Effects of Short-Term Straw Return and Manure Fertilization on Soil Microorganisms and Soybean Yield in Parent Material of Degraded Black Soil in Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Soil Sampling and Measurement
2.4. Soil DNA Extraction and High-Throughput Sequencing
2.5. Statistical Analysis
3. Results
3.1. Soil Physical and Chemical Properties
3.2. Bacterial and Fungal Diversities
3.3. β Diversity of Bacterial and Fungal Communities Under the Addition of Different Organic Materials
3.4. Composition of Bacterial and Fungal Communities in Different Soybean Growth Stages
3.5. Effects of Different Organic Materials on Soil Microbial Co-Occurrence Network
3.6. Soybean Yields
3.7. Relationship Between Soil Properties and Soybean Yield
4. Discussion
4.1. Effects of Straw Return and Manure Fertilization on Soil Microbial Diversity
4.2. Effects of Straw Return and Manure Fertilization on Soil Microbial Community Structure
4.3. Effects of Straw Return and Manure Fertilization on Key Species and Microbial Networks
4.4. Relationship Between Soil Physical and Chemical Properties, Microbial Communities, and Crop Yields
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, Y.; Shi, W.; Aihemaitijiang, G.; Zhang, F.; Zhang, J.; Zhang, Y.; Pan, D.; Li, J. Hyperspectral inversion of heavy metal content in farmland soil under conservation tillage of black soils. Sci. Rep. 2025, 15, 354. [Google Scholar] [CrossRef] [PubMed]
- Fang, W.; Zhong, X.; Peng, X.; Li, L.; Zhang, S.; Gao, L. Soil Quality Mediates the Corn Yield in a Thin-Layer Mollisol in Northeast China. Land 2023, 12, 1187. [Google Scholar] [CrossRef]
- Xu, X.Z.; Xu, Y.; Chen, S.C.; Xu, S.G.; Zhang, H.W. Soil loss and conservation in the black soil region of Northeast China: A retrospective study. Environ. Sci. Policy 2010, 13, 793–800. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, C.; Wang, H.; Li, F.; Pan, H.; Yang, Q.; Li, J.; Zhang, J. The Effects of Natural Humus Material Amendment on Soil Organic Matter and Integrated Fertility in the Black Soil of Northeast China: Preliminary Results. Agronomy 2023, 13, 794. [Google Scholar] [CrossRef]
- Mai, J.; Wang, Z.; Hu, F.; Huang, J.; Zhao, S.-w. Study on soil hydraulic properties of slope farmlands with different degrees of erosion degradation in a typical black soil region. PeerJ 2023, 11, e15930. [Google Scholar] [CrossRef]
- Liang, A.; Li, L.; Zhu, H. Protection and Utilization of Black Land and Making Concerted and Unremitting Efforts for Safeguarding Food Security Promoted by Sci-tech InnovationCountermeasures in Conservation and Rational Utilization of Black Land. Bull. Chin. Acad. Sci. 2021, 36, 557–564. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Y.; Lin, B.; Zheng, Q.; Yin, J. Characteristics and factors controlling the development of ephemeral gullies in cultivated catchments of black soil region, Northeast China. Soil Tillage Res. 2007, 96, 28–41. [Google Scholar] [CrossRef]
- Majidian, P.; Ghorbani, H.R.; Farajpour, M. Achieving agricultural sustainability through soybean production in Iran: Potential and challenges. Heliyon 2024, 10, e26389. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, S.; Li, H.; Li, X.F.; Song, C.Y.; Cruse, R.M.; Zhang, X.Y. Effects of conservation tillage on corn and soybean yield in the humid continental climate region of Northeast China. Soil Tillage Res. 2011, 115, 56–61. [Google Scholar] [CrossRef]
- Li, Y.; Feng, H.; Dong, Q.g.; Xia, L.; Li, J.; Li, C.; Zang, H.; Andersen, M.N.; Olesen, J.E.; Jorgensen, U.; et al. Ammoniated straw incorporation increases wheat yield, yield stability, soil organic carbon and soil total nitrogen content. Field Crops Res. 2022, 284, 108558. [Google Scholar] [CrossRef]
- Zhao, Z.; Yang, Y.; Xie, H.; Zhang, Y.; He, H.; Zhang, X.; Sun, S. Enhancing Sustainable Agriculture in China: A Meta-Analysis of the Impact of Straw and Manure on Crop Yield and Soil Fertility. Agriculture 2024, 14, 480. [Google Scholar] [CrossRef]
- Wang, X.; Qian, R.; Han, Y.; Ji, Z.; Yang, Q.; Wang, L.; Chen, X.; Ma, K.; Siddique, K.H.M.; Jia, Z.; et al. Straw return can increase maize yield by regulating soil bacteria and improving soil properties in arid and semi-arid areas. Eur. J. Agron. 2024, 161, 127389. [Google Scholar] [CrossRef]
- Liu, H.; Du, X.; Li, Y.; Han, X.; Li, B.; Zhang, X.; Li, Q.; Liang, W. Organic substitutions improve soil quality and maize yield through increasing soil microbial diversity. J. Clean. Prod. 2022, 347, 131323. [Google Scholar] [CrossRef]
- Ma, M.; Zhou, J.; Ongena, M.; Liu, W.; Wei, D.; Zhao, B.; Guan, D.; Jiang, X.; Li, J. Effect of long-term fertilization strategies on bacterial community composition in a 35-year field experiment of Chinese Mollisols. AMB Express 2018, 8, 20. [Google Scholar] [CrossRef]
- Ding, J.; Jiang, X.; Ma, M.; Zhou, B.; Guan, D.; Zhao, B.; Zhou, J.; Cao, F.; Li, L.; Li, J. Effect of 35 years inorganic fertilizer and manure amendment on structure of bacterial and archaeal communities in black soil of northeast China. Appl. Soil Ecol. 2016, 105, 187–195. [Google Scholar] [CrossRef]
- Cong, P.; Wang, J.; Li, Y.; Liu, N.; Dong, J.; Pang, H.; Zhang, L.; Gao, Z. Changes in soil organic carbon and microbial community under varying straw incorporation strategies. Soil Tillage Res. 2020, 204, 104735. [Google Scholar] [CrossRef]
- Shu, X.; He, J.; Zhou, Z.; Xia, L.; Hu, Y.; Zhang, Y.; Zhang, Y.; Luo, Y.; Chu, H.; Liu, W.; et al. Organic amendments enhance soil microbial diversity, microbial functionality and crop yields: A meta-analysis. Sci. Total Environ. 2022, 829, 154627. [Google Scholar] [CrossRef]
- Fang, H.; Liu, J.; Chen, X.; Jiang, Y.; Liu, Z.; Gu, H.; Wan, S.; Xiao, Y. Effects of long-term combined application of organic and chemical fertilizers on bacterial community characteristics and soybean yields. Chin. J. Eco-Agric. 2024, 32, 804–815. [Google Scholar] [CrossRef]
- Liu, B.; Xia, H.; Jiang, C.; Riaz, M.; Yang, L.; Chen, Y.; Fan, X.; Xia, X. 14 year applications of chemical fertilizers and crop straw effects on soil labile organic carbon fractions, enzyme activities and microbial community in rice-wheat rotation of middle China. Sci. Total Environ. 2022, 841, 156608. [Google Scholar] [CrossRef]
- Hou, W.; Wang, D.; Li, Y.; Li, Q.; Liu, S.; Wang, C. Impacts of Various Straw-Returning Techniques on the Chemical Characteristics and Bacterial Diversity of Soil. Agronomy 2024, 14, 2223. [Google Scholar] [CrossRef]
- Bebber, D.P.; Richards, V.R. A meta-analysis of the effect of organic and mineral fertilizers on soil microbial diversity. Appl. Soil Ecol. 2022, 175, 104450. [Google Scholar] [CrossRef]
- Yan, S.; Song, J.; Fan, J.; Yan, C.; Dong, S.; Ma, C.; Gong, Z. Changes in soil organic carbon fractions and microbial community under rice straw return in Northeast China. Glob. Ecol. Conserv. 2020, 22, e00962. [Google Scholar] [CrossRef]
- Zhu, F.; Lin, X.; Guan, S.; Dou, S. Deep incorporation of corn straw benefits soil organic carbon and microbial community composition in a black soil of Northeast China. Soil Use Manag. 2022, 38, 1266–1279. [Google Scholar] [CrossRef]
- Xing, S.; Zhang, G.; Chen, S.; Zhang, N.; Wang, C. Response of soil erosion resistance to straw incorporation amount in the black soil region of Northeast China. J. Environ. Manag. 2024, 357, 120801. [Google Scholar] [CrossRef]
- Chen, H.; Liu, Y.; Lu, L.; Yuan, L.; Jia, J.; Chen, X.; Ma, J.; Zhao, J.; Liang, C.; Xie, H.; et al. Effects of no-tillage and stover mulching on the transformation and utilization of chemical fertilizer N in Northeast China. Soil Tillage Res. 2021, 213, 105131. [Google Scholar] [CrossRef]
- Wang, S.-C.; Zhao, Y.-W.; Wang, J.-Z.; Zhu, P.; Cui, X.; Han, X.-Z.; Xu, M.-G.; Lu, C.-A. The efficiency of long-term straw return to sequester organic carbon in Northeast China’s cropland. J. Integr. Agric. 2018, 17, 436–448. [Google Scholar] [CrossRef]
- Jiao, F.; Zhang, D.; Chen, Y.; Wu, J.; Zhang, J. Effects of Long-Term Straw Returning and Nitrogen Fertilizer Reduction on Soil Microbial Diversity in Black Soil in Northeast China. Agronomy 2023, 13, 2036. [Google Scholar] [CrossRef]
- Blossfeld, S.; Gansert, D.; Thiele, B.; Kuhn, A.J.; Loesch, R. The dynamics of oxygen concentration, pH value, and organic acids in the rhizosphere of Juncus spp. Soil Biol. Biochem. 2011, 43, 1186–1197. [Google Scholar] [CrossRef]
- Xiong, Y. Chinese Soils, 2nd ed.; Science Press: Beijing, China, 1987; pp. 20–38. (In Chinese) [Google Scholar]
- Chen, Q.; Zhang, J.; Guo, M.; Zhang, X.; Tian, J.; Zhou, P.; Chen, Z. Comparison of the effects of five long-term land use and management practices on runoff, soil erosion, and nutrient loss under natural rainfall in the Mollisol region of Northeast China. Earth Surf. Process. Landf. 2024, 49, 1606–1620. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, X.; Ma, Y.; Ma, Z.; He, Z.; Zhao, W.; Wang, P.; Zhao, S.; Wang, D. Investigation on the Microbial Diversity of Fresh-Cut Lettuce during Processing and Storage Using High Throughput Sequencing and Their Relationship with Quality. Foods 2022, 11, 1683. [Google Scholar] [CrossRef]
- Wu, B.; Wang, P.; Devlin, A.T.; Xiao, S.; Shu, W.; Zhang, H.; Ding, M. Influence of Soil and Water Conservation Measures on Soil Microbial Communities in a Citrus Orchard of Southeast China. Microorganisms 2021, 9, 319. [Google Scholar] [CrossRef] [PubMed]
- Sui, J.; Li, C.; Wang, Y.; Li, X.; Liu, R.; Hua, X.; Liu, X.; Qi, H.; Seo, T. Microecological Shifts in the Rhizosphere of Perennial Large Trees and Seedlings in Continuous Cropping of Poplar. Microorganisms 2024, 12, 58. [Google Scholar] [CrossRef] [PubMed]
- Raza, T.; Qadir, M.F.; Khan, K.S.; Eash, N.S.; Yousuf, M.; Chatterjee, S.; Manzoor, R.; ur Rehman, S.; Oetting, J.N. Unrevealing the potential of microbes in decomposition of organic matter and release of carbon in the ecosystem. J. Environ. Manag. 2023, 344, 118529. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Gu, Y.; Wu, C.; Zhao, H.; Hu, W.; Xu, C.; Chen, X. Short-Term Straw Returning Improves Quality and Bacteria Community of Black Soil in Northeast China. Pol. J. Environ. Stud. 2022, 31, 1869–1884. [Google Scholar] [CrossRef]
- Wang, E.; Lin, X.; Tian, L.; Wang, X.; Ji, L.; Jin, F.; Tian, C. Effects of Short-Term Rice Straw Return on the Soil Microbial Community. Agriculture 2021, 11, 561. [Google Scholar] [CrossRef]
- Du, Y.; Yu, A.; Chi, Y.; Wang, Z.; Han, X.; Liu, K.; Fan, Q.; Hu, X.; Che, R.; Liu, D. Organic carbon decomposition temperature sensitivity positively correlates with the relative abundance of copiotrophic microbial taxa in cropland soils. Appl. Soil Ecol. 2024, 204, 105712. [Google Scholar] [CrossRef]
- Wang, X.; He, P.; Xu, X.; Qiu, S.; Zhao, S. Characteristics of rice straw decomposition and bacterial community succession for 2 consecutive years in a paddy field in southeastern China. Sci. Rep. 2022, 12, 20893. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, M.; Landry, N.d.B.J.; Duan, Y.; Li, X.; Zhou, X. The impact of Ricinus straw on tomato growth and soil microbial community. Front. Microbiol. 2024, 15, 1499302. [Google Scholar] [CrossRef]
- Zhang, Z.; Yan, J.; Han, X.; Zou, W.; Chen, X.; Lu, X.; Feng, Y. Labile organic carbon fractions drive soil microbial communities after long-term fertilization. Glob. Ecol. Conserv. 2021, 32, e01867. [Google Scholar] [CrossRef]
- Thompson, L.R.; Sanders, J.G.; McDonald, D.; Amir, A.; Ladau, J.; Locey, K.J.; Prill, R.J.; Tripathi, A.; Gibbons, S.M.; Ackermann, G.; et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 2017, 551, 457–463. [Google Scholar] [CrossRef]
- Yan, C.; Yan, S.-S.; Jia, T.-Y.; Dong, S.-K.; Ma, C.-M.; Gong, Z.-P. Decomposition characteristics of rice straw returned to the soil in northeast China. Nutr. Cycl. Agroecosystems 2019, 114, 211–224. [Google Scholar] [CrossRef]
- Cui, X.; Guo, L.; Li, C.; Liu, M.; Wu, G.; Jiang, G. The total biomass nitrogen reservoir and its potential of replacing chemical fertilizers in China. Renew. Sustain. Energy Rev. 2021, 135, 110215. [Google Scholar] [CrossRef]
- Abdalla, K.; Sun, Y.; Zarebanadkouki, M.; Gaiser, T.; Seidel, S.; Pausch, J. Long-term continuous farmyard manure application increases soil carbon when combined with mineral fertilizers due to lower priming effects. Geoderma 2022, 428, 116216. [Google Scholar] [CrossRef]
- Zhu, Z.; Fang, Y.; Liang, Y.; Li, Y.; Liu, S.; Li, Y.; Li, B.; Gao, W.; Yuan, H.; Kuzyakov, Y.; et al. Stoichiometric regulation of priming effects and soil carbon balance by microbial life strategies. Soil Biol. Biochem. 2022, 169, 108669. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhou, J.; Shahbaz, M.; Tang, H.; Liu, S.; Zhang, W.; Yuan, H.; Zhou, P.; Alharbi, H.; Wu, J.; et al. Microorganisms maintain C:N stoichiometric balance by regulating the priming effect in long-term fertilized soils. Appl. Soil Ecol. 2021, 167, 104033. [Google Scholar] [CrossRef]
- Jones, R.T.; Robeson, M.S.; Lauber, C.L.; Hamady, M.; Knight, R.; Fierer, N. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J. 2009, 3, 442–453. [Google Scholar] [CrossRef]
- Liu, J.; Sui, Y.; Yu, Z.; Yao, Q.; Shi, Y.; Chu, H.; Jin, J.; Liu, X.; Wang, G. Diversity and distribution patterns of acidobacterial communities in the black soil zone of northeast China. Soil Biol. Biochem. 2016, 95, 212–222. [Google Scholar] [CrossRef]
- Jiao, F.; Qian, L.; Wu, J.; Zhang, D.; Zhang, J.; Wang, M.; Sui, X.; Zhang, X. Diversity and Composition of Soil Acidobacterial Communities in Different Temperate Forest Types of Northeast China. Microorganisms 2024, 12, 963. [Google Scholar] [CrossRef]
- Liu, J.; Sui, Y.; Yu, Z.; Shi, Y.; Chu, H.; Jin, J.; Liu, X.; Wang, G. High throughput sequencing analysis of biogeographical distribution of bacterial communities in the black soils of northeast China. Soil Biol. Biochem. 2014, 70, 113–122. [Google Scholar] [CrossRef]
- Lauber, C.L.; Strickland, M.S.; Bradford, M.A.; Fierer, N. The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol. Biochem. 2008, 40, 2407–2415. [Google Scholar] [CrossRef]
- Ma, T.; He, X.; Chen, S.; Li, Y.; Huang, Q.; Xue, C.; Shen, Q. Long-Term Organic-Inorganic Fertilization Regimes Alter Bacterial and Fungal Communities and Rice Yields in Paddy Soil. Front. Microbiol. 2022, 13, 890712. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Shu, A.; Liu, J.; Shi, W.; Li, M.; Zhang, W.; Li, Z.; Liu, G.; Yuan, F.; Zhang, S.; et al. Effects of long-term fertilization with different substitution ratios of organic fertilizer on paddy soil. Pedosphere 2022, 32, 637–648. [Google Scholar] [CrossRef]
- Liu, J.; Shu, A.; Song, W.; Shi, W.; Li, M.; Zhang, W.; Li, Z.; Liu, G.; Yuan, F.; Zhang, S.; et al. Long-term organic fertilizer substitution increases rice yield by improving soil properties and regulating soil bacteria. Geoderma 2021, 404, 115287. [Google Scholar] [CrossRef]
- Li, Z.; Jiao, Y.; Yin, J.; Li, D.; Wang, B.; Zhang, K.; Zheng, X.; Hong, Y.; Zhang, H.; Xie, C.; et al. Productivity and quality of banana in response to chemical fertilizer reduction with bio-organic fertilizer: Insight into soil properties and microbial ecology. Agric. Ecosyst. Environ. 2021, 322, 107659. [Google Scholar] [CrossRef]
- Li, D.; Qu, C.; Cheng, X.; Chen, Y.; Yan, H.; Wu, Q. Effect of different fertilization strategies on the yield, quality of Euryales Semen and soil microbial community. Front. Microbiol. 2023, 14, 1310366. [Google Scholar] [CrossRef]
- Maekelae, M.; Donofrio, N.; de Vries, R. Plant biomass degradation by fungi. Fungal Genet. Biol. 2014, 72, 2–9. [Google Scholar] [CrossRef]
- Wang, L.; Hao, D.-C.; Fan, S.; Xie, H.; Bao, X.; Jia, Z.; Wang, L. N2O Emission and Nitrification/Denitrification Bacterial Communities in Upland Black Soil under Combined Effects of Early and Immediate Moisture. Agriculture 2022, 12, 330. [Google Scholar] [CrossRef]
- Song, W.; Kim, M.; Tripathi, B.M.; Kim, H.; Adams, J.M. Predictable communities of soil bacteria in relation to nutrient concentration and successional stage in a laboratory culture experiment. Environ. Microbiol. 2016, 18, 1740–1753. [Google Scholar] [CrossRef]
- Zhang, C.; Lin, Z.; Que, Y.; Fallah, N.; Tayyab, M.; Li, S.; Luo, J.; Zhang, Z.; Abubakar, A.Y.; Zhang, H. Straw retention efficiently improves fungal communities and functions in the fallow ecosystem. BMC Microbiol. 2021, 21, 52. [Google Scholar] [CrossRef]
- Manici, L.M.; Caputo, F.; Fornasier, F.; Paletto, A.; Ceotto, E.; De Meo, I. Ascomycota and Basidiomycota fungal phyla as indicators of land use efficiency for soil organic carbon accrual with woody plantations. Ecol. Indic. 2024, 160, 111796. [Google Scholar] [CrossRef]
- Song, X.; Huang, L.; Li, Y.; Zhao, C.; Tao, B.; Zhang, W. Characteristics of Soil Fungal Communities in Soybean Rotations. Front. Plant Sci. 2022, 13, 926731. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Shi, C.; Wei, D.; Gu, X.; Wang, Y.; Sun, L.; Cai, S.; Hu, Y.; Jin, L.; Wang, W. Soybean continuous cropping affects yield by changing soil chemical properties and microbial community richness. Front. Microbiol. 2022, 13, 1083736. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yang, Y.; Zhao, Z.; Feng, Y.; Bate, B.; Wang, H.; Li, Q.; Cui, J. Maize-Soybean Rotation and Intercropping Increase Maize Yield by Influencing the Structure and Function of Rhizosphere Soil Fungal Communities. Microorganisms 2024, 12, 1620. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Xia, Y.; Fan, C.; Kou, J.; Wu, F.; Li, W.; Pan, K. Control of Fusarium wilt by wheat straw is associated with microbial network changes in watermelon rhizosphere. Sci. Rep. 2020, 10, 12736. [Google Scholar] [CrossRef]
- Ma, L.; Li, Y.; Wei, J.-L.; Li, Z.-S.; Zhou, X.-L.; Zheng, F.-L.; Wu, X.-B.; Wang, L.; Liu, Z.-H.; Tan, D.-S. Effects of Long-Term Straw Returning on Fungal Community, Enzyme Activity and Wheat Yield in Fluvo-aquic Soil. Huan Jing Ke Xue Huanjing Kexue 2022, 43, 4755–4764. [Google Scholar] [CrossRef]
- He, Y.; Liu, D.; He, X.; Wang, Y.; Liu, J.; Shi, X.; Chater, C.C.C.; Yu, F. Characteristics of bacterial and fungal communities and their impact during cow manure and agroforestry biowaste co-composting. J. Environ. Manag. 2022, 324, 116377. [Google Scholar] [CrossRef]
- Gu, S.; Xiong, X.; Tan, L.; Deng, Y.; Du, X.; Yang, X.; Hu, Q. Soil microbial community assembly and stability are associated with potato (Solanum tuberosum L.) fitness under continuous cropping regime. Front. Plant Sci. 2022, 13, 1000045. [Google Scholar] [CrossRef]
- Chow, C.-E.T.; Kim, D.Y.; Sachdeva, R.; Caron, D.A.; Fuhrman, J.A. Top-down controls on bacterial community structure: Microbial network analysis of bacteria, T4-like viruses and protists. ISME J. 2014, 8, 816–829. [Google Scholar] [CrossRef]
- Hernandez, D.J.; David, A.S.; Menges, E.S.; Searcy, C.A.; Afkhami, M.E. Environmental stress destabilizes microbial networks. ISME J. 2021, 15, 1722–1734. [Google Scholar] [CrossRef]
- Zhang, L.; Tang, C.; Yang, J.; Yao, R.; Wang, X.; Xie, W.; Ge, A.-H. Salinity-dependent potential soil fungal decomposers under straw amendment. Sci. Total Environ. 2023, 891, 164569. [Google Scholar] [CrossRef]
- Wang, J.; Song, Y.; Ma, T.; Raza, W.; Li, J.; Howland, J.G.; Huang, Q.; Shen, Q. Impacts of inorganic and organic fertilization treatments on bacterial and fungal communities in a paddy soil. Appl. Soil Ecol. 2017, 112, 42–50. [Google Scholar] [CrossRef]
- Kang, Y.; Ma, Y.; Wu, W.; Zeng, S.; Jiang, S.; Yang, H.; Li, Y.; Wang, Z.; Dong, C.; Xu, Y.; et al. Bioorganic and silicon amendments alleviate early defoliation of pear trees by improving the soil nutrient bioavailability, microbial activity, and reshaping the soil microbiome network. Appl. Soil Ecol. 2022, 173, 104383. [Google Scholar] [CrossRef]
- Shi, Y.; Li, T.; Zheng, L.; Jing, X.; Hussain, H.A.; Zhang, Q. Enhancing soil multifunctionality through restoring erosion environment and microbial functions combined with organic manure and straw mulching. Agric. Ecosyst. Environ. 2025, 383, 109515. [Google Scholar] [CrossRef]
- Cui, S.; Zhu, X.; Cao, G. Effects of Years of Rice Straw Return on Soil Nitrogen Components from Rice-Wheat Cropped Fields. Agronomy 2022, 12, 1247. [Google Scholar] [CrossRef]
- Li, S.; Yuan, T.; Ibrahim, M.; Wu, F. Rotational Strip Bean and Celery Intercropping Alters the Microbial Community to Improve Crop Yield and Soil Nutrients. Horticulturae 2024, 10, 432. [Google Scholar] [CrossRef]
- Han, Q.; Zhu, G.; Qiu, H.; Li, M.; Zhang, J.; Wu, X.; Xiao, R.; Zhang, Y.; Yang, W.; Tian, B.; et al. Quality traits drive the enrichment of Massilia in the rhizosphere to improve soybean oil content. Microbiome 2024, 12, 224. [Google Scholar] [CrossRef]
- Holochova, P.; Maslanova, I.; Sedlacek, I.; Svec, P.; Kralova, S.; Kovarovic, V.; Busse, H.-J.; Stankova, E.; Bartak, M.; Pantucek, R. Description of Massilia rubra sp. nov., Massilia aquatica sp. nov., Massilia mucilaginosa sp. nov., Massilia frigida sp. nov., and one Massilia genomospecies isolated from Antarctic streams, lakes and regoliths. Syst. Appl. Microbiol. 2020, 43, 126112. [Google Scholar] [CrossRef]
- Wang, Y.; Ge, Y.; Deng, Y.; Xu, X.; Zhang, Y.; Li, L.; Xu, Z. DOM hydrophilic components of organic fertilizers increased the soil nitrogen retention capacity and succession of the microbial community. Front. Microbiol. 2023, 14, 1320302. [Google Scholar] [CrossRef]
- Qiao, C.; Penton, C.R.; Xiong, W.; Liu, C.; Wang, R.; Liu, Z.; Xu, X.; Li, R.; Shen, Q. Reshaping the rhizosphere microbiome by bio-organic amendment to enhance crop yield in a maize-cabbage rotation system. Appl. Soil Ecol. 2019, 142, 136–146. [Google Scholar] [CrossRef]
- Dubeux, J.C.B., Jr.; Sollenberger, L.E.; Mathews, B.W.; Scholberg, J.M.; Santos, H.Q. Nutrient cycling in warm-climate grasslands. Crop Sci. 2007, 47, 915–928. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X.; Li, X.; Zhu, Y.; Lv, H.; Zhou, W.; Liang, B. Microbial mechanism of crop residues addition in nitrogen leaching loss retention and soil ecosystem stability maintenance. Environ. Technol. Innov. 2023, 31, 103194. [Google Scholar] [CrossRef]
- Liu, X.-J.A.; Sun, J.; Mau, R.L.; Finley, B.K.; Compson, Z.G.; van Gestel, N.; Brown, J.R.; Schwartz, E.; Dijkstra, P.; Hungate, B.A. Labile carbon input determines the direction and magnitude of the priming effect. Appl. Soil Ecol. 2017, 109, 7–13. [Google Scholar] [CrossRef]
- Wei, X.; Zhu, Z.; Liu, Y.; Luo, Y.; Deng, Y.; Xu, X.; Liu, S.; Richter, A.; Shibistova, O.; Guggenberger, G.; et al. C:N:P stoichiometry regulates soil organic carbon mineralization and concomitant shifts in microbial community composition in paddy soil. Biol. Fertil. Soils 2020, 56, 1093–1107. [Google Scholar] [CrossRef]
- Meng, X.; Wang, B.; Zhang, X.; Liu, C.; Ji, J.; Hao, X.; Yang, B.; Wang, W.; Xu, D.; Zhang, S.; et al. Long-Term Crop Rotation Revealed the Relationship Between Soil Organic Carbon Physical Fraction and Bacterial Community at Aggregate Scales. Microorganisms 2025, 13, 496. [Google Scholar] [CrossRef]
- Guo, R.; Ren, Y.; Ren, G.; Zhang, S.; Feng, J. Impacts of Fertilizers with Varying Nitrogen Contents on Millet Yield and Rhizosphere Soil Microbial Communities: Implications for Sustainable Agricultural Development. Sustainability 2025, 17, 1557. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, S.; Zhang, M.; Zeng, L.; Zhang, L.; Huang, S.; Zhang, R.; Zhou, W.; Ai, C. Nitrogen Application and Rhizosphere Effect Exert Opposite Effects on Key Straw-Decomposing Microorganisms in Straw-Amended Soil. Microorganisms 2024, 12, 574. [Google Scholar] [CrossRef]
- Niu, H.; Yuan, M.; Chen, X.; Zhao, J.; Cui, Y.; Song, Y.; Zhou, S.; Song, A.; Huang, Y. Deciphering the differences of bacterial communities between high- and low-productive wheat fields using high-throughput sequencing. Front. Microbiol. 2024, 15, 1391428. [Google Scholar] [CrossRef]
- Yin, S.; Suo, F.; Zheng, Y.; You, X.; Li, H.; Wang, J.; Zhang, C.; Li, Y.; Cheng, Y. Biochar-compost amendment enhanced sorghum growth and yield by improving soil physicochemical properties and shifting soil bacterial community in a coastal soil. Front. Environ. Sci. 2022, 10, 1036837. [Google Scholar] [CrossRef]
TC (g/kg) | TN (g/kg) | TP (g/kg) | TK (g/kg) | Sand (%) | Slit (%) | Clay (%) | BD (g cm−3) | CEC cmol(+)/kg | NH4+-N (mg/kg) | NO3−-N (mg/kg) | AP (mg/kg) | pH |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2.88 | 0.57 | 0.55 | 9.62 | 15.1 | 52.5 | 32.4 | 1.50 | 10.1 | 0.40 | 0.56 | 62.15 | 6.48 |
Treatments | Indices | ||||||
---|---|---|---|---|---|---|---|
pH | ST (°C) | SWC (%) | TC (mg/kg) | TN (mg/kg) | C/N | SOM (mg/kg) | |
Seedling stage | |||||||
MF | 6.90 ± 0.21 a | 17.02 ± 1.13 a | 13.76 ± 1.77 a | 4350 ± 309 a | 440 ± 50 a | 9.88 ± 0.83 a | 4450 ± 510 a |
STR | 6.37 ± 0.32 b | 17.20 ± 1.19 a | 12.81 ± 1.54 a | 4000 ± 233 a | 400 ± 50 ab | 9.84 ± 0.52 a | 4110 ± 440 b |
CK | 6.37 ± 0.20 b | 16.98 ± 0.98 a | 13.89 ± 1.01 a | 3310 ± 204 b | 340 ± 20 b | 9.68 ± 0.31 a | 3590 ± 280 c |
Flowering stage | |||||||
MF | 6.04 ± 0.23 a | 29.25 ± 1.12 a | 17.76 ± 3.07 a | 6090 ± 518 a | 820 ± 120 a | 7.38 ± 0.93 a | 5650 ± 570 a |
STR | 5.84 ± 0.34 a | 29.00 ± 1.08 a | 19.28 ± 4.20 a | 6210 ± 1256 a | 770 ± 90 a | 7.83 ± 1.35 a | 5750 ± 850 ab |
CK | 5.82 ± 0.22 a | 28.59 ± 0.78 a | 18.26 ± 2.12 a | 3180 ± 238 b | 690 ± 100 b | 4.61 ± 0.11 b | 3940 ± 450 b |
Maturity stage | |||||||
MF | 7.15 ± 0.14 a | 18.14 ± 2.07 a | 26.08 ± 2.42 a | 6570 ± 1020 a | 650 ± 120 a | 10.21 ± 0.39 ab | 6590 ± 1250 a |
STR | 6.12 ± 0.39 b | 17.91 ± 2.33 a | 25.58 ± 1.89 a | 5560 ± 990 a | 510 ± 60 ab | 10.69 ± 0.67 a | 5530 ± 440 ab |
CK | 6.52 ± 0.33 b | 18.35 ± 3.22 a | 26.38 ± 3.01 a | 3710 ± 140 b | 390 ± 20 b | 9.54 ± 0.26 b | 4680 ± 380 b |
Mean values | |||||||
MF | 6.70 ± 0.53 a | 24.74 ± 5.10 a | 19.05 ± 5.74 a | 5670 ± 1190 a | 640 ± 190 a | 9.22 ± 1.44 a | 5890 ± 1750 a |
STR | 6.11 ± 0.40 b | 24.58 ± 5.11 a | 19.70 ± 5.49 a | 5240 ± 1340 a | 570 ± 180 ab | 9.52 ± 1.38 ab | 5190 ± 950 ab |
CK | 6.19 ± 0.43 b | 24.66 ± 4.94 a | 18.76 ± 5.93 a | 3410 ± 280 b | 470 ± 150 b | 7.89 ± 2.41 b | 4040 ± 550 b |
Network Metrics | Bacteria | Fungi | ||||
---|---|---|---|---|---|---|
CK | STR | MF | CK | STR | MF | |
Nodes | 145 | 148 | 134 | 88 | 99 | 73 |
Edges | 1141 | 1386 | 502 | 169 | 197 | 96 |
Positive | 73.62% | 76.55% | 82.27% | 74.56% | 84.26% | 90.62% |
Negative | 26.38% | 23.45% | 17.73% | 25.44% | 15.74% | 9.38% |
Path length | 2.777 | 2.683 | 3.875 | 3.734 | 3.678 | 3.989 |
Graph density | 0.109 | 0.138 | 0.056 | 0.044 | 0.041 | 0.037 |
Diameter | 7 | 7 | 11 | 9 | 10 | 9 |
Clustering coefficient | 0.548 | 0.572 | 0.476 | 0.395 | 0.36 | 0.313 |
Average degree | 15.738 | 19.521 | 7.493 | 3.841 | 3.98 | 2.63 |
Modularity | 0.433 | 0.449 | 0.581 | 0.513 | 0.644 | 0.661 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, J.; Li, Z.; Wu, J.; Ma, D.; Chen, Q.; Li, J. Effects of Short-Term Straw Return and Manure Fertilization on Soil Microorganisms and Soybean Yield in Parent Material of Degraded Black Soil in Northeast China. Microorganisms 2025, 13, 1137. https://doi.org/10.3390/microorganisms13051137
Ding J, Li Z, Wu J, Ma D, Chen Q, Li J. Effects of Short-Term Straw Return and Manure Fertilization on Soil Microorganisms and Soybean Yield in Parent Material of Degraded Black Soil in Northeast China. Microorganisms. 2025; 13(5):1137. https://doi.org/10.3390/microorganisms13051137
Chicago/Turabian StyleDing, Jiahua, Zhao Li, Jiali Wu, Dalong Ma, Qiang Chen, and Jianye Li. 2025. "Effects of Short-Term Straw Return and Manure Fertilization on Soil Microorganisms and Soybean Yield in Parent Material of Degraded Black Soil in Northeast China" Microorganisms 13, no. 5: 1137. https://doi.org/10.3390/microorganisms13051137
APA StyleDing, J., Li, Z., Wu, J., Ma, D., Chen, Q., & Li, J. (2025). Effects of Short-Term Straw Return and Manure Fertilization on Soil Microorganisms and Soybean Yield in Parent Material of Degraded Black Soil in Northeast China. Microorganisms, 13(5), 1137. https://doi.org/10.3390/microorganisms13051137