinform. 2011, 12, 38. [Google Scholar] [CrossRef] [PubMed]
- Parada, A.E.; Needham, D.M.; Fuhrman, J.A. Every Base Matters: Assessing Small Subunit rRNA Primers for Marine Microbiomes with Mock Communities, Time Series and Global Field Samples. Environ. Microbiol. 2016, 18, 1403–1414. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA Ribosomal RNA Gene Database Project: Improved Data Processing and Web-Based Tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef]
- Yilmaz, P.; Parfrey, L.W.; Yarza, P.; Gerken, J.; Pruesse, E.; Quast, C.; Schweer, T.; Peplies, J.; Ludwig, W.; Glöckner, F.O. The SILVA and “All-Species Living Tree Project (LTP)” Taxonomic Frameworks. Nucleic Acids Res. 2014, 42, D643–D648. [Google Scholar] [CrossRef]
- R Core Team R. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017. [Google Scholar]
- McMurdie, P.J.; Holmes, S. Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef]
- Oksanen, J.; Simpson, G.L.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.B.; Solymos, P.; Stevens, M.H.H.; Szoecs, E.; et al. Vegan: An R package for Community Ecologists. Available online: https://github.com/vegandevs/vegan (accessed on 6 June 2020).
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D.; Team, R.C. Nlme: Linear and Nonlinear Mixed Effects Models, version 1.3-148. Available online: https://cran.r-project.org/web/packages/nlme/index.html (accessed on 31 March 2025).
- Bartoń, K. MuMIn: Multi-Model Inference. Available online: https://CRAN.R-project.org/package=MuMIn (accessed on 1 April 2025).
- Davis, N.M.; Proctor, D.M.; Holmes, S.P.; Relman, D.A.; Callahan, B.J. Simple Statistical Identification and Removal of Contaminant Sequences in Marker-Gene and Metagenomics Data. Microbiome 2018, 6, 226. [Google Scholar] [CrossRef] [PubMed]
- Weiss, S.J.; Xu, Z.; Amir, A.; Peddada, S.; Bittinger, K.; Gonzalez, A.; Lozupone, C.; Zaneveld, J.R.; Vazquez-Baeza, Y.; Birmingham, A.; et al. Effects of Library Size Variance, Sparsity, and Compositionality on the Analysis of Microbiome Data. PeerJ Prepr. 2015, 3, e1157v1. [Google Scholar] [CrossRef]
- Weiss, S.; Xu, Z.Z.; Peddada, S.; Amir, A.; Bittinger, K.; Gonzalez, A.; Lozupone, C.; Zaneveld, J.R.; Vázquez-Baeza, Y.; Birmingham, A.; et al. Normalization and Microbial Differential Abundance Strategies Depend upon Data Characteristics. Microbiome 2017, 5, 27. [Google Scholar] [CrossRef] [PubMed]
- Lozupone, C.; Knight, R. UniFrac: A New Phylogenetic Method for Comparing Microbial Communities. Appl. Environ. Microbiol. 2005, 71, 8228–8235. [Google Scholar] [CrossRef] [PubMed]
- McArdle, B.H.; Anderson, M.J. Fitting Multivariate Models to Community Data: A Comment on Distance-Based Redundancy Analysis. Ecology 2001, 82, 290–297. [Google Scholar] [CrossRef]
- Anderson, M.J.M. A New Method for Non-Parametric Multivariate Analysis of Variance. Austral Ecol. 2001, 26, 32–46. [Google Scholar] [CrossRef]
- Anderson, M.J. Distance-Based Tests for Homogeneity of Multivariate Dispersions. Biometrics 2006, 62, 245–253. [Google Scholar] [CrossRef]
- Warton, D.I.; Hui, F.K.C. The Arcsine Is Asinine: The Analysis of Proportions in Ecology. Ecology 2011, 92, 3–10. [Google Scholar] [CrossRef]
- Darcy, J.L.; Amend, A.S.; Swift, S.O.I.; Sommers, P.S.; Lozupone, C.A. Specificity: An R Package for Analysis of Feature Specificity to Environmental and Higher Dimensional Variables, Applied to Microbiome Species Data. Environ. Microbiome 2022, 17, 34. [Google Scholar] [CrossRef]
- Santos, H.M.; Tsai, C.-Y.; Catulin, G.E.M.; Trangia, K.C.G.; Tayo, L.L.; Liu, H.-J.; Chuang, K.P. Common Bacterial, Viral, and Parasitic Diseases in Pigeons (Columba livia): A Review of Diagnostic and Treatment Strategies. Veter Microbiol. 2020, 247, 108779. [Google Scholar] [CrossRef]
- Teyssier, A.; Lens, L.; Matthysen, E.; White, J. Dynamics of Gut Microbiota Diversity during the Early Development of an Avian Host: Evidence from a Cross-Foster Experiment. Front. Microbiol. 2018, 9, 1524. [Google Scholar] [CrossRef] [PubMed]
- Maraci, Ö.; Antonatou-Papaioannou, A.; Jünemann, S.; Engel, K.; Castillo-Gutiérrez, O.; Busche, T.; Kalinowski, J.; Caspers, B.A. Timing Matters: Age-Dependent Impacts of the Social Environment and Host Selection on the Avian Gut Microbiota. Microbiome 2022, 10, 202. [Google Scholar] [CrossRef]
- Awad, W.A.; Mann, E.; Dzieciol, M.; Hess, C.; Schmitz-Esser, S.; Wagner, M.; Hess, M. Age-Related Differences in the Luminal and Mucosa-Associated Gut Microbiome of Broiler Chickens and Shifts Associated with Campylobacter jejuni Infection. Front. Cell Infect. Microbiol. 2016, 6, 154. [Google Scholar] [CrossRef]
- Proszkowiec-Weglarz, M.; Miska, K.B.; Ellestad, L.E.; Schreier, L.L.; Kahl, S.; Darwish, N.; Campos, P.; Shao, J. Delayed Access to Feed Early Post-Hatch Affects the Development and Maturation of Gastrointestinal Tract Microbiota in Broiler Chickens. BMC Microbiol. 2022, 22, 206. [Google Scholar] [CrossRef] [PubMed]
- Grond, K.; Sandercock, B.K.; Jumpponen, A.; Zeglin, L.H. The Avian Gut Microbiota: Community, Physiology and Function in Wild Birds. J. Avian Biol. 2018, 49, e01788. [Google Scholar] [CrossRef]
- Yan, H.; Chen, Y.; Zhu, H.; Huang, W.-H.; Cai, X.-H.; Li, D.; Lv, Y.-J.; Zhou, H.-H.; Luo, F.-Y.; Zhang, W.; et al. The Relationship among Intestinal Bacteria, Vitamin K and Response of Vitamin K Antagonist: A Review of Evidence and Potential Mechanism. Front. Med. 2022, 9, 829304. [Google Scholar] [CrossRef]
- Hu, C.; Niu, X.; Chen, S.; Wen, J.; Bao, M.; Mohyuddin, S.G.; Yong, Y.; Liu, X.; Wu, L.; Yu, Z.; et al. A Comprehensive Analysis of the Colonic Flora Diversity, Short Chain Fatty Acid Metabolism, Transcripts, and Biochemical Indexes in Heat-Stressed Pigs. Front. Immunol. 2021, 12, 717723. [Google Scholar] [CrossRef]
- El-Moneim, A.E.-M.E.A.; El-Wardany, I.; Abu-Taleb, A.M.; Wakwak, M.M.; Ebeid, T.A.; Saleh, A.A. Assessment of in Ovo Administration of Bifidobacterium bifidum and Bifidobacterium longum on Performance, Ileal Histomorphometry, Blood Hematological, and Biochemical Parameters of Broilers. Probiotics Antimicrob. Proteins 2020, 12, 439–450. [Google Scholar] [CrossRef]
- Abdel-Moneim, A.-M.E.; Elbaz, A.M.; Khidr, R.E.-S.; Badri, F.B. Effect of in Ovo Inoculation of Bifidobacterium spp. on Growth Performance, Thyroid Activity, Ileum Histomorphometry, and Microbial Enumeration of Broilers. Probiotics Antimicrob. Proteins 2020, 12, 873–882. [Google Scholar] [CrossRef]
- O’Callaghan, A.; van Sinderen, D. Bifidobacteria and Their Role as Members of the Human Gut Microbiota. Front. Microbiol. 2016, 7, 925. [Google Scholar] [CrossRef]
- Ericsson, A.C.; Hagan, C.E.; Davis, D.J.; Franklin, C.L. Segmented Filamentous Bacteria: Commensal Microbes with Potential Effects on Research. Comp. Med. 2014, 64, 90–98. [Google Scholar] [PubMed]
- Hedblom, G.A.; Reiland, H.A.; Sylte, M.J.; Johnson, T.J.; Baumler, D.J. Segmented Filamentous Bacteria—Metabolism Meets Immunity. Front. Microbiol. 2018, 9, 1991. [Google Scholar] [CrossRef] [PubMed]
- Angelakis, E.; Raoult, D. The Increase of Lactobacillus Species in the Gut Flora of Newborn Broiler Chicks and Ducks Is Associated with Weight Gain. PLoS ONE 2010, 5, e10463. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Yang, K.; Zhang, A.; Chang, W.; Zheng, A.; Chen, Z.; Cai, H.; Liu, G. Effects of Lactobacillus acidophilus on the Growth Performance, Immune Response, and Intestinal Barrier Function of Broiler Chickens Challenged with Escherichia coli O157. Poult. Sci. 2021, 100, 101323. [Google Scholar] [CrossRef]
- García de Fernando, G. Lactic Acid Bacteria|Enterococcus in Milk and Dairy Products. In Encyclopedia of Dairy Sciences, 2nd ed.; Fuquay, J.W., Ed.; Academic Press: San Diego, CA, USA, 2011; pp. 153–159. ISBN 978-0-12-374407-4. [Google Scholar]
- Jiao, Y.; Yang, H.; Shigwedha, N.; Zhang, S.; Liu, F.; Zhang, L. Probiotic Effects and Metabolic Products of Enterococcus Faecalis LD33 with Respiration Capacity. Foods 2022, 11, 606. [Google Scholar] [CrossRef]
- Zhang, S.-M.; Huang, S.-L. The Commensal Anaerobe Veillonella Dispar Reprograms Its Lactate Metabolism and Short-Chain Fatty Acid Production during the Stationary Phase. Microbiol. Spectr. 2023, 11, e0355822. [Google Scholar] [CrossRef]
- Abd El-Ghany, W.A.; Algammal, A.M.; Hetta, H.F.; Elbestawy, A.R. Gallibacterium Anatis Infection in Poultry: A Comprehensive Review. Trop. Anim. Health Prod. 2023, 55, 383. [Google Scholar] [CrossRef]
- Davidson, G.L.; Raulo, A.; Knowles, S.C.L. Identifying Microbiome-Mediated Behaviour in Wild Vertebrates. Trends Ecol. Evol. 2020, 35, 972–980. [Google Scholar] [CrossRef]
- Somers, S.E.; Davidson, G.L.; Mbandlwa, P.; McKeon, C.M.; Stanton, C.; Ross, R.P.; Quinn, J.L. Manipulating a Host-Native Microbial Strain Compensates for Low Microbial Diversity by Increasing Weight Gain in a Wild Bird Population. Proc. Natl. Acad. Sci. USA 2024, 121, e2402352121. [Google Scholar] [CrossRef]
- Hetmański, T.; Barkowska, M. Density and Age of Breeding Pairs Influence Feral Pigeon, Columba Livia Reproduction. Folia Zool. 2007, 56, 71–83. [Google Scholar]
- Risely, A.; Gillingham, M.A.F.; Béchet, A.; Brändel, S.; Heni, A.C.; Heurich, M.; Menke, S.; Manser, M.B.; Tschapka, M.; Wasimuddin; et al. Phylogeny- and Abundance-Based Metrics Allow for the Consistent Comparison of Core Gut Microbiome Diversity Indices across Host Species. Front. Microbiol. 2021, 12, 659918. [Google Scholar] [CrossRef] [PubMed]
Alpha Diversity | Predictors, Final Model 1 | df | F | p | Marginal R2 | Conditional R2 |
---|---|---|---|---|---|---|
Richness | Age Age2 | 1, 86 1, 86 | 10.44 7.04 | 0.002 0.010 | 0.114 | 0.157 |
Shannon | Age Age2 | 1, 86 1, 86 | 7.02 4.41 | 0.010 0.039 | 0.090 | 0.090 |
Chao1 | Age Age2 | 1, 86 1, 86 | 7.54 4.93 | 0.007 0.029 | 0.089 | 0.123 |
Faith’s PD | Age Age2 | 1, 86 1, 86 | 9.81 6.57 | 0.002 0.012 | 0.106 | 0.173 |
Beta Diversity Indices | Predictors, Final Model 1 | R2 | F | p |
---|---|---|---|---|
Jaccard | Age Food Age*Food | 0.197 0.016 0.088 | 2.78 2.01 1.25 | 0.001 0.003 0.012 |
Bray–Curtis | Age Food Age*Food | 0.256 0.019 0.087 | 3.97 2.58 1.34 | 0.001 0.002 0.015 |
Unweighted UniFrac | Age Food | 0.195 0.015 | 2.69 1.88 | 0.0001 0.016 |
Weighted UniFrac | Food | 0.029 | 3.19 | 0.004 |
Genus | Predictors, Final Model 1 | df | F | p | Marginal R2 | Conditional R2 |
---|---|---|---|---|---|---|
Actinomyces | Age Age2 | 1, 86 1, 86 | 10.54 8.89 | 0.002 0.004 | 0.164 | 0.164 |
Bifidobacterium | Age | 1, 87 | 6.56 | 0.012 | 0.062 | 0.062 |
Corynebacterium 1 | Age Age2 | 1, 86 1, 86 | 11.20 5.81 | 0.001 0.018 | 0.147 | 0.147 |
Candidatus Arthomitus | Age Age2 | 1, 86 1, 86 | 43.02 24.28 | <0.0001 <0.0001 | 0.380 | 0.444 |
Clostridium sensu stricto 1 | Age Food Age*Food | 1, 86 1, 10 1, 86 | 2.14 1.34 11.45 | 0.147 0.275 0.001 | 0.127 | 0.243 |
Escherichia-Shigella | Food | 1, 4 | 7.78 | 0.049 | 0.172 | 0.260 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dietz, M.W.; Hsu, B.-Y.; van der Velde, M.; Tieleman, B.I. Gut Microbiome Development in Rock Pigeons: Effects of Food Restriction Early in Life. Microorganisms 2025, 13, 1191. https://doi.org/10.3390/microorganisms13061191
Dietz MW, Hsu B-Y, van der Velde M, Tieleman BI. Gut Microbiome Development in Rock Pigeons: Effects of Food Restriction Early in Life. Microorganisms. 2025; 13(6):1191. https://doi.org/10.3390/microorganisms13061191
Chicago/Turabian StyleDietz, Maurine W., Bin-Yan Hsu, Marco van der Velde, and B. Irene Tieleman. 2025. "Gut Microbiome Development in Rock Pigeons: Effects of Food Restriction Early in Life" Microorganisms 13, no. 6: 1191. https://doi.org/10.3390/microorganisms13061191
APA StyleDietz, M. W., Hsu, B.-Y., van der Velde, M., & Tieleman, B. I. (2025). Gut Microbiome Development in Rock Pigeons: Effects of Food Restriction Early in Life. Microorganisms, 13(6), 1191. https://doi.org/10.3390/microorganisms13061191