Biochemical Characterization and Polyester-Binding/Degrading Capability of Two Cutinases from Aspergillus fumigatus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Expression and Purification of Cutinases
2.2. Activity Assay
2.3. Characterization of AfCutA and AfCutB
2.4. Binding of AfCutA and AfCutB onto PCL and PBS Films
2.5. Degradation of Polyesters and Polyvinyl Acetate
2.6. PCL and PBS Film Morphology Analysis by Scanning Electron Microscopy (SEM)
2.7. Phylogenetic Analysis, Sequence Alignment, and Structure Modelling of AfCuts
3. Results
3.1. Expression and Purification of AfCuts in P. pastoris KM71H
3.2. Effect of pH, Temperature, Metal Ions, and Organic Solvents on Enzyme Activity and Stability
3.3. Substrate Specificity and Kinetic Parameters of AfCutA and AfCutB
3.4. Degradation of Polyesters and Polyvinyl Acetate
3.5. SEM Analysis of AfCutA- and AfCutB-Treated PCL and PBS Films
3.6. Binding of AfCutA and AfCutB onto PCL and PBS Films
3.7. Phylogenetic Analysis and Sequence Alignment of AfCuts
3.8. Structure Modelling of AfCutA and AfCutB
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SDS-PAGE | sodium dodecyl sulfate polyacrylamide gel electrophoresis |
QCM-D | quartz crystal microbalance with dissipation monitoring |
PCL | poly (ε-caprolactone) |
PBS | polybutylene succinate |
PVAc | polyvinyl acetate |
pNPA | p-nitrophenyl acetate |
pNPP | p-nitrophenyl propionate |
pNPB | p-nitrophenyl butyrate |
pNPV | p-nitrophenyl valerate |
pNPC | p-nitrophenyl caprylate |
pNPL | p-nitrophenyl laurate |
AFM | an atomic force microscopy |
SEM | electron microscopy |
DSMO | dimethyl sulfoxide |
GC-MS | gas chromatography–mass spectrometry |
References
- Martinez, C.; De Geus, P.; Lauwereys, M.; Matthyssens, G.; Cambillau, C. Fusarium solani cutinase is a lipolytic enzyme with a catalytic serine accessible to solvent. Nature 1992, 356, 615–618. [Google Scholar] [CrossRef]
- Oliveira, C.T.D.; Assis, M.A.D.; Mazutti, M.A.; Pereira, G.A.G.; Oliveira, D.D. Production of recombinant cutinases and their potential applications in polymer hydrolysis: The current status. Process Biochem. 2023, 134, 30–46. [Google Scholar] [CrossRef]
- Sahu, S.; Kaur, A.; Khatri, M.; Singh, G.; Arya, S.K. A review on cutinases enzyme in degradation of microplastics. J. Environ. Manag. 2023, 347, 119193. [Google Scholar] [CrossRef]
- Arya, G.C.; Cohen, H. The multifaceted roles of fungal cutinases during infection. J. Fungi 2022, 8, 199. [Google Scholar] [CrossRef] [PubMed]
- Shi, K.; Su, T.T.; Wang, Z.Y. Comparison of poly(butylene succinate) biodegradation by Fusarium solani cutinase and Candida antarctica lipase. Polym. Degrad. Stab. 2019, 164, 55–60. [Google Scholar] [CrossRef]
- Ronkvist, A.M.; Lu, W.; Feder, D.; Gross, R.A. Cutinase-catalyzed deacetylation of poly (vinyl acetate). Macromolecules 2009, 42, 6086–6097. [Google Scholar] [CrossRef]
- Vázquez-Alcántara, L.; Oliart-Ros, R.M.; García-Bórquez, A.; Peña-Montes, C. Expression of a cutinase of Moniliophthora roreri with polyester and PET-plastic residues degradation activity. Microbiol. Spectrum. 2021, 9, e00976-21. [Google Scholar] [CrossRef]
- Purdy, R.E.; Kolattukudy, P.E. Depolymerization of a hydroxy fatty acid biopolymer, cutin, by an extracellular enzyme from Fusarium solani f. pisi: Isolation and some properties of the enzyme. Arch. Biochem. Biophys. 1973, 159, 61–69. [Google Scholar] [CrossRef]
- Yang, S.Q.; Xu, H.B.; Yan, Q.J.; Liu, Y.; Zhou, P.; Jiang, Z.Q. A low molecular mass cutinase of Thielavia terrestris efficiently hydrolyzes poly(esters). J. Ind. Microbiol. Biotechnol. 2013, 40, 217–226. [Google Scholar] [CrossRef]
- Roussel, A.; Amara, S.; Nyyssola, A.; Mateos-Diaz, E.; Blangy, S.; Kontkanen, H.; Westerholm-Pantinen, A.; Carriere, F.; Cambillau, C. A cutinase from Trichoderma reesei with a lid-covered active site and kinetic properties of true lipases. J. Mol. Biol. 2014, 426, 3757–3772. [Google Scholar] [CrossRef]
- Duan, X.; Liu, Y.; You, X.; Jiang, Z.; Yang, S.; Yang, S. High-level expression and characterization of a novel cutinase from Malbranchea cinnamomea suitable for butyl butyrate production. Biotechnol. Biofuels 2017, 10, 223. [Google Scholar] [CrossRef]
- Yang, S.Y.; Liu, M.; Long, L.K.; Zhang, R.; Ding, S.J. Characterization of a cutinase from Myceliophthora thermophila and its application in polyester hydrolysis and deinking process. Process Biochem. 2018, 66, 106–112. [Google Scholar] [CrossRef]
- Gong, Y.D.; Fu, Y.P.; Xie, J.T.; Li, B.; Chen, T.; Lin, Y.; Chen, W.D.; Jiang, D.H.; Cheng, J.S. Sclerotinia sclerotiorum SsCut1 modulates virulence and cutinase activity. J. Fungi 2022, 8, 526. [Google Scholar] [CrossRef]
- Oliveira, C.T.D.; Assis, M.A.D.; Cairo, J.P.L.F.; Damasio, A.; Pereira, G.A.G.; Mazutti, M.A.; Oliveira, D.D. Functional characterization and structural insights of three cutinases from the ascomycete Fusarium verticillioides. Protein Expr. Purif. 2024, 216, 106415. [Google Scholar] [CrossRef]
- Peña-Montes, C.; Bermúdez-García, E.; Castro-Ochoa, D.; Vega-Pérez, F.; Esqueda-Domínguez, K.; Castro-Rodríguez, J.A.; González-Canto, A.; Segoviano-Reyes, L.; Navarro-Ocaña, A.; Farrés, A. ANCUT1, a novel thermoalkaline cutinase from Aspergillus nidulans and its application on hydroxycinnamic acids lipophilization. Biotechnol. Lett. 2024, 46, 409–430. [Google Scholar] [CrossRef] [PubMed]
- Gu, S.F.; Liu, C.J.; Zhang, W.J.; Qu, M.R.; Li, Y.J.; Zang, Y.T.; Xiong, X.W.; Pan, K.; Zhao, X.H. Characteristics of a recombinant Fusarium verticillioides cutinase and its effects on enzymatic hydrolysis of rice straw. Int. J. Biol. Macromol. 2021, 171, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Brinch-Pedersen, W.; Keller, M.B.; Dorau, R.; Paul, B.; Jensen, K.; Borch, K.; Westh, P. Discovery and surface charge engineering of fungal cutinases for enhanced activity on poly(ethylene terephthalate). ACS Sustain. Chem. Eng. 2024, 12, 7329–7337. [Google Scholar] [CrossRef]
- Nikolaivits, E.; Kanelli, M.; Dimarogona, M.; Topakas, E. A middle-aged enzyme still in its prime: Recent advances in the field of cutinases. Catalysts 2018, 8, 612. [Google Scholar] [CrossRef]
- Bermúdez-García, E.; Peña-Montes, C.; Castro-Rodríguez, J.A.; González-Canto, A.; Navarro-Ocaña, A.; Farrés, A. ANCUT2, a thermo-alkaline cutinase from Aspergillus nidulans and its potential applications. Appl. Biochem. Biotechnol. 2017, 182, 1014–1036. [Google Scholar] [CrossRef]
- Tanaka, T.; Nakayama, M.; Takahashi, T.; Nanatani, K.; Yamagata, Y.; Abe, K. Analysis of the ionic interaction between the hydrophobin RodA and two cutinases of Aspergillus nidulans obtained via an Aspergillus oryzae expression system. Appl. Microbiol. Biotechnol. 2017, 101, 2343–2356. [Google Scholar] [CrossRef]
- Bischoff, F.; Litwinska, K.; Cordes, A.; Baronian, K.; Bode, R.; Schauer, F.; Kunze, G. Three new cutinases from the yeast Arxula adeninivorans that are suitable for biotechnological applications. Appl. Environ. Microbiol. 2015, 81, 5497–5510. [Google Scholar] [CrossRef] [PubMed]
- Latge, J.P.; Chamilos, G. Aspergillus fumigatus and Aspergillosis in 2019. Clin. Microbiol. Rev. 2019, 33, e00140-18. [Google Scholar] [CrossRef] [PubMed]
- Bernardi, A.V.; Gerolamo, L.E.; Uyemura, S.A.; Dinamarco, T.M. A thermophilic, pH-tolerant, and highly active GH10 xylanase from Aspergillus fumigatus boosted pre-treated sugarcane bagasse saccharification by cellulases. Ind. Crops Prod. 2021, 170, 113697. [Google Scholar] [CrossRef]
- Velasco, J.; Pellegrini, V.D.A.; Sepulchro, A.G.V.; Kadowaki, M.A.S.; Santo, M.C.E.; Polikarpov, I.; Segato, F. Comparative analysis of two recombinant LPMOs from Aspergillus fumigatus and their effects on sugarcane bagasse saccharification. Enzym. Microb.Technol. 2021, 144, 109746. [Google Scholar] [CrossRef]
- Rawat, H.K.; Soni, H.; Suryawanshi, R.K.; Choukade, R.; Prajapati, B.P.; Kango, N. Exo-inulinase production from Aspergillus fumigatus NFCCI 2426: Purification, characterization, and immobilization for continuous fructose production. J. Food Sci. 2021, 86, 1778–1790. [Google Scholar] [CrossRef]
- Ping, L.F.; Chen, X.Y.; Yuan, X.L.; Zhang, M.; Chai, Y.J.; Shan, S.D. Application and comparison in biosynthesis and biodegradation by Fusarium solani and Aspergillus fumigatus cutinases. Int. J. Biol. Macromol. 2017, 104, 1238–1245. [Google Scholar] [CrossRef]
- Sauerbrey, G. Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Eur. Phys. J. A 1959, 155, 206–222. [Google Scholar] [CrossRef]
- Koschorreck, K.; Liu, D.N.; Kazenwadel, C.; Schmid, R.D.; Hauer, B. Heterologous expression, characterization and site-directed mutagenesis of cutinase CUTAB1 from Alternaria brassicicola. Appl. Microbiol. Biotechnol. 2010, 87, 991–997. [Google Scholar] [CrossRef]
- Hu, X.Y.; Gao, Z.Y.; Wang, Z.Y.; Su, T.T.; Yang, L.; Li, P. Enzymatic degradation of poly(butylene succinate) by cutinase cloned from Fusarium solani. Polym. Degrad. Stab. 2016, 134, 211–219. [Google Scholar] [CrossRef]
- Rubio, M.B.; Cardoza, R.E.; Hermosa, R.; Gutiérrez, S.; Monte, E. Cloning and characterization of the Thcut1 gene encoding a cutinase of Trichoderma harzianum T34. Curr. Genet. 2008, 54, 301–312. [Google Scholar] [CrossRef]
- Aris, M.H.; Annuar, M.S.M.; Ling, T.C. Lipase-mediated degradation of poly-ε-caprolactone in toluene: Behavior and its action mechanism. Polym. Degrad. Stab. 2016, 133, 182–191. [Google Scholar] [CrossRef]
- Strasser, S.; Niegelhell, K.; Kaschowitz, M.; Markus, S.; Kargl, R.; Stana-Kleinschek, K.; Slugovc, C.; Mohan, T.; Spirk, S. Exploring nonspecific protein adsorption on lignocellulosic amphiphilic bicomponent films. Biomacromolecules 2016, 17, 1083–1092. [Google Scholar] [CrossRef]
- Novy, V.; Carneiro, L.; Shin, J.; Larsbrink, J.; Olsson, L. Phylogenetic analysis and in-depth characterization of functionally and structurally diverse CE5 cutinases. J. Biol. Chem. 2021, 297, 101302. [Google Scholar] [CrossRef]
- Baker, P.J.; Poultney, C.; Liu, Z.; Gross, R.; Montclare, J.K. Identification and comparison of cutinases for synthetic polyester degradation. Appl. Microbiol. Biotechnol. 2012, 93, 229–240. [Google Scholar] [CrossRef]
- Su, L.Q.; Hong, R.Y.; Kong, D.M.; Wu, J. Enhanced activity towards polyacrylates and poly(vinyl acetate) by site-directed mutagenesis of Humicola insolens cutinase. Int. J. Biol. Macromol. 2020, 162, 1752–1759. [Google Scholar] [CrossRef] [PubMed]
- Mohanan, N.; Montazer, Z.; Sharma, P.K.; Levin, D.B. Microbial and enzymatic degradation of synthetic plastics. Front. Microbiol. 2020, 11, 580709. [Google Scholar] [CrossRef] [PubMed]
- Ribitsch, D.; Guebitz, G.M. Tuning of adsorption of enzymes to polymer. Methods Enzymol. 2021, 648, 293–315. [Google Scholar] [CrossRef]
- Xue, R.; Chen, Y.P.; Rong, H.; Wei, R.; Cui, Z.L.; Zhou, J.; Dong, W.L.; Jiang, M. Fusion of chitin-binding domain from Chitinolyticbacter meiyuanensis SYBC-H1 to the leaf-branch compost cutinase for enhanced pet hydrolysis. Front. Bioeng. Biotechnol. 2021, 9, 762854. [Google Scholar] [CrossRef]
- Ribitsch, D.; Yebra, A.O.; Zitzenbacher, S.; Wu, J.; Nowitsch, S.; Steinkellner, G.; Greimel, K.; Doliska, A.; Oberdorfer, G.; Gruber, C.C.; et al. Fusion of binding domains to thermobifida cellulosilytica cutinase to tune sorption characteristics and enhancing PEThydrolysis. Biomacromolecules 2013, 14, 1769–1776. [Google Scholar] [CrossRef]
- Perz, V.; Zumstein, M.T.; Sander, M.; Zitzenbacher, S.; Ribitsch, D.; Guebitz, G.M. Biomimetic approach to enhance enzymatic hydrolysis of the synthetic polyester poly(1,4-butylene adipate): Fusing binding modules to esterases. Biomacromolecules 2015, 16, 3889–3896. [Google Scholar] [CrossRef]
- Shirke, A.N.; Basore, D.; Holton, S.; Su, A.; Baugh, E.; Butterfoss, G.L.; Makhatadze, G.; Bystroff, C.; Gross, R.A. Influence of surface charge, binding site residues and glycosylation on Thielavia terrestris cutinase biochemical characteristics. Appl. Microbiol. Biotechnol. 2016, 100, 4435–4446. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, I.; Nakano, S.; Nakamura, T.; El-Salmawy, A.; Miyamoto, M.; Kimura, Y. Mechanism of enzymatic hydrolysis of poly(butylene succinate) and poly(butylene succinate-co-l-lactate) with a lipase from Pseudomonas cepacia. Macromol. Biosci. 2000, 2, 447–455. [Google Scholar] [CrossRef]
- Bauer, S.; Vasu, P.; Persson, S.; Mort, A.J.; Somerville, C.R. Development and application of a suite of polysaccharide-degrading enzymes for analyzing plant cell walls. Proc. Natl. Acad. Sci. USA 2006, 103, 11417–11422. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Gosser, Y.; Baker, P.J.; Ravee, Y.; Lu, Z.Y.; Alemu, G.; Li, H.G.; Butterfoss, G.L.; Kong, X.P.; Gross, R.; et al. Structural and Functional Studies of Aspergillus oryzae Cutinase: Enhanced Thermostability and Hydrolytic Activity of Synthetic Ester and Polyester Degradation. J. Am. Chem. Soc. 2009, 131, 15711–15716. [Google Scholar] [CrossRef] [PubMed]
- Kodama, Y.; Masaki, K.; Kondo, H.; Suzuki, M.; Tsuda, S.; Nagura, T.; Shimba, N.; Suzuki, E.; Iefuji, H. Crystal structure and enhanced activity of a cutinase-like enzyme from Cryptococcus sp. strain S-2. Proteins 2009, 77, 710–717. [Google Scholar] [CrossRef]
- Nyon, M.P.; Rice, D.W.; Berrisford, J.M.; Hounslow, A.M.; Moir, A.J.G.; Huang, H.Z.; Nathan, S.; Mahadi, N.M.; Abu Bakar, F.D.; Craven, C.J. Catalysis by Glomerella cingulata Cutinase Requires Conformational Cycling between the Active and Inactive States of Its Catalytic Triad. J. Mol. Biol. 2009, 385, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Kold, D.; Dauter, Z.; Laustsen, A.K.; Brzozowski, A.M.; Turkenburg, J.P.; Nielsen, A.D.; Koldso, H.; Petersen, E.; Schiott, B.; Maria, L.D.; et al. Thermodynamic and structural investigation of the specific SDS binding of Humicola insolens cutinase. Protein Sci. 2014, 23, 1023–1035. [Google Scholar] [CrossRef]
- Wang, G.Y.; Michailides, T.J.; Hammock, B.D.; Lee, Y.M.; Bostock, R.M. Molecular cloning, characterization, and expression of a redox-responsive cutinase from Monilinia fructicola (Wint.) honey. Fungal Genet. Biol. 2002, 35, 261–276. [Google Scholar] [CrossRef]
- Li, D.H.; Ashby, A.M.; Johnstone, K. Molecular evidence that the extracellular cutinase Pbc1 is required for pathogenicity of Pyrenopeziza brassicae on oilseed rape. Mol. Plant-Microbe Interact. 2003, 16, 545–552. [Google Scholar] [CrossRef]
Organic Solvents | AfCutA | AfCutB |
---|---|---|
Relative Activity (%) | ||
Control | 100 | 100 |
n-Butanol | 87.3 ± 1.3 | 86.1 ± 0.8 |
Trichloromethane | 131.3 ± 1.3 | 121.3 ± 1.0 |
Cyclohexane | 90.4 ± 0.5 | 89.3 ± 1.5 |
n-Octane | 68.3 ± 1.3 | 61.4 ± 0.8 |
n-Hexane | 70.6 ± 1.5 | 72.9 ± 1.7 |
Dimethyl sulfoxide | 145.8 ± 1.3 | 143.7 ± 0.5 |
n-Octanol | 92.2 ± 0.6 | 102.1 ± 2.7 |
Petroleum ether | 88.2 ± 2.5 | 92.3 ± 1.5 |
N-N Dimethylformamide | 88.3 ± 3.4 | 85.2 ± 2.1 |
Cutinase | Species | GenBank No. | MW (kDa) | Optimal pH/ Temperature (˚C) | Specific Activity (U/mg) | Km (mM) | pNP-Ester | References |
---|---|---|---|---|---|---|---|---|
TtCutA | Thielavia terrestris | QBX90222.1 | 25.3 | 4/50 | 1464 | 1 | C4 | [9] |
McCut | Malbranchea cinnamonea | KY5689101.1 | 21.9 | 8/45 | 1147.9 | / | C4 | [11] |
MtCUT | Myceliophthora thermophila | XP_003663956.1 | 23.4 | 8.5/30 | 2155 | 2.34 | C4 | [12] |
FvCut1 | Fusarium verticillioides | FVEG_12346T0 | 21.8 | 9/20 | 175 | 0.05 | C4 | [14] |
FvCut2 | Fusarium verticillioides | FVEG_03395 | 22.7 | 7/40 | 80 | 0.11 | C4 | [14] |
FvCut3 | Fusarium verticillioides | FVEG_13638 | 21.8 | 8/35 | 169 | 0.22 | C4 | [14] |
AnCut2 | Aspergillus nidulans | XP_680810.1 | 29 | 9/60 | 605.6 | 6.88 | C2 | [19] |
rCut1 | Aspergillus nidulans | EAA62469.1 | 19 | 8/30 | 521 | / | C5 | [20] |
rCut2 | Aspergillus nidulans | EAA62121.1 | 29 | 5/30 | 482 | / | C6 | [20] |
Acut1-6hp | Arxula adeinivorans | LN828946 | 21.6 | 5/20 | 66.1 | 1.6 | C6 | [21] |
Acut2-6hp | Arxula adeinivorans | LN828947 | 21.6 | 5/30 | 1747 | 1.5 | C6 | [21] |
Acut3-6hp | Arxula adeinivorans | LN828948 | 29.2 | 5.5/30 | 1251 | 1.9 | C4 | [21] |
A.fumigatus cutinase | Aspergillus fumigatus | KY115674 | 20 | 8/60 | 1236.3 | / | C4 | [26] |
CutAB1 | Alternaria brassicicola | U03393.1 | 24 | 7-9/40 | 1057 | / | C4 | [28] |
FSC | Fusarium solani | gi|2493916 | 24 | 8/50 | 287 | 1.37 | C4 | [29] |
ThCut1 | Trichoderma harzianum | AJ896891 | 29 | 7.5–8 | 8.5 | 0.33 | C2 | [30] |
AfCutA | Aspergillus fumigatus | XP_751420.1 | 23 | 10/40 | 1591 | 5.46 | C4 | This study |
AfCutB | Aspergillus fumigatus | XP_746507.1 | 23 | 9/30 | 1475 | 6.29 | C4 | This study |
Films | Enzyme | pH | Max Δm (ng) | Stabilized Δm′ (ng) | Wash off Δm″ (ng) |
---|---|---|---|---|---|
PCL | AfCutA | 8 | 223.2 | 172.5 | 50.7 |
9 | 248.5 | 191.5 | 57.0 | ||
10 | 200.1 | 154.7 | 45.5 | ||
11 | 170.9 | 132.0 | 38.8 | ||
AfCutB | 8 | 219.2 | 177.6 | 41.6 | |
9 | 259.8 | 210.5 | 49.3 | ||
10 | 248.6 | 201.5 | 47.1 | ||
11 | 188.4 | 134.4 | 54.0 | ||
PBS | AfCutA | 8 | 108.0 | 89.9 | 18.0 |
9 | 159.9 | 131 | 28.9 | ||
10 | 95.9 | 78.6 | 17.3 | ||
11 | 63.9 | 52.4 | 11.5 | ||
AfCutB | 8 | 145.2 | 105.4 | 39.8 | |
9 | 187.2 | 126.7 | 60.5 | ||
10 | 170.1 | 113.5 | 56.7 | ||
11 | 60.7 | 40.3 | 20.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Zhang, T.; Chen, K.; Long, L.; Ding, S. Biochemical Characterization and Polyester-Binding/Degrading Capability of Two Cutinases from Aspergillus fumigatus. Microorganisms 2025, 13, 1121. https://doi.org/10.3390/microorganisms13051121
Wang H, Zhang T, Chen K, Long L, Ding S. Biochemical Characterization and Polyester-Binding/Degrading Capability of Two Cutinases from Aspergillus fumigatus. Microorganisms. 2025; 13(5):1121. https://doi.org/10.3390/microorganisms13051121
Chicago/Turabian StyleWang, Haizhen, Tianrui Zhang, Kaixiang Chen, Liangkun Long, and Shaojun Ding. 2025. "Biochemical Characterization and Polyester-Binding/Degrading Capability of Two Cutinases from Aspergillus fumigatus" Microorganisms 13, no. 5: 1121. https://doi.org/10.3390/microorganisms13051121
APA StyleWang, H., Zhang, T., Chen, K., Long, L., & Ding, S. (2025). Biochemical Characterization and Polyester-Binding/Degrading Capability of Two Cutinases from Aspergillus fumigatus. Microorganisms, 13(5), 1121. https://doi.org/10.3390/microorganisms13051121