‘Geophagy’ and Clay Minerals: Influencing Ruminal Microbial Fermentation for Methane Mitigation
Abstract
:1. Introduction
2. Biological Processes of Ruminal Methane Production
3. Use of Clays in the Enteric Methane Abatement
3.1. Overview of the Properties of Clay Mineral
3.2. Clay Minerals into “Geophagy” and Ruminal CH4 Mitigation
3.3. Supplementation of the Clay Minerals as Specialized Cattle Feed
3.4. Raw and Modified Clay Minerals to Carry and Deliver Other CH4 Inhibitory Additives
3.5. Stakeholders’ Acceptability of Clay-Based Cattle Diet
4. Clay Minerals and Their Interactions with Rumen Microbiota
4.1. Possible Mechanisms of Clay–Microbe Interactions in the Rumen
4.2. Analytical Challenges in Studying Clay–Microbe Interactions in the Rumen
4.2.1. Challenge in the Sample Collection and Preparation
4.2.2. Microscopic Imaging of Microbial Attachment on the Clay Surface
4.3. Fate Analysis of Ingested Clay Minerals in the Rumen or in Feces
5. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sobanaa, M.; Prathiviraj, R.; Selvin, J.; Prathaban, M. A comprehensive review on methane’s dual role: Effects in climate change and potential as a carbon-neutral energy source. Environ. Sci. Pollut. Res. Int. 2024, 31, 10379–10394. [Google Scholar] [CrossRef] [PubMed]
- Hughes, L.; Rayner, J.; Dean, A.; Tidswell, K. Dangerously Overlooked: Why We Need to Talk About Methane; The Climate Council of Australia Limited: Melbourne, Australia, 2024; p. 47. [Google Scholar]
- Jackson, R.B.; Saunois, M.; Bousquet, P.; Canadell, J.G.; Poulter, B.; Stavert, A.R.; Bergamaschi, P.; Niwa, Y.; Segers, A.; Tsuruta, A. Increasing anthropogenic methane emissions arise equally from agricultural and fossil fuel sources. Environ. Res. Lett. 2020, 15, 071002. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2023 Synthesis Report; Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; pp. 35–115. [Google Scholar]
- CSIRO. Methane Emissions Increase by 20 per cent in 20 Years. Online Database. Available online: https://www.csiro.au/en/news/all/news/2024/september/methane-emissions-increase-by-20-per-cent-in-20-years (accessed on 25 September 2024).
- Hook, S.E.; Wright, A.D.; McBride, B.W. Methanogens: Methane producers of the rumen and mitigation strategies. Archaea 2010, 2010, 945785. [Google Scholar] [CrossRef]
- Soltan, Y.A.; Patra, A.K. Advancements in Methane-Mitigating Feed Additives in Ruminants. In Feed Additives and Supplements for Ruminants; Springer: Singapore, 2024; pp. 119–141. [Google Scholar] [CrossRef]
- Latham, E.A.; Anderson, R.C.; Pinchak, W.E.; Nisbet, D.J. Insights on Alterations to the Rumen Ecosystem by Nitrate and Nitrocompounds. Front. Microbiol. 2016, 7, 228. [Google Scholar] [CrossRef]
- Muizelaar, W.; Groot, M.; van Duinkerken, G.; Peters, R.; Dijkstra, J. Safety and Transfer Study: Transfer of Bromoform Present in Asparagopsis taxiformis to Milk and Urine of Lactating Dairy Cows. Foods 2021, 10, 584. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; Ungerfeld, E.M.; Abdalla, A.L.; Alvarez, C.; Arndt, C.; Becquet, P.; Benchaar, C.; Berndt, A.; Mauricio, R.M.; McAllister, T.A.; et al. Invited review: Current enteric methane mitigation options. J. Dairy Sci. 2022, 105, 9297–9326. [Google Scholar] [CrossRef] [PubMed]
- Lan, W.; Yang, C. Ruminal methane production: Associated microorganisms and the potential of applying hydrogen-utilizing bacteria for mitigation. Sci. Total Environ. 2019, 654, 1270–1283. [Google Scholar] [CrossRef] [PubMed]
- Tate, K.; Yuan, G.; Theng, B.; Churchman, G.; Singh, J.; Berben, P. Can geophagy mitigate enteric methane emissions from cattle? J. Prelim. Res. 2015, 2, 1–8. [Google Scholar]
- Pikhtirova, A.; Pecka-Kielb, E.; Kroliczewska, B.; Zachwieja, A.; Kroliczewski, J.; Kupczynski, R. The Effect of Saponite Clay on Ruminal Fermentation Parameters during In Vitro Studies. Animals 2024, 14, 738. [Google Scholar] [CrossRef]
- Soltan, Y.A.; Morsy, A.S.; Hashem, N.M.; Elazab, M.A.I.; Sultan, M.A.; El-Nile, A.; Marey, H.N.; El Lail, G.A.; El-Desoky, N.; Hosny, N.S.; et al. Potential of montmorillonite modified by an organosulfur surfactant for reducing aflatoxin B1 toxicity and ruminal methanogenesis in vitro. BMC Vet. Res. 2022, 18, 387. [Google Scholar] [CrossRef]
- Al Adawi, S.A.; El-Zaiat, H.M.; Morsy, A.S.; Soltan, Y.A. Lactation Performance and Rumen Fermentation in Dairy Cows Fed a Diet Supplemented with Monensin or Gum Arabic-Nano Montmorillonite Compost. Animals 2024, 14, 1649. [Google Scholar] [CrossRef] [PubMed]
- Nadziakiewicza, M.; Kehoe, S.; Micek, P. Physico-Chemical Properties of Clay Minerals and Their Use as a Health Promoting Feed Additive. Animals 2019, 9, 714. [Google Scholar] [CrossRef]
- Kahouli, A. Use of clay as a growth promoter and rumen modifier: A Review. Malays. J. Anim. 2020, 23, 72. [Google Scholar]
- El-Nile, A.; Elazab, M.; El-Zaiat, H.; El-Azrak, K.E.; Elkomy, A.; Sallam, S.; Soltan, Y. In Vitro and In Vivo Assessment of Dietary Supplementation of Both Natural or Nano-Zeolite in Goat Diets: Effects on Ruminal Fermentation and Nutrients Digestibility. Animals 2021, 11, 2215. [Google Scholar] [CrossRef]
- Damato, A.; Vianello, F.; Novelli, E.; Balzan, S.; Gianesella, M.; Giaretta, E.; Gabai, G. Comprehensive Review on the Interactions of Clay Minerals With Animal Physiology and Production. Front. Vet. Sci. 2022, 9, 889612. [Google Scholar] [CrossRef]
- Pacifico, C.; Hartinger, T.; Stauder, A.; Schwartz-Zimmermann, H.E.; Reisinger, N.; Faas, J.; Zebeli, Q. Supplementing a Clay Mineral-Based Feed Additive Modulated Fecal Microbiota Composition, Liver Health, and Lipid Serum Metabolome in Dairy Cows Fed Starch-Rich Diets. Front. Vet. Sci. 2021, 8, 714545. [Google Scholar] [CrossRef]
- Sulzberger, S.A.; Kalebich, C.C.; Melnichenko, S.; Cardoso, F.C. Effects of clay after a grain challenge on milk composition and on ruminal, blood, and fecal pH in Holstein cows. J. Dairy Sci. 2016, 99, 8028–8040. [Google Scholar] [CrossRef] [PubMed]
- Amanzougarene, Z.; Fondevila, M. Rumen Fermentation of Feed Mixtures Supplemented with Clay Minerals in a Semicontinuous In Vitro System. Animals 2022, 12, 345. [Google Scholar] [CrossRef]
- Berghuis, B.A.; Yu, F.B.; Schulz, F.; Blainey, P.C.; Woyke, T.; Quake, S.R. Hydrogenotrophic methanogenesis in archaeal phylum Verstraetearchaeota reveals the shared ancestry of all methanogens. Proc. Natl. Acad. Sci. USA 2019, 116, 5037–5044. [Google Scholar] [CrossRef]
- FAO. New FAO Report Maps Pathways Towards Lower Livestock Emissions. 2023. Available online: https://www.fao.org/newsroom/detail/new-fao-report-maps-pathways-towards-lower-livestock-emissions/en (accessed on 1 September 2024).
- Morgavi, D.P.; Forano, E.; Martin, C.; Newbold, C.J. Microbial ecosystem and methanogenesis in ruminants. Animal 2010, 4, 1024–1036. [Google Scholar] [CrossRef]
- Fox, N.J.; Smith, L.A.; Houdijk, J.G.M.; Athanasiadou, S.; Hutchings, M.R. Ubiquitous parasites drive a 33% increase in methane yield from livestock. Int. J. Parasitol. 2018, 48, 1017–1021. [Google Scholar] [CrossRef] [PubMed]
- Janssen, P.H.; Kirs, M. Structure of the archaeal community of the rumen. Appl. Environ. Microbiol. 2008, 74, 3619–3625. [Google Scholar] [CrossRef] [PubMed]
- Patra, A.K.; Puchala, R. Methane mitigation in ruminants with structural analogues and other chemical compounds targeting archaeal methanogenesis pathways. Biotechnol. Adv. 2023, 69, 108268. [Google Scholar] [CrossRef]
- Guo, W.; Zhou, M.; Li, F.; Neves, A.L.A.; Ma, T.; Bi, S.; Wang, W.; Long, R.; Guan, L.L. Seasonal stability of the rumen microbiome contributes to the adaptation patterns to extreme environmental conditions in grazing yak and cattle. BMC Biol. 2024, 22, 240. [Google Scholar] [CrossRef] [PubMed]
- Lambo, M.T.; Ma, H.; Liu, R.; Dai, B.; Zhang, Y.; Li, Y. Review: Mechanism, effectiveness, and the prospects of medicinal plants and their bioactive compounds in lowering ruminants’ enteric methane emission. Animal 2024, 18, 101134. [Google Scholar] [CrossRef]
- Kumar, K.; Paswan, V.K. Rumen Methanogenesis and Mitigation Strategies. In Animal Manure; Springer: Cham, Switzerland, 2022; pp. 21–43. [Google Scholar]
- Patra, A.K. Enteric methane mitigation technologies for ruminant livestock: A synthesis of current research and future directions. Environ. Monit. Assess. 2012, 184, 1929–1952. [Google Scholar] [CrossRef]
- Ma, W.; Ji, X.; Ding, L.; Yang, S.X.; Guo, K.; Li, Q. Automatic Monitoring Methods for Greenhouse and Hazardous Gases Emitted from Ruminant Production Systems: A Review. Sensors 2024, 24, 4423. [Google Scholar] [CrossRef]
- Min, B.R.; Lee, S.; Jung, H.; Miller, D.N.; Chen, R. Enteric Methane Emissions and Animal Performance in Dairy and Beef Cattle Production: Strategies, Opportunities, and Impact of Reducing Emissions. Animals 2022, 12, 948. [Google Scholar] [CrossRef]
- van Lingen, H.J.; Edwards, J.E.; Vaidya, J.D.; van Gastelen, S.; Saccenti, E.; van den Bogert, B.; Bannink, A.; Smidt, H.; Plugge, C.M.; Dijkstra, J. Diurnal Dynamics of Gaseous and Dissolved Metabolites and Microbiota Composition in the Bovine Rumen. Front. Microbiol. 2017, 8, 425. [Google Scholar] [CrossRef]
- Martinez-Fernandez, G.; Denman, S.E.; Yang, C.; Cheung, J.; Mitsumori, M.; McSweeney, C.S. Methane Inhibition Alters the Microbial Community, Hydrogen Flow, and Fermentation Response in the Rumen of Cattle. Front. Microbiol. 2016, 7, 1122. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, G.; Li, Y.; Zhang, Y. Effects of High Forage/Concentrate Diet on Volatile Fatty Acid Production and the Microorganisms Involved in VFA Production in Cow Rumen. Animals 2020, 10, 223. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Xiong, B.; Zhao, X. Could propionate formation be used to reduce enteric methane emission in ruminants? Sci. Total Environ. 2023, 855, 158867. [Google Scholar] [CrossRef] [PubMed]
- Thacharodi, A.; Hassan, S.; Ahmed, Z.H.T.; Singh, P.; Maqbool, M.; Meenatchi, R.; Pugazhendhi, A.; Sharma, A. The ruminant gut microbiome vs enteric methane emission: The essential microbes may help to mitigate the global methane crisis. Environ. Res. 2024, 261, 119661. [Google Scholar] [CrossRef] [PubMed]
- Shinkai, T.; Takizawa, S.; Fujimori, M.; Mitsumori, M. The role of rumen microbiota in enteric methane mitigation for sustainable ruminant production. Anim. Biosci. 2023, 37, 360. [Google Scholar] [CrossRef]
- Leamkrajang, N.; Prasanpanich, S.; Rangubhet, K.T.; Kongmun, P. The Effect of the Proportions of Roughage to Concentrate on Rumen Fluid Differs Among Various Animal Species. Adv. Anim. Vet. 2024, 12, 2499–2511. [Google Scholar] [CrossRef]
- Guo, T.; Guo, T.; Cao, Y.; Guo, L.; Li, F.; Li, F.; Yang, G. Changes in the fermentation and bacterial community by artificial saliva pH in RUSITEC system. Front. Nutr. 2021, 8, 760316. [Google Scholar] [CrossRef]
- Monteiro, H.F.; Faciola, A.P. Ruminal acidosis, bacterial changes, and lipopolysaccharides. J. Anim. Sci. 2020, 98, skaa248. [Google Scholar] [CrossRef]
- Santander, D.; Clariget, J.; Banchero, G.; Alecrim, F.; Simon Zinno, C.; Mariotta, J.; Gere, J.; Ciganda, V.S. Beef Steers and Enteric Methane: Reducing Emissions by Managing Forage Diet Fiber Content. Animals 2023, 13, 1177. [Google Scholar] [CrossRef]
- Ushida, K. Symbiotic methanogens and rumen ciliates. In Symbiotic Methanogenic Archaea; Springer: Cham, Switzerland, 2018; Volume 19, pp. 25–35. [Google Scholar]
- Hegarty, R.S.; Goopy, J.P.; Herd, R.M.; McCorkell, B. Cattle selected for lower residual feed intake have reduced daily methane production. J. Anim. Sci. 2007, 85, 1479–1486. [Google Scholar] [CrossRef]
- Khairunisa, B.H.; Heryakusuma, C.; Ike, K.; Mukhopadhyay, B.; Susanti, D. Evolving understanding of rumen methanogen ecophysiology. Front. Microbiol. 2023, 14, 1296008. [Google Scholar] [CrossRef]
- Teklebrhan, T.; Tan, Z.; Wang, M.; Wang, R. Rumen methanogens community as drivers of methane emission. J. Vet. Sci. Anim. Husb. 2018, 6, 405. [Google Scholar]
- Shibata, M.; Terada, F. Factors affecting methane production and mitigation in ruminants. Anim. Sci. J. 2010, 81, 2–10. [Google Scholar] [CrossRef]
- Wang, S.; Tang, W.; Jiang, T.; Wang, R.; Zhang, R.; Ou, J.; Wang, Q.; Cheng, X.; Ren, C.; Chen, J.; et al. Effect of Dietary Concentrate-to-Forage Ratios During the Cold Season on Slaughter Performance, Meat Quality, Rumen Fermentation and Gut Microbiota of Tibetan Sheep. Animals 2024, 14, 3305. [Google Scholar] [CrossRef]
- Laikova, A.A.; Kovalev, A.A.; Kovalev, D.A.; Zhuravleva, E.A.; Shekhurdina, S.V.; Litti, Y.V. The feasibility of single-stage biohythane production in a semi-continuous thermophilic bioreactor: Influence of operating parameters on the process kinetics and microbial community dynamics. Int. J. Hydrogen Energy 2024, 55, 1486–1494. [Google Scholar] [CrossRef]
- Lana, R.P.; Russell, J.B.; Van Amburgh, M.E. The role of pH in regulating ruminal methane and ammonia production. J. Anim. Sci. 1998, 76, 2190–2196. [Google Scholar] [CrossRef] [PubMed]
- Polsky, L.; von Keyserlingk, M.A.G. Invited review: Effects of heat stress on dairy cattle welfare. J. Dairy Sci. 2017, 100, 8645–8657. [Google Scholar] [CrossRef] [PubMed]
- Warr, L.N. Earth’s clay mineral inventory and its climate interaction: A quantitative assessment. Earth Sci. Rev. 2022, 234, 104198. [Google Scholar] [CrossRef]
- Kumari, N.; Mohan, C. Basics of Clay Minerals and Their Characteristic Properties. Clay Clay Miner. 2021, 24, 1–29. [Google Scholar]
- Schoonheydt, R.A.; Bergaya, F. Industrial clay minerals as nanomaterials. In Advances in the Characterization of Industrial Minerals; American Association of Petroleum Geologists: Tulsa, OK, USA, 2011; pp. 415–440. [Google Scholar]
- Brigatti, M.F.; Galán, E.; Theng, B.K.G. Chapter 2—Structure and Mineralogy of Clay Minerals. In Developments in Clay Science; Bergaya, F., Lagaly, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 21–81. [Google Scholar]
- Biswas, B.; Islam, M.R.; Deb, A.K.; Greenaway, A.; Warr, L.N.; Naidu, R. Understanding Iron Impurities in Australian Kaolin and Their Effect on Acid and Heat Activation Processes of Clay. ACS Omega 2023, 8, 5533–5544. [Google Scholar] [CrossRef]
- Biswas, B.; Warr, L.N.; Hilder, E.F.; Goswami, N.; Rahman, M.M.; Churchman, J.G.; Vasilev, K.; Pan, G.; Naidu, R. Biocompatible functionalisation of nanoclays for improved environmental remediation. Chem. Soc. Rev. 2019, 48, 3740–3770. [Google Scholar] [CrossRef]
- Nesse, W.D. Introduction to Mineralogy; Oxford Univerisity Press: Oxford, UK, 2012; p. 496. [Google Scholar]
- Soltan, Y.; Morsy, A.; Hashem, N.; Elazab, M.; Sultan, M.; Marey, H.; Lail, G.A.E.; El-Desoky, N.; Hosny, N.; Mahdy, A.; et al. Modified Nano-Montmorillonite and Monensin Modulate In Vitro Ruminal Fermentation, Nutrient Degradability, and Methanogenesis Differently. Animals 2021, 11, 3005. [Google Scholar] [CrossRef] [PubMed]
- Maryan, A.S.; Montazer, M. Natural and organo-montmorillonite as antibacterial nanoclays for cotton garment. J. Ind. Eng. Chem. 2015, 22, 164–170. [Google Scholar] [CrossRef]
- Maki, C.; Haney, S.; Wang, M.; Ward, S.; Rude, B.; Bailey, R.; Harvey, R.; Phillips, T. Calcium montmorillonite clay for the reduction of aflatoxin residues in milk and dairy products. J. Dairy Vet. Sci. 2017, 2, 1–8. [Google Scholar]
- Biswas, B.; Labille, J.; Prelot, B. Clays and modified clays in remediating environmental pollutants. Environ. Sci. Pollut. Res. Int. 2020, 27, 38381–38383. [Google Scholar] [CrossRef] [PubMed]
- Bryszak, M.; Szumacher-Strabel, M.; Huang, H.H.; Pawlak, P.; Lechniak, D.; Kolodziejski, P.; Yanza, Y.R.; Patra, A.K.; Váradyová, Z.; Cieslak, A. Seed meal supplemented to dairy cow diet improves fatty acid composition in milk and mitigates methane production. Anim. Feed Sci. Technol. 2020, 267, 114590. [Google Scholar] [CrossRef]
- Honan, M.; Feng, X.; Tricarico, J.M.; Kebreab, E. Feed additives as a strategic approach to reduce enteric methane production in cattle: Modes of action, effectiveness and safety. Anim. Prod. Sci. 2021, 62, 1303–1317. [Google Scholar] [CrossRef]
- Lambie, S.C.; Kelly, W.J.; Leahy, S.C.; Li, D.; Reilly, K.; McAllister, T.A.; Valle, E.R.; Attwood, G.T.; Altermann, E. The complete genome sequence of the rumen methanogen Methanosarcina barkeri CM1. Stand. Genom. Sci. 2015, 10, 1–8. [Google Scholar] [CrossRef]
- Sun, M.; Liu, B.; Yanagawa, K.; Ha, N.T.; Goel, R.; Terashima, M.; Yasui, H. Effects of low pH conditions on decay of methanogenic biomass. Water Res. 2020, 179, 115883. [Google Scholar] [CrossRef]
- Liu, D.; Dong, H.; Agrawal, A.; Singh, R.; Zhang, J.; Wang, H. Inhibitory effect of clay mineral on methanogenesis by Methanosarcina mazei and Methanothermobacter thermautotrophicus. Appl. Clay Sci. 2016, 126, 25–32. [Google Scholar] [CrossRef]
- Yang, X.; Zhou, Y.; Hu, J.; Zheng, Q.; Zhao, Y.; Lv, G.; Liao, L. Clay minerals and clay-based materials for heavy metals pollution control. Sci. Total Environ. 2024, 954, 176193. [Google Scholar] [CrossRef]
- Tseten, T.; Sanjorjo, R.A.; Kwon, M.; Kim, S.W. Strategies to Mitigate Enteric Methane Emissions from Ruminant Animals. J. Microbiol. Biotechnol. 2022, 32, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Marques, R.D.S.; Cooke, R.F. Effects of Ionophores on Ruminal Function of Beef Cattle. Animals 2021, 11, 2871. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.; Jin, W.; Zhang, Y.; Gai, Y.; Tang, W.; Guo, L.; Azzaz, H.H.; Ghaffari, M.H.; Gu, Z.; Mao, S.; et al. A Meta-Analysis of Dietary Inhibitors for Reducing Methane Emissions via Modulating Rumen Microbiota in Ruminants. J. Nutr. 2025, 155, 402–412. [Google Scholar] [CrossRef]
- Chen, H.; Gan, Q.; Fan, C. Methyl-Coenzyme M Reductase and Its Post-translational Modifications. Front. Microbiol. 2020, 11, 578356. [Google Scholar] [CrossRef]
- Zhang, Z.W.; Cao, Z.J.; Wang, Y.L.; Wang, Y.J.; Yang, H.J.; Li, S.L. Nitrocompounds as potential methanogenic inhibitors in ruminant animals: A review. Anim. Feed Sci. Technol. 2018, 236, 107–114. [Google Scholar] [CrossRef]
- Alemu, A.W.; Pekrul, L.K.D.; Shreck, A.L.; Booker, C.W.; McGinn, S.M.; Kindermann, M.; Beauchemin, K.A. 3-Nitrooxypropanol Decreased Enteric Methane Production From Growing Beef Cattle in a Commercial Feedlot: Implications for Sustainable Beef Cattle Production. Front. Anim. Sci. 2021, 2, 641590. [Google Scholar] [CrossRef]
- Jayanegara, A.; Sarwono, K.A.; Kondo, M.; Matsui, H.; Ridla, M.; Laconi, E.B.; Nahrowi. Use of 3-nitrooxypropanol as feed additive for mitigating enteric methane emissions from ruminants: A meta-analysis. Ital. J. Anim. Sci. 2018, 17, 650–656. [Google Scholar] [CrossRef]
- Hwang, H.-S.; Ok, J.-U.; Lee, S.-J.; Chu, G.-M.; Kim, K.-H.; Oh, Y.-K.; Lee, S.-S.; Lee, S.-S. Effects of Halogenated Compounds on in vitro Fermentation Characteristics in the Rumen and Methane Emissions. J. Life Sci. 2012, 22, 1187–1193. [Google Scholar] [CrossRef]
- Pinski, B.; Günal, M.; AbuGhazaleh, A.A. The effects of essential oil and condensed tannin on fermentation and methane production under in vitro conditions. Anim. Prod. Sci. 2016, 56, 1707–1713. [Google Scholar] [CrossRef]
- Xuan, T.B.; Zheng, T.F.; Li, T.Y.; Wu, B.Y.L.; Li, T.L.; Bao, W.J.; Qin, W.Z. The Effects of Different Doses of 3-NOP on Ruminal Fermentation Parameters, Methane Production, and the Microbiota of Lambs In Vitro. Fermentation 2024, 10, 440. [Google Scholar] [CrossRef]
- Ochirkhuyag, A.; Temuujin, J. The Catalytic Potential of Modified Clays: A Review. Minerals 2024, 14, 629. [Google Scholar] [CrossRef]
- Valpotic, H. Zeolite clinoptilolite nanoporous feed additive for animals of veterinary importance: Potentials and limitations. Period. Biol. 2017, 119, 159–172. [Google Scholar] [CrossRef]
- Biswas, B.; Islam, M.R.; Hosen, M.Z.; Naidu, R. Cattle can battle methane burps using edible clay. In Remediation Australasia; ARIC and CRCCARE: Callaghan, Australia, 2024; pp. 6–8. [Google Scholar]
- Massaro, M.; Colletti, C.G.; Lazzara, G.; Riela, S. The Use of Some Clay Minerals as Natural Resources for Drug Carrier Applications. J. Funct. Biomater. 2018, 9, 58. [Google Scholar] [CrossRef]
- Pasbakhsh, P.; De Silva, R.; Vahedi, V.; Churchman, G.J. Halloysite nanotubes: Prospects and challenges of their use as additives and carriers—A focused review. Clay Miner. 2016, 51, 479–487. [Google Scholar] [CrossRef]
- Silva, F.C.; Lima, L.C.B.; Viseras, C.; Osajima, J.A.; da Silva Junior, J.M.; Oliveira, R.L.; Bezerra, L.R.; Silva-Filho, E.C. Understanding Urea Encapsulation in Different Clay Minerals as a Possible System for Ruminant Nutrition. Molecules 2019, 24, 3525. [Google Scholar] [CrossRef] [PubMed]
- Lvov, Y.M.; Shchukin, D.G.; Mohwald, H.; Price, R.R. Halloysite clay nanotubes for controlled release of protective agents. ACS Nano 2008, 2, 814–820. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Degen, A.; Hao, L.; Liu, S. Ruminant Lick Blocks, Particularly in China: A Review. Sustainability 2022, 14, 7620. [Google Scholar] [CrossRef]
- Hernandez, J.; Benedito, J.L.; Abuelo, A.; Castillo, C. Ruminal acidosis in feedlot: From aetiology to prevention. Sci. World J. 2014, 2014, 702572. [Google Scholar] [CrossRef]
- Ortiz, J.; Montano, M.; Plascencia, A.; Salinas, J.; Torrentera, N.; Zinn, R.A. Influence of Kaolinite Clay Supplementation on Growth Performance and Digestive Function in Finishing Calf-fed Holstein Steers. Asian-Australas. J. Anim. Sci. 2016, 29, 1569–1575. [Google Scholar] [CrossRef]
- Biswas, B.; Sarkar, B.; Rusmin, R.; Naidu, R. Bioremediation of PAHs and VOCs: Advances in clay mineral-microbial interaction. Environ. Int. 2015, 85, 168–181. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Si, X.; Cao, Z.; Li, S.; Yang, H. Rumen Methanogenesis, Rumen Fermentation, and Microbial Community Response to Nitroethane, 2-Nitroethanol, and 2-Nitro-1-Propanol: An In Vitro Study. Animals 2020, 10, 479. [Google Scholar] [CrossRef]
- Gomes, C.; Rautureau, M.; Poustis, J.; Gomes, J. Benefits and Risks of Clays and Clay Minerals to Human Health From Ancestral to Current Times: A Synoptic Overview. Clays Clay Miner. 2024, 69, 612–632. [Google Scholar] [CrossRef]
- Liu, D.; Dong, H.L.; Bishop, M.E.; Wang, H.M.; Agrawal, A.; Tritschler, S.; Eberl, D.D.; Xie, S.C. Reduction of structural Fe(III) in nontronite by methanogen. Geochim. Cosmochim. Acta 2011, 75, 1057–1071. [Google Scholar] [CrossRef]
- Zhang, J.; Dong, H.L.; Liu, D.; Agrawal, A. Microbial reduction of Fe(III) in smectite minerals by thermophilic methanogen. Geochim. Cosmochim. Acta 2013, 106, 203–215. [Google Scholar] [CrossRef]
- Zhang, J.; Dong, H.L.; Liu, D.; Fischer, T.B.; Wang, S.; Huang, L.Q. Microbial reduction of Fe(III) in illite-smectite minerals by methanogen. Chem. Geol. 2012, 292, 35–44. [Google Scholar] [CrossRef]
- Li, G.L.; Zhou, C.H.; Fiore, S.; Yu, W.H. Interactions between microorganisms and clay minerals: New insights and broader applications. Appl. Clay Sci. 2019, 177, 91–113. [Google Scholar] [CrossRef]
- Segad, M.; Akesson, T.; Cabane, B.; Jonsson, B. Nature of flocculation and tactoid formation in montmorillonite: The role of pH. Phys. Chem. Chem. Phys. 2015, 17, 29608–29615. [Google Scholar] [CrossRef]
- Fomina, M.; Skorochod, I. Microbial Interaction with Clay Minerals and Its Environmental and Biotechnological Implications. Minerals 2020, 10, 861. [Google Scholar] [CrossRef]
- Hong, Z.N.; Chen, W.L.; Rong, X.M.; Cai, P.; Dai, K.; Huang, Q.Y. The effect of extracellular polymeric substances on the adhesion of bacteria to clay minerals and goethite. Chem. Geol. 2013, 360, 118–125. [Google Scholar] [CrossRef]
- Costa, O.Y.A.; Raaijmakers, J.M.; Kuramae, E.E. Microbial Extracellular Polymeric Substances: Ecological Function and Impact on Soil Aggregation. Front. Microbiol. 2018, 9, 1636. [Google Scholar] [CrossRef]
- Gouda, G.A.; Khattab, H.M.; Abdel-Wahhab, M.A.; Abo El-Nor, S.A.; El-Sayed, H.M.; Kholif, S.M. Clay minerals as sorbents for mycotoxins in lactating goat’s diets: Intake, digestibility, blood chemistry, ruminal fermentation, milk yield and composition, and milk aflatoxin M1 content. Small Rumin. Res. 2019, 175, 15–22. [Google Scholar] [CrossRef]
- Hussein, Y.; Abdo, S.; Hassan, E.; Farghali, M.; Farghaly, M. Effect of clay minerals supplementation on nutrient digestibility, blood parameters, and performance of buffalo calves. Arch. Agric. Sci. J. 2023, 6, 95–106. [Google Scholar] [CrossRef]
- El-Nile, A.E.; Elazab, M.A.; Soltan, Y.A.; Elkomy, A.E.; El-Zaiat, H.M.; Sallam, S.M.A.; El-Azrak, K.E.-D. Nano and natural zeolite feed supplements for dairy goats: Feed intake, ruminal fermentation, blood metabolites, and milk yield and fatty acids profile. Anim. Feed Sci. Technol. 2023, 295, 115522. [Google Scholar] [CrossRef]
- Newbold, C.J.; de la Fuente, G.; Belanche, A.; Ramos-Morales, E.; McEwan, N.R. The Role of Ciliate Protozoa in the Rumen. Front. Microbiol. 2015, 6, 1313. [Google Scholar] [CrossRef] [PubMed]
- Neubauer, V.; Humer, E.; Mann, E.; Kroger, I.; Reisinger, N.; Wagner, M.; Zebeli, Q.; Petri, R.M. Effects of clay mineral supplementation on particle-associated and epimural microbiota, and gene expression in the rumen of cows fed high-concentrate diet. Anaerobe 2019, 59, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Kaboul, N.; Ouachem, D. Use of clay in ruminants: Effects on the rumen metabolism. Livest. Res. Rural Dev. 2012, 24, 225. [Google Scholar]
- Biswas, A.A.; Lee, S.S.; Mamuad, L.L.; Kim, S.H.; Choi, Y.J.; Lee, C.; Lee, K.; Bae, G.S.; Lee, S.S. Effects of illite supplementation on in vitro and in vivo rumen fermentation, microbial population and methane emission of Hanwoo steers fed high concentrate diets. Anim. Sci. J. 2018, 89, 114–121. [Google Scholar] [CrossRef]
- Kashefi, K.; Shelobolina, E.S.; Elliott, W.C.; Lovley, D.R. Growth of thermophilic and hyperthermophilic Fe(III)-reducing microorganisms on a ferruginous smectite as the sole electron acceptor. Appl. Environ. Microbiol. 2008, 74, 251–258. [Google Scholar] [CrossRef]
- Lee, K.; Kostka, J.E.; Stucki, J.W. Comparisons of structural Fe reduction in smectites by bacteria and dithionite: An infrared spectroscopic study. Clay Clay Miner. 2006, 54, 195–208. [Google Scholar] [CrossRef]
- Tahir, S.; Marschner, P. Clay amendment to sandy soil-effect of clay concentration and ped size on nutrient dynamics after residue addition. J. Soils Sediments 2016, 16, 2072–2080. [Google Scholar] [CrossRef]
- Andrino, A.; Guggenberger, G.; Kernchen, S.; Mikutta, R.; Sauheitl, L.; Boy, J. Production of Organic Acids by Arbuscular Mycorrhizal Fungi and Their Contribution in the Mobilization of Phosphorus Bound to Iron Oxides. Front. Plant. Sci. 2021, 12, 661842. [Google Scholar] [CrossRef]
- Zanditenas, E.; Ankri, S. Unraveling the interplay between unicellular parasites and bacterial biofilms: Implications for disease persistence and antibiotic resistance. Virulence 2024, 15, 2289775. [Google Scholar] [CrossRef]
- Fazeli-Nasab, B.; Sayyed, R.Z.; Mojahed, L.S.; Rahmani, A.F.; Ghafari, M.; Antonius, S. Biofilm production: A strategic mechanism for survival of microbes under stress conditions. Biocatal. Agric. Biotechnol. 2022, 42, 102337. [Google Scholar] [CrossRef]
- Uddin, M.M.; Wright, M.M. Anaerobic digestion fundamentals, challenges, and technological advances. Phys. Sci. Rev. 2023, 8, 2819–2837. [Google Scholar] [CrossRef]
- Hagey, J.V.; Laabs, M.; Maga, E.A.; DePeters, E.J. Rumen sampling methods bias bacterial communities observed. PLoS ONE 2022, 17, e0258176. [Google Scholar] [CrossRef] [PubMed]
- Unuabonah, E.I.; Ugwuja, C.G.; Omorogie, M.O.; Adewuyi, A.; Oladoja, N.A. Clays for Efficient Disinfection of Bacteria in Water. Appl. Clay Sci. 2018, 151, 211–223. [Google Scholar] [CrossRef]
- Nogina, T.; Fomina, M.; Dumanskaya, T.; Zelena, L.; Khomenko, L.; Mikhalovsky, S.; Podgorskyi, V.; Gadd, G.M. A new Rhodococcus aetherivorans strain isolated from lubricant-contaminated soil as a prospective phenol-biodegrading agent. Appl. Microbiol. Biotechnol. 2020, 104, 3611–3625. [Google Scholar] [CrossRef]
- Abu Quba, A.A.; Goebel, M.-O.; Karagulyan, M.; Miltner, A.; Kästner, M.; Bachmann, J.; Schaumann, G.E.; Diehl, D. Hypertonic stress induced changes of Pseudomonas fluorescens adhesion towards soil minerals studied by AFM. Sci. Rep. 2023, 13, 17146. [Google Scholar] [CrossRef]
- Warr, L.N.; Friese, A.; Schwarz, F.; Schauer, F.; Portier, R.J.; Basirico, L.M.; Olson, G.M. Bioremediating oil spills in nutrient poor ocean waters using fertilized clay mineral flakes: Some experimental constraints. Biotechnol. Res. Int. 2013, 2013, 704806. [Google Scholar] [CrossRef]
- Atekwana, E.A.; Werkema, D.D.; Atekwana, E.A. Biogeophysics: The effects of microbial processes on geophysical properties of the shallow subsurface. In Applied Hydrogeophysics; Springer: Dordrecht, The Netherlands, 2006; pp. 161–193. [Google Scholar]
- Jesus, R.B.d.; Omori, W.P.; Lemos, E.G.d.M.; Souza, J.A.M.d. Bacterial diversity in bovine rumen by metagenomic 16S rDNA sequencing and scanning electron microscopy. Acta Sci. Anim. Sci. 2015, 37, 251–257. [Google Scholar] [CrossRef]
- Cheng, Y.; Feng, G.; Moraru, C.I. Micro- and Nanotopography Sensitive Bacterial Attachment Mechanisms: A Review. Front. Microbiol. 2019, 10, 191. [Google Scholar] [CrossRef] [PubMed]
- Baila, C.; Lobón, S.; Blanco, M.; Casasús, I.; Ripoll, G.; Joy, M. Sainfoin can be included up to 40% in the concentrate of finishing lambs without impairing their performance, rumen fermentation, and carcass quality. Anim. Feed Sci. Technol. 2024, 312, 115975. [Google Scholar] [CrossRef]
- Yablon, D.; Libera, M. Microscopy 101: Scanning Probes or Scanning Electrons: A Practical Guide to Select a Method for Nanoscale Characterization. Microsc. Today 2019, 27, 32–38. [Google Scholar] [CrossRef]
- Silva, E.; Silva, J.; Silva, W.C.D.; Belo, T.S.; Sousa, C.E.L.; Santos, M.; Neves, K.A.L.; Rodrigues, T.; Camargo-Junior, R.N.C.; Lourenco-Junior, J.B. A Review of the Rumen Microbiota and the Different Molecular Techniques Used to Identify Microorganisms Found in the Rumen Fluid of Ruminants. Animals 2024, 14, 1448. [Google Scholar] [CrossRef]
- Onyenweaku, E. Chemical composition of Kaolin Clay (Nzu) and Bentonite Clay (Ulo) and consumption prevalence among women in Southern Nigeria. Niger. Agric. J. 2023, 54, 522–530. [Google Scholar]
- Chen, T.-H.; Yeh, K.-H.; Lin, C.-F.; Lee, M.; Hou, C.-H. Technological and economic perspectives of membrane capacitive deionization (MCDI) systems in high-tech industries: From tap water purification to wastewater reclamation for water sustainability. Resour. Conserv. Recycl. 2022, 177, 106012. [Google Scholar] [CrossRef]
- Schlattl, M.; Buffler, M.; Windisch, W. Clay Minerals Affect the Solubility of Zn and Other Bivalent Cations in the Digestive Tract of Ruminants In Vitro. Animals 2021, 11, 877. [Google Scholar] [CrossRef]
- Kihal, A.; Rodriguez-Prado, M.; Calsamiglia, S. The efficacy of mycotoxin binders to control mycotoxins in feeds and the potential risk of interactions with nutrient: A review. J. Anim. Sci. 2022, 100, skac328. [Google Scholar] [CrossRef]
- Reichardt, F.; Habold, C.; Chaumande, B.; Ackermann, A.; Ehret-Sabatier, L.; Le Maho, Y.; Angel, F.; Liewig, N.; Lignot, J.H. Interactions between ingested kaolinite and the intestinal mucosa in rat: Proteomic and cellular evidences. Fundam. Clin. Pharmacol. 2009, 23, 69–79. [Google Scholar] [CrossRef]
- Zhang, N.; Han, X.; Zhao, Y.; Li, Y.; Meng, J.; Zhang, H.; Liang, J. Removal of aflatoxin B1 and zearalenone by clay mineral materials: In the animal industry and environment. Appl. Clay Sci. 2022, 228, 106614. [Google Scholar] [CrossRef]
- Perelomov, L.V. The Role of Interactions between Bacteria and Clay Minerals in Pedochemical Processes. Geochem. Int. 2023, 61, 1026–1035. [Google Scholar] [CrossRef]
- Khalil, A.K.A.; Elgamouz, A.; Nazir, S.; Atieh, M.A.; Alawadhi, H.; Laoui, T. Preparation and characterization of clay based ceramic porous membranes and their use for the removal of lead ions from synthetic wastewater with an insight into the removal mechanism. Heliyon 2024, 10, e24939. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Laipan, M.; Zhang, C.; Zhang, M.; Wang, Z.; Yuan, M.; Guo, J. Microbial weathering of montmorillonite and its implication for Cd(II) immobilization. Chemosphere 2024, 349, 140850. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, R.; Borges, I.; Vieira, J.; Duarte, S.O.D.; Monteiro, G.A. Interactions between clay minerals, bacteria growth and urease activity on biocementation of soils. Appl. Clay Sci. 2023, 240, 106972. [Google Scholar] [CrossRef]
Clay Types | Structure | Cation Exchange Capacity (CEC); [cmol(+)/kg] | Surface Area [m2/g] |
---|---|---|---|
Smectite (e.g., montmorillonite, saponite, nontronite), and illite-smectite. [Often found as bentonite in feed industry] | A 2:1 clay mineral with two tetrahedral sheets sandwiching an octahedral sheet | Exhibits a range of CEC (20–150) depending on specific mineral group. The range of CEC in illite-smectite clay is influenced by the ratio of illite to smectite layers | Comparatively high, depending on mineral types; smectite can be 40–800, while illite 10–100 |
Palygorskite/attapulgite; sepiolite | A 2:1 clay; fibrous morphology | 3–20 | 40–180 |
Kaolin clay (e.g., kaolinite, halloysite) | A 1:1 clay mineral with one tetrahedral sheet directly bonded to one octahedral sheet | Kaolinite has a low CEC (5–15) due to its lower surface area and minimal isomorphous substitution, while halloysite’s CEC varies (5–40) depending on its hydration form (e.g., 7 Å or 10 Å) | About 5–40 for kaolinite, whereas it can be up to 190 for halloysite depending on its morphology and crystal damage |
Name of the Clay and Clay Minerals | Medium | Dosage | Possible Effects and Interactions | References |
---|---|---|---|---|
Iron-coated kaolinite (source clay *, West Lafayette, IN, USA) | Cell-line (Rumen Bacteria) | 20 g/L | Microbial attachment, dissolution of Al, reduced iron, and reduced levels of CH4 were found | [69] |
Bentonite | Rumen (in vitro) | - | Reduced ciliate protozoa that is partially responsible for methanogenesis | [105] |
Bentonite | Rumen (in vivo) | 50 g/cow/day | Increased levels of friendly microbes and reduced levels of pathogenic and endotoxin-producing bacteria have been found | [106] |
Bentonite | Rumen (in vivo) | Bentonite: 4 to 8% of the total dry matter (DM), Saponite: 0.15 and 0.25 g | Improvement of microbial adhesion, cellulolysis, buffer capacity, metabolism, volatile fatty acids profile, ammonia, and reduced methanogenesis | [13,107] |
Zeolite, bentonite, and sepiolite | Rumen (in vitro) | 10 mg/g of total substrate | Improved ruminal fermentation and stabilized ruminal environment, better microbial balance, reduced CH4 emissions | [22] |
Bentonite or montmorillonite | Rumen (in vivo) | 20 g/kg DM | Reduced aflatoxin and increased digestibility, increased milk production, control NH3 levels, decreased CH4 production | [102] |
Modified nano-montmorillonite | Rumen (in vitro) | 0.05 (low) and 0.5 (high) g/kg DM | Reduced mycotoxin, Aflatoxin, NH3 levels, CH4 production, and promoted VFAs production | [14,61] |
Illite | Rumen (in vitro and in vivo) | 1% of the total DM | The population of total bacteria, protozoa, and methanogens were lower compared to the control | [108] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hosen, Z.; Islam, M.R.; Naidu, R.; Biswas, B. ‘Geophagy’ and Clay Minerals: Influencing Ruminal Microbial Fermentation for Methane Mitigation. Microorganisms 2025, 13, 866. https://doi.org/10.3390/microorganisms13040866
Hosen Z, Islam MR, Naidu R, Biswas B. ‘Geophagy’ and Clay Minerals: Influencing Ruminal Microbial Fermentation for Methane Mitigation. Microorganisms. 2025; 13(4):866. https://doi.org/10.3390/microorganisms13040866
Chicago/Turabian StyleHosen, Zubaer, Md. Rashidul Islam, Ravi Naidu, and Bhabananda Biswas. 2025. "‘Geophagy’ and Clay Minerals: Influencing Ruminal Microbial Fermentation for Methane Mitigation" Microorganisms 13, no. 4: 866. https://doi.org/10.3390/microorganisms13040866
APA StyleHosen, Z., Islam, M. R., Naidu, R., & Biswas, B. (2025). ‘Geophagy’ and Clay Minerals: Influencing Ruminal Microbial Fermentation for Methane Mitigation. Microorganisms, 13(4), 866. https://doi.org/10.3390/microorganisms13040866