Skin Microbiome Overview: How Physical Activity Influences Bacteria
Abstract
:1. Introduction
Skin sites and Physiology | Alpha Diversity | Beta Diversity | Microbial Composition |
---|---|---|---|
Dry (hypothenar palm, volar forearm) | High | High interpersonal variation | Actinobacteria (Propionibacterium 13% and Corynebacterium 15%) Firmicutes, Proteobacteria (41%) and Bacteroidetes (14%) |
Moist (Nare, antecubital fossa, inguinal crease, popliteal fossa) | Low | Low | Colonized predominantly by Firmicutes like Staphylococcus (21%), Corynebacterium spp. (28%), and Proteobacteria (26%) |
Sebaceous (cheek, glabella, external auditory canal, occiput, back) | Lower | Lower | Colonized predominantly by Propionibacterium spp. (46%) and Staphylococcus (16%) |
2. Interactions Between Physical Exercise and Skin Microbiota
3. Regulators of Skin Microbiota: Antimicrobial Peptides (AMPs)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Flowers, L.; Grice, E.A. The skin microbiota: Balancing risk and reward. Cell Host Microbe 2020, 28, 190–200. [Google Scholar] [CrossRef] [PubMed]
- Costello, E.K.; Lauber, C.L.; Hamady, M.; Fierer, N.; Gordon, J.I.; Knight, R. Bacterial community variation in human body habitats across space and time. Science 2009, 326, 1694–1697. [Google Scholar] [CrossRef] [PubMed]
- Harris-Tryon, T.A.; Grice, E.A. Microbiota and maintenance of skin barrier function. Science 2022, 376, 940–945. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Tseng, C.H.; Pei, Z.; Blaser, M.J. Molecular analysis of human forearm superficial skin bacterial biota. Proc. Natl. Acad. Sci. USA 2007, 104, 2927–2932. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, Q.; Zhong, Q.; Duan, C.; Krutmann, J.; Wang, J.; Xia, J. Skin Microbiome, Metabolome and Skin Phenome, from the Perspectives of Skin as an Ecosystem. Phenomics 2022, 2, 363–382. [Google Scholar] [CrossRef]
- Oh, J.; Byrd, A.L.; Deming, C.; Conlan, S.; Kong, H.H.; Segre, J.A. Biogeography and individuality shape function in the human skin metagenome. Nature 2014, 514, 59–64. [Google Scholar] [CrossRef]
- Townsend, E.C.; Kalan, L.R. The dynamic balance of the skin microbiome across the lifespan. Biochem. Soc. Trans. 2023, 51, 71–86. [Google Scholar] [CrossRef]
- Roth, R.R.; James, W.D. Microbial ecology of the skin. Annu. Rev. Microbiol. 1988, 42, 441–464. [Google Scholar] [CrossRef]
- Marples, M. A Seminal and Comprehensive Work of Classical Dermatological Microbiology. In The Ecology of the Human Skin; Charles C Thomas: Bannerstone House, Springfield, IL, USA, 1965. [Google Scholar]
- Grice, E.A.; Segre, J.A. The skin microbiome. Nat. Rev. Microbiol. 2011, 9, 244–253. [Google Scholar] [CrossRef]
- Chen, Y.E.; Fischbach, M.A.; Belkaid, Y. Skin microbiota–host interactions. Nature 2018, 553, 427–436. [Google Scholar] [CrossRef]
- Cui, L.; Jia, Y.; Cheng, Z.W.; Gao, Y.; Zhang, G.L.; Li, J.Y.; He, C.F. Advancements in the maintenance of skin barrier/skin lipid composition and the involvement of metabolic enzymes. J. Cosmet. Dermatol. 2016, 15, 549–558. [Google Scholar] [CrossRef] [PubMed]
- Capone, K.A.; Dowd, S.E.; Stamatas, G.N.; Nikolovski, J. Diversity of the human skin microbiome early in life. J. Investig. Dermatol. 2011, 131, 2026–2032. [Google Scholar] [CrossRef] [PubMed]
- Hospodsky, D.; Qian, J.; Nazaroff, W.W.; Yamamoto, N.; Bibby, K.; Rismani-Yazdi, H.; Peccia, J. Human occupancy as a source of indoor airborne bacteria. PLoS ONE 2012, 7, e34867. [Google Scholar] [CrossRef] [PubMed]
- Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 2012, 486, 207–214. [Google Scholar] [CrossRef]
- Kembel, S.W.; Jones, E.; Kline, J.; Northcutt, D.; Stenson, J.; Womack, A.M.; Bohannan, B.J.; Brown, G.Z.; Green, J.L. Architectural design influences the diversity and structure of the built environment microbiome. ISME J. Multidiscip. J. Microb. Ecol. 2012, 6, 1469–1479. [Google Scholar] [CrossRef]
- Pessoa-Silva, C.L.; Dharan, S.; Hugonnet, S.; Touveneau, S.; Posfay-Barbe, K.; Pfister, R.; Pittet, D. Dynamics of bacterial hand contamination during routine neonatal care. Infect. Control Hosp. Epidemiol. 2004, 25, 192–197. [Google Scholar] [CrossRef]
- Pittet, D.; Allegranzi, B.; Sax, H.; Dharan, S.; Pessoa-Silva, C.L.; Donaldson, L.; Boyce, J.M. Evidence-based model for hand transmission during patient care and the role of improved practices. Lancet Infect. Dis. 2006, 6, 641–652. [Google Scholar] [CrossRef]
- Davis, M.F.; Iverson, S.A.; Baron, P.; Vasse, A.; Silbergeld, E.K.; Lautenbach, E.; Morris, D.O. Household transmission of meticillin-resistant Staphylococcus aureus and other staphylococci. Lancet Infect. Dis. 2012, 12, 703–716. [Google Scholar] [CrossRef]
- Estes, K.R. Skin infections in high school wrestlers: A nurse practitioner’s guide to diagnosis, treatment, and return to participation. J. Am. Assoc. Nurse Pract. 2015, 27, 4–10. [Google Scholar] [CrossRef]
- Ilgen, D.E.; Metin, E. Characteristics of sports-related dermatoses for different types of sports: A cross-sectional study. J. Dermatol. 2005, 32, 620–625. [Google Scholar]
- Grosset-Janin, X.N.; Saraux, A. Sport and infectious risk: A systematic review of the literature over 20 years. Med. Et. Mal. Infect. 2012, 42, 533–544. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.; Cain, G.; Naji, O.; Goff, J. Skin infections in athletes: Treating the patient, protecting the team. J. Fam. Pract. 2013, 62, 284–291. [Google Scholar] [PubMed]
- Ahmadinejad, Z.; Razaghi, A.; Noori, A.; Hashemi, S.; Asghari, R.; Ziaee, V. Prevalence of Fungal Skin Infections in Iranian Wrestlers. Asian J. Sports Med. 2013, 4, 29. [Google Scholar] [CrossRef] [PubMed]
- Wells, W.J.; Klein, R.; Sylvester, T.; Sunenshine, R. Outbreak of skin lesions among high school wrestlers-Arizona, 2014. Morb. Mortal. Wkly. Rep. 2015, 64, 559–560. [Google Scholar]
- Wilson, E.K.; deWeber, K.; Berry, J.W.; Wilckens, J.H. Cutaneous Infections in Wrestlers. Sports Health 2013, 5, 423–437. [Google Scholar] [CrossRef]
- Pecci, M.; Comeau, D.; Chawla, V. Skin conditions in the athlete. Am. J. Sports Med. 2009, 37, 406–418. [Google Scholar] [CrossRef]
- Brancaccio, M.; Mennitti, C.; Laneri, S.; Franco, A.; De Biasi, M.G.; Cesaro, A.; Fimiani, F.; Moscarella, E.; Gragnano, F.; Mazzaccara, C.; et al. Methicillin-Resistant Staphylococcus aureus: Risk for General Infection and Endocarditis Among Athletes. Antibiotics 2020, 9, 332. [Google Scholar] [CrossRef]
- Adams, B.B. Which skin infections are transmitted between athletes? West. J. Med. 2001, 174, 352–353. [Google Scholar] [CrossRef]
- Minooee, A.; Wang, J.; Gupta, G.K. Sports: The Infectious Hazards. Microbiol. Spectr. 2015, 3. [Google Scholar] [CrossRef]
- Meadow, J.F.; Bateman, A.C.; Herkert, K.M.; O’Connor, T.K.; Green, J.L. Significant changes in the skin microbiome mediated by the sport of roller derby. PeerJ 2013, 1, e53. [Google Scholar] [CrossRef]
- Adams, B.B. Tinea corporis gladiatorum. J. Am. Acad. Dermatol. 2002, 47, 286–290. [Google Scholar] [CrossRef] [PubMed]
- Dienst, W.L., Jr.; Dightman, L.; Dworkin, M.S.; Thompson, R.K.; Howe, W.B. Pinning down skin infections: Diagnosis treatment and prevention in wrestlers. Physician Sports Med. 1997, 25, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Nowicka, D.; Bagłaj-Oleszczuk, M.; Maj, J. Infectious diseases of the skin in contact sports. Adv. Clin. Exp. Med. 2020, 29, 1491–1495. [Google Scholar] [CrossRef]
- Turecek, S.; Brymer, E.; Rahimi-Golkhandan, S. The relationship between physical activity environment, mental wellbeing, flourishing and thriving: A mixed method study. Psychol. Sport Exerc. 2025, 76, 102769, ISSN: 1469-0292. [Google Scholar] [CrossRef]
- Mukherjee, N.; Dowd, S.E.; Wise, A.; Kedia, S.; Vohra, V.; Banerjee, P. Diversity of bacterial communities of fitness center surfaces in a U.S. metropolitan area. Int. J. Env. Res. Public. Health 2014, 11, 12544–12561. [Google Scholar] [CrossRef]
- Wood, M.; Gibbons, S.M.; Lax, S.; Eshoo-Anton, T.W.; Owens, S.M.; Kennedy, S.; Gilbert, J.A.; Hampton-Marcell, J.T. Athletic equipment microbiota are shaped by interactions with human skin. Microbiome 2015, 3, 25. [Google Scholar] [CrossRef]
- Liang, Z.; Dong, C.; Liang, H.; Zhen, Y.; Zhou, R.; Han, Y.; Liang, Z.Q. A microbiome study reveals the potential relationship between the bacterial diversity of a gymnastics hall and human health. Sci. Rep. 2022, 12, 5663. [Google Scholar] [CrossRef]
- Wallen-Russell, C.; Wallen-Russell, S. Short Communication: Could the Skin Microbiome Affect Sports Recovery and Performance? Preprints 2022, 2022100124. [Google Scholar]
- Young, L.M.; Motz, V.A.; Markey, E.R.; Young, S.C.; Beaschler, R.E. Recommendations for best disinfectant practices to reduce the spread of infection via wrestling mats. J. Athl. Train. 2017, 52, 82–88. [Google Scholar] [CrossRef]
- Champion, A.E.; Goodwin, T.A.; Brolinson, P.G.; Werre, S.R.; Prater, M.R.; Inzana, T.J. Prevalence and characterization of methicillin-resistant Staphylococcus aureus isolates from healthy university student athletes. Ann. Clin. Microbiol. Antimicrob. 2014, 13, 33. [Google Scholar] [CrossRef]
- Belongia, E.A.; Goodman, J.L.; Holland, E.J.; Andres, C.W.; Homann, S.R.; Mahanti, R.L.; Mizener, M.W.; Erice, A.; Osterholm, M.T. An outbreak of herpes gladiatorum at a high-school wrestling camp. N. Eng. J. Med. 1991, 325, 906–910. [Google Scholar] [CrossRef] [PubMed]
- Freeman, M.J.; Bergfeld, W.F. Skin diseases of football and wrestling participants. Cutis 1977, 20, 333–341. [Google Scholar] [PubMed]
- Usatine, R.P.; Tinitigan, R. Nongenital herpes simplex virus. Am. Fam. Physician 2010, 82, 1075–1082. [Google Scholar] [PubMed]
- Jefferis, J.; Perera, R.; Everitt, H.; Van Weert, H.; Rietveld, R.; Glasziou, P.; Rose, P. Acute infective conjunctivitis in primary care: Who needs antibiotics? An individual patient data meta-analysis. Br. J. Gen. Pract. 2011, 61, e542–e548. [Google Scholar] [CrossRef]
- Johnson, R. Herpes gladiatorum and other skin diseases. Clin. Sports Med. 2004, 23, 473–484. [Google Scholar] [CrossRef]
- Beller, M.; Gessner, B.D. An outbreak of tinea corporis gladiatorum on a high school wrestling team. J. Am. Acad. Dermatol. 1994, 31 Pt 1, 197–201. [Google Scholar] [CrossRef]
- Ilkit, M.; Ali Saracli, M.; Kurdak, H.; Turac-Bicer, A.; Yuksel, T.; Karakas, M.; Schuenemann, E.; Abdel-Rahman, S.M. Clonal outbreak of Trichophyton tonsurans tinea capitis gladiatorum among wrestlers in Adana, Turkey. Med. Mycol. 2009, 48, 480–485. [Google Scholar] [CrossRef]
- Kaushik, N.; Pujalte, G.G.; Reese, S.T. Superficial fungal infections. Prim. Care 2015, 42, 501–516. [Google Scholar] [CrossRef]
- John, A.M.; Schwartz, R.A.; Janniger, C.K. The kerion: An angry tinea capitis. Int. J. Dermatol. 2018, 57, 3–9. [Google Scholar] [CrossRef]
- Hay, R.J. Tinea capitis: Current status. Mycopathologia 2017, 182, 87–93. [Google Scholar] [CrossRef]
- Auchus, I.C.; Ward, K.M.; Brodell, R.T.; Brents, M.J.; Jackson, J.D. Tinea capitis in adults. Dermatol. Online J. 2016, 22. [Google Scholar] [CrossRef]
- Renati, S.; Cukras, A.; Bigby, M. Pityriasis versicolor. BMJ 2015, 350, h1394. [Google Scholar] [CrossRef] [PubMed]
- Romero, D.V.; Treston, J.; O’Sullivan, A.L. Hand-to-hand: Preventing MRSA. Nurse Pract. 2006, 31, 16–23. [Google Scholar] [CrossRef]
- Nguyen, D.M.; Mascola, L.; Bancroft, E. Recurring methicillin-resistant Staphylococcus aureus infections in a football team. Emerg. Infect. Dis. 2005, 11, 526–532. [Google Scholar] [CrossRef]
- Cohen, P.R. Cutaneous community-acquired methicillin-resistant Staphylococcus aureus infection in participants of athletic activities. South. Med. J. 2005, 98, 596–602. [Google Scholar] [CrossRef]
- Kazakova, S.V.; Hageman, J.C.; Matava, M.; Srinivasan, A.; Phelan, L.; Garfinkel, B.; Boo, T.; McAllister, S.; Anderson, J.; Jensen, B.; et al. A clone of methicillin-resistant Staphylococcus aureus among professional football players. N. Engl. J. Med. 2005, 352, 468–475. [Google Scholar] [CrossRef]
- Bergfeld, W.F.; Taylor, J.S. Trauma, sports, and the skin. Am. J. Ind. Med. 1985, 8, 403–413. [Google Scholar] [CrossRef]
- Sosin, D.M.; Gunn, R.A.; Ford, W.L.; Skaggs, J.W. An outbreak of furunculosis among high school athletes. Am. J. Sports Med. 1989, 17, 828–832. [Google Scholar] [CrossRef]
- Powell, F.C. Sports dermatology. J. Eur. Acad. Dermatol. Venereol. 1994, 3, 1–15. [Google Scholar] [CrossRef]
- Anderson, B.J. The epidemiology and clinical analysis of several outbreaks of herpes gladiatorum. Med. Sci. Sports Exerc. 2003, 35, 1809–1814. [Google Scholar] [CrossRef]
- Martykanova, D.S.; Davletova, N.C.; Zemlenuhin, I.A.; Volchkova, V.I.; Mugallimov, S.M.; Ahatov, A.M.; Laikov, A.V.; Markelova, M.I.; Boulygina, E.A.; Lopukhov, L.V.; et al. Skin Microbiota in Contact Sports Athletes and Selection of Antiseptics for Professional Hygiene. Biomed. Res. Int. 2019, 2019, 9843781. [Google Scholar] [CrossRef] [PubMed]
- Szatkowska, J.; Teofilak, M.; Śpiołek, O.; Siwiec, J.; Smyl, N.; Kędziora, F.; Wąsowicz, A.; Słowikowska, A.; Sztyler-Krąkowska, M.; Fabian, D. The Role of Physical Activity in Enhancing and Preserving Skin Health. J. Educ. Health Sport 2024, 76, 56455. [Google Scholar] [CrossRef]
- Nakagawa, N.; Shimizu, N.; Sugawara, T.; Sakai, S. The relationship between habitual physical activity and skin mechanical properties. Ski. Res. Technol. 2021, 27, 353–357. [Google Scholar] [CrossRef]
- Oizumi, R.; Sugimoto, Y.; Aibara, H. The Potential of Exercise on Lifestyle and Skin Function: Narrative Review. JMIR Dermatol. 2024, 7, e51962. [Google Scholar] [CrossRef]
- Ryosuke, O.; Yoshie, S.; Hiromi, A. The association between activity levels and skin moisturizing function in adults. Dermatol. Rep. 2021, 13, 8811. [Google Scholar]
- Lu, C.Y.; Lee, H.C.; Fahn, H.J.; Wei, Y.H. Oxidative damage elicited by imbalance of free radical scavenging enzymes is associated with large-scale mtDNA deletions in aging human skin. Mutat. Res. 1999, 423, 11–21. [Google Scholar] [CrossRef]
- Safdar, A.; Bourgeois, J.M.; Ogborn, D.I.; Little, J.P.; Hettinga, B.P.; Akhtar, M.; Thompson, J.E.; Melov, S.; Mocellin, N.J.; Kujoth, G.C.; et al. Endurance exercise rescues progeroid aging and induces systemic mitochondrial rejuvenation in mtDNA mutator mice. Proc. Natl. Acad. Sci. USA 2011, 108, 4135–4140. [Google Scholar] [CrossRef]
- Crane, J.D.; MacNeil, L.G.; Lally, J.S.; Ford, R.J.; Bujak, A.L.; Brar, I.K.; Kemp, B.E.; Raha, S.; Steinberg, G.R.; Tarnopolsky, M.A. Exercise-stimulated interleukin-15 is controlled by AMPK and regulates skin metabolism and aging. Aging Cell 2015, 14, 625–634. [Google Scholar] [CrossRef]
- Kang, S.-Y.; Um, J.-Y.; Chung, B.-Y.; Lee, S.-Y.; Park, J.-S.; Kim, J.-C.; Park, C.-W.; Kim, H.-O. Moisturizer in Patients with Inflammatory Skin Diseases. Medicina 2022, 58, 888. [Google Scholar] [CrossRef]
- Lebwohl, M.; Herrmann, L.G. Impaired skin barrier function in dermatologic disease and repair with moisturization. Cutis 2005, 76 (Suppl. 6), 7–12. [Google Scholar]
- Centers for Disease Control and Prevention (CDC). Methicillin-resistant Staphylococcus aureus infections among competitive sports participants—Colorado, Indiana, Pennsylvania, and Los Angeles County, 2000–2003. MMWR Morb Mortal Wkly Rep. 2003, 52, 793–795. [Google Scholar]
- Liu, C.; Bayer, A.; Cosgrove, S.E.; Daum, R.S.; Fridkin, S.K.; Gorwitz, R.J.; Kaplan, S.L.; Karchmer, A.W.; Levine, D.P.; Murray, B.E.; et al. Infectious Diseases Society of America. Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin. Infect. Dis. 2011, 52, e18–e55. [Google Scholar] [CrossRef] [PubMed]
- Zinder, S.M.; Basler, R.S.; Foley, J.; Scarlata, C.; Vasily, D.B. National Athletic Trainers’ Association position statement: Skin diseases. J. Athl. Train. 2010, 45, 411–428. [Google Scholar] [CrossRef]
- National Collegiate Athletic Association. 2014–2015 NCAA Sports Medicine Handbook. 2014. Available online: http://www.ncaapublications.com/productdownloads/MD15.pdf (accessed on 6 April 2025).
- Mitchell, J.J.; Jackson, J.M.; Anwar, A.; Singleton, S.B. Bacterial Sport-Related Skin and Soft-Tissue Infections (SSTIs): An Ongoing Problem Among a Diverse Range of Athletes. JBJS Rev. 2017, 5, e4. [Google Scholar] [CrossRef]
- Zeeuwen, P.L.J.M.; Grice, E.A. Skin microbiome and antimicrobial peptides. Exp. Dermatol. 2021, 30, 1362–1365. [Google Scholar] [CrossRef]
- Clausen, M.L.; Agner, T. Antimicrobial Peptides, Infections and the Skin Barrier. Curr. Probl. Dermatol. 2016, 49, 38–46. [Google Scholar]
- Harder, J.; Bartels, J.; Christophers, E.; Schröder, J.M. A peptide antibiotic from human skin. Nature 1997, 387, 861. [Google Scholar] [CrossRef]
- Schröder, J.M.; Harder, J. Human beta-defensin-2. Int. J. Biochem. Cell Biol. 1999, 31, 645–651. [Google Scholar] [CrossRef]
- Harder, J.; Bartels, J.; Christophers, E.; Schröder, J.M. Isolation and characterization of human beta-defensin-3, a novel human inducible peptide antibiotic. J. Biol. Chem. 2001, 276, 5707–5713. [Google Scholar] [CrossRef]
- Lehrer, R.I.; Ganz, T. Cathelicidins: A family of endogenous antimicrobial peptides. Curr. Opin. Hematol. 2002, 9, 18–22. [Google Scholar] [CrossRef]
- Frohm, M.; Agerberth, B.; Ahangari, G.; Ståhle-Bäckdahl, M.; Lidén, S.; Wigzell, H.; Gudmundsson, G.H. The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes during inflammatory disorders. J. Biol. Chem. 1997, 272, 15258–15263. [Google Scholar] [CrossRef]
- Gudmundsson, G.H.; Agerberth, B.; Odeberg, J.; Bergman, T.; Olsson, B.; Salcedo, R. The human gene FALL39 and processing of the cathelin precursor to the antibacterial peptide LL-37 in granulocytes. Eur. J. Biochem. 1996, 238, 325–332. [Google Scholar] [CrossRef]
- Gläser, R.; Harder, J.; Lange, H.; Bartels, J.; Christophers, E.; Schröder, J.M. Antimicrobial psoriasin (S100A7) protects human skin from Escherichia coli infection. Nat. Immunol. 2005, 6, 57–64. [Google Scholar] [CrossRef]
- Simanski, M.; Rademacher, F.; Schröder, L.; Schumacher, H.M.; Gläser, R.; Harder, J. IL-17A and IFN-gamma synergistically induce RNase7 expression via STAT3 in primary keratinocytes. PLoS ONE 2013, 8, e59531. [Google Scholar] [CrossRef]
- Harder, J.; Schröder, J.M. RNase 7, a novel innate immune defense antimicrobial protein of healthy human skin. J. Biol. Chem. 2002, 277, 46779–46784. [Google Scholar] [CrossRef]
- Rademacher, F.; Dreyer, S.; Kopfnagel, V.; Gläser, R.; Werfel, T.; Harder, J. The antimicrobial and immunomodulatory function of RNase 7in skin. Front. Immunol. 2019, 10, 2553. [Google Scholar] [CrossRef]
- Rademacher, F.; Simanski, M.; Schröder, L.; Mildner, M.; Harder, J. The role of RNase 7 in innate cutaneous defense against Pseudomonas aeruginosa. Exp. Dermatol. 2017, 26, 227–233. [Google Scholar] [CrossRef]
- Rademacher, F.; Simanski, M.; Harder, J. RNase 7 in Cutaneous Defense. Int. J. Mol. Sci. 2016, 17, 560. [Google Scholar] [CrossRef]
- Spencer, J.D.; Schwaderer, A.L.; DiRosario, J.D.; McHugh, K.M.; McGillivary, G.; Justice, S.S.; Carpenter, A.R.; Baker, P.B.; Harder, J.; Hains, D.S. Ribonuclease 7 is a potent antimicrobial peptide within the human urinary tract. Kidney Int. 2011, 80, 174–180. [Google Scholar] [CrossRef]
- Walter, S.; Rademacher, F.; Kobinger, N.; Simanski, M.; Gläser, R.; Harder, J. RNase 7 participates in cutaneous innate control of Corynebacterium amycolatum. Sci. Rep. 2017, 7, 13862. [Google Scholar] [CrossRef]
- Simanski, M.; Dressel, S.; Gläser, R.; Harder, J. RNase 7 protects healthy skin from Staphylococcus aureus colonization. J. Invest. Dermatol. 2010, 130, 2836–2838. [Google Scholar] [CrossRef] [PubMed]
- Koten, B.; Simanski, M.; Gläser, R.; Podschun, R.; Schröder, J.M.; Harder, J. RNase 7 contributes to the cutaneous defense against Enterococcus faecium. PLoS ONE 2009, 4, e6424. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Chertov, O.; Bykovskaia, S.N.; Chen, Q.; Buffo, M.J.; Shogan, J.; Anderson, M.; Schroder, J.M.; Wang, J.M.; Howard, O.M.; et al. Beta defensins: Linking innate and adaptive immunity through dendritic and T cell CCR6. Science 1999, 286, 525–528. [Google Scholar] [CrossRef]
- Lai, Y.; Gallo, R.L. AMPed up immunity: How antimicrobial peptides have multiple roles in immune defense. Trends Immunol. 2009, 30, 131–141. [Google Scholar] [CrossRef]
- Gallo, R.L.; Huttner, K.M. Antimicrobial peptides: An emerging concept in cutaneous biology. J. Invest. Dermatol. 1998, 111, 739–743. [Google Scholar] [CrossRef]
- Namjoshi, S.; Caccetta, R.; Benson, H.A. Skin peptides: Biological activity and therapeutic opportunities. J. Pharm. Sci. 2008, 97, 2524–2542. [Google Scholar] [CrossRef]
- Sørensen, O.E.; Thapa, D.R.; Rosenthal, A.; Liu, L.; Roberts, A.A.; Ganz, T. Differential regulation of β-defensin expression in human skin by microbial stimuli. J. Immunol. 2005, 174, 4870–4879. [Google Scholar] [CrossRef]
- Niyonsaba, F.; Ushio, H.; Nakano, N.; Ng, W.; Sayama, K.; Hashimoto, K.; Nagaoka, I.; Okumura, K.; Ogawa, H. Antimicrobial peptides human β-defensins stimulate epidermal keratinocyte migration, proliferation and production of proinflammatory cytokines and chemokines. J. Invest. Dermatol. 2007, 127, 594–604. [Google Scholar] [CrossRef]
- Reinholz, M.; Ruzicka, T.; Schauber, J. Cathelicidin LL-37: An antimicrobial peptide with a role in inflammatory skin disease. Annals Dermatol. 2012, 24, 126–135. [Google Scholar] [CrossRef]
- Tokumaru, S.; Sayama, K.; Shirakata, Y.; Komatsuzawa, H.; Ouhara, K.; Hanakawa, Y.; Yahata, Y.; Dai, X.; Tohyama, M.; Nagai, H.; et al. Induction of keratinocyte migration via transactivation of the epidermal growth factor receptor by the antimicrobial peptide LL-37. J. Immunol. 2005, 175, 4662–4668. [Google Scholar] [CrossRef]
- Niyonsaba, F.; Suzuki, A.; Ushio, H.; Nagaoka, I.; Ogawa, H.; Okumura, K. The human antimicrobial peptide dermcidin activates normal human keratinocytes. Br. J. Dermatol. 2009, 160, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Niyonsaba, F.; Ushio, H.; Nagaoka, I.; Okumura, K.; Ogawa, H. The human beta-defensins (-1, -2, 3, -4) and cathelicidin LL-37 induce IL-18 secretion through p38 and ERK MAPK activation in primary human keratinocytes. J. Immunol. 2005, 175, 1776–1784. [Google Scholar] [CrossRef] [PubMed]
- Niyonsaba, F.; Iwabuchi, K.; Matsuda, H.; Ogawa, H.; Nagaoka, I. Epithelial cell-derived human beta-defensin-2 acts as a chemotaxin for mast cells through a pertussis toxin-sensitive and phospholipase C-dependent pathway. Int. Immunol. 2002, 14, 421–426. [Google Scholar] [CrossRef]
- Izadpanah, A.; Gallo, R.L. Antimicrobial peptides. J. Am. Acad. Dermatol. 2005, 52, 381–382. [Google Scholar] [CrossRef]
- Scudiero, O.; Brancaccio, M.; Mennitti, C.; Laneri, S.; Lombardo, B.; De Biasi, M.G.; De Gregorio, E.; Pagliuca, C.; Colicchio, R.; Salvatore, P.; et al. Human Defensins: A Novel Approach in the Fight against Skin Colonizing Staphylococcus aureus. Antibiotics 2020, 9, 198. [Google Scholar] [CrossRef]
- Madsen, P.; Rasmussen, H.H.; Celis, J.E. Molecular cloning, occurrence, and expression of a novel partially secreted protein ‘psoriasin’ that is highly up-regulated in psoriatic skin. J. Invest. Dermatol. 1991, 97, 701–712. [Google Scholar] [CrossRef]
- Rademacher, F.; Glaser, R.; Harder, J. Antimicrobial peptides and proteins: Interaction with the skin microbiota. Exp. Dermatol. 2021, 30, 1496–1508. [Google Scholar] [CrossRef]
- Schittek, B.; Hipfel, R.; Sauer, B.; Bauer, J.; Kalbacher, H.; Stevanovic, S.; Schirle, M.; Schroeder, K.; Blin, N.; Meier, F.; et al. Dermcidin: A novel human antibiotic peptide secreted by sweat glands. Nat. Immunol. 2001, 2, 1133–1137. [Google Scholar] [CrossRef]
- Simanski, M.; Erkens, A.S.; Rademacher, F.; Harder, J. Staphylococcus epidermidis-induced interleukin-1 beta and human beta-defensin-2 expression in human keratinocytes is regulated by the host molecule A20 (TNFAIP3). Acta Derm. Venereol. 2019, 99, 181–187. [Google Scholar] [CrossRef]
- Park, K.; Ommori, R.; Imoto, K.; Asada, H. Epidermal growth factor receptor inhibitors selectively inhibit the expressions of human beta-defensins induced by Staphylococcus epidermidis. J. Dermatol. Sci. 2014, 75, 94–99. [Google Scholar] [CrossRef]
- Ommori, R.; Ouji, N.; Mizuno, F.; Kita, E.; Ikada, Y.; Asada, H. Selective induction of antimicrobial peptides from keratinocytes by staphylococcal bacteria. Microb. Pathog. 2013, 56, 35–39. [Google Scholar] [CrossRef] [PubMed]
- Wanke, I.; Steffen, H.; Christ, C.; Krismer, B.; Götz, F.; Peschel, A.; Schaller, M.; Schittek, B. Skin commensals amplify the innate immune response to pathogens by activation of distinct signaling pathways. J. Invest. Dermatol. 2011, 131, 382–390. [Google Scholar] [CrossRef] [PubMed]
- Myles, I.A.; Earland, N.J.; Anderson, E.D.; Moore, I.N.; Kieh, M.D.; Williams, K.W.; Saleem, A.; Fontecilla, N.M.; Welch, P.A.; Darnell, D.A.; et al. First-in-human topical microbiome transplantation with Roseomonas mucosa for atopic dermatitis. JCI Insight 2018, 3, e120608. [Google Scholar] [CrossRef]
- Fyhrquist, N.; Muirhead, G.; Prast-Nielsen, S.; Jeanmougin, M.; Olah, P.; Skoog, T.; Jules-Clement, G.; Feld, M.; Barrientos-Somarribas, M.; Sinkko, H.; et al. Microbe host interplay in atopic dermatitis and psoriasis. Nat. Commun. 2019, 10, 4703. [Google Scholar] [CrossRef]
- FAO; WHO. Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria: Report of a Joint FAO WHO Expert Consultation on Evaluation of Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria. In Proceedings of the Joint FAO/WHO Expert Consultation on Evaluation of Health, Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria, American Córdoba Park Hotel, Córdoba, Argentina, 1–4 October 2001. [Google Scholar]
- Gibson, G.R.; Roberfroid, M.B. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J. Nutr. 1995, 125, 1401–1412. [Google Scholar] [CrossRef]
- Paetzold, B.; Willis, J.R.; Pereira de Lima, J.; Knödlseder, N.; Brüggemann, H.; Quist, S.R.; Gabaldón, T.; Güell, M. Skin microbiome modulation induced by probiotic solutions. Microbiome 2019, 7, 95. [Google Scholar] [CrossRef]
- Franca, K. Topical probiotics in dermatological therapy and skin care: A concise review. Dermatol. Ther. 2021, 11, 71–77. [Google Scholar] [CrossRef]
- Knackstedt, R.; Knackstedt, T.; Gatherwright, J. The role of topical probiotics in skin conditions: A systematic review of animal and human studies and implications for future therapies. Exp. Dermatol. 2020, 29, 15–21. [Google Scholar] [CrossRef]
Antimicrobial Peptides of the Skin | Bacteriostatic Activity Against |
---|---|
HNP2 | Gram-positive (S. aureus) |
hBD2 | Gram-negative (P. aeruginosa and E. coli), Gram-positive (S. epidermidis), and yeast (C. albicans) |
hBD3 | Gram-negative (E. coli and P. aeruginosa), Gram-positive (S. pyogenes, E. faecium, S. aureus, and S. epidermidis), and yeast (C. albicans) |
LL-37 | Gram-positive (S. epidermidis) and Gram-negative |
Psoriasin | Gram-negative (E. coli) and Gram positive (S. aureus) |
RNAase7 | Gram-negative (P. aeruginosa and E. coli) and Gram-positive (S. aureus, C. amycolatum, E. faecium, and P. acne) |
Dermcidin | Gram-negative (E. coli), Gram-positive (S. aureus), and yeast (C. albicans) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mennitti, C.; Calvanese, M.; Gentile, A.; Vastola, A.; Romano, P.; Ingenito, L.; Gentile, L.; Veneruso, I.; Scarano, C.; La Monica, I.; et al. Skin Microbiome Overview: How Physical Activity Influences Bacteria. Microorganisms 2025, 13, 868. https://doi.org/10.3390/microorganisms13040868
Mennitti C, Calvanese M, Gentile A, Vastola A, Romano P, Ingenito L, Gentile L, Veneruso I, Scarano C, La Monica I, et al. Skin Microbiome Overview: How Physical Activity Influences Bacteria. Microorganisms. 2025; 13(4):868. https://doi.org/10.3390/microorganisms13040868
Chicago/Turabian StyleMennitti, Cristina, Mariella Calvanese, Alessandro Gentile, Aniello Vastola, Pietro Romano, Laura Ingenito, Luca Gentile, Iolanda Veneruso, Carmela Scarano, Ilaria La Monica, and et al. 2025. "Skin Microbiome Overview: How Physical Activity Influences Bacteria" Microorganisms 13, no. 4: 868. https://doi.org/10.3390/microorganisms13040868
APA StyleMennitti, C., Calvanese, M., Gentile, A., Vastola, A., Romano, P., Ingenito, L., Gentile, L., Veneruso, I., Scarano, C., La Monica, I., Di Lorenzo, R., Frisso, G., D’Argenio, V., Lombardo, B., Scudiero, O., Pero, R., & Laneri, S. (2025). Skin Microbiome Overview: How Physical Activity Influences Bacteria. Microorganisms, 13(4), 868. https://doi.org/10.3390/microorganisms13040868