Assessment of Soil Health Through Metagenomic Analysis of Bacterial Diversity in Russian Black Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Collection of Soil Samples
2.2. Analysis of Chemical Properties of Soil Samples
2.3. DNA Extraction
2.4. Shotgun Sequencing and Bioinformatic Data Processing
2.5. Statistics
3. Results
3.1. Assessment of Soil Chemical Parameters
3.2. Taxonomy Abundance and Diversity Analysis
3.3. Functional Analysis
3.4. Signature Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Gene | Long-Term Fallow | Conventional Tillage (Median) | No-Till Technology (Median) |
---|---|---|---|
accA | 1.53 × 106 | 15.15 × 106 | 12.48 × 106 |
acsA | 2.55 × 108 | 8.09 × 108 | 8.08 × 108 |
amiF | 0 | 5.38 × 103 | 9.43 × 103 |
argG | 108.81 × 103 | 624.34 × 103 | 578.59 × 103 |
guaA | 1.44 × 106 | 3.54 × 106 | 3.41 × 106 |
guaB | 1.73 × 106 | 4.79 × 106 | 4.72 × 106 |
miaB | 53.03 × 103 | 441.45 × 103 | 281.52 × 103 |
mphE | 1.27 × 103 | 10.87 × 103 | 14.29 × 103 |
napA | 106.36 × 103 | 3.67 × 106 | 3.42 × 106 |
phnJ | 0.94 × 103 | 14.27 × 103 | 20.07 × 103 |
phoB | 121.40 × 103 | 343.04 × 103 | 913.79 × 103 |
pnp | 0 | 2.46 × 106 | 1.22 × 106 |
ppa | 236.70 × 103 | 910.72 × 103 | 772.52 × 103 |
pstB | 1.49 × 108 | 3.68 × 108 | 3.72 × 108 |
pyrG | 2.22 × 106 | 5.18 × 106 | 4.96 × 106 |
queC | 1.32 × 103 | 6.84 × 103 | 9.72 × 103 |
References
- Wilhelm, R.C.; Amsili, J.P.; Kurtz, K.S.M.; van Es, H.M.; Buckley, D.H. Ecological Insights into Soil Health According to the Genomic Traits and Environment-Wide Associations of Bacteria in Agricultural Soils. ISME Commun. 2023, 3, 1. [Google Scholar] [CrossRef] [PubMed]
- Zapata, J.D.D.; Florez, J.E.M.; Alvarez, D.L. Metagenomics Approaches to Understanding Soil Health in Environmental Research—A Review. Soil Sci. Ann. 2023, 74, 163080. [Google Scholar] [CrossRef]
- Chang, T.; Feng, G.; Paul, V.; Adeli, A.; Brooks, J. Soil Health Assessment Methods: Progress, Applications and Comparison. In Advances in Agronomy; Academic Press: New York, NY, USA, 2022; Volume 172, pp. 129–210. [Google Scholar]
- Prosser, J.I. Dispersing Misconceptions and Identifying Opportunities for the Use of “omics” in Soil Microbial Ecology. Nat. Rev. Microbiol. 2015, 13, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Huntley, J.; Fierer, N.; Owens, S.M.; Betley, J.; Fraser, L.; Bauer, M.; et al. Ultra-High-Throughput Microbial Community Analysis on the Illumina HiSeq and MiSeq Platforms. ISME J. 2012, 6, 1621–1624. [Google Scholar] [CrossRef]
- Garg, D.; Patel, N.; Rawat, A.; Rosado, A.S. Cutting Edge Tools in the Field of Soil Microbiology. Curr. Res. Microb. Sci. 2024, 6, 100226. [Google Scholar] [CrossRef]
- Omotayo, O.P.; Igiehon, O.N.; Babalola, O.O. Microbial Genes of Agricultural Importance in Maize Rhizosphere Unveiled Through Shotgun Metagenomics. Span. J. Soil Sci. 2022, 12, 10427. [Google Scholar] [CrossRef]
- Becker, B.; Pushkareva, E. Metagenomics Provides a Deeper Assessment of the Diversity of Bacterial Communities in Polar Soils Than Metabarcoding. Genes 2023, 14, 812. [Google Scholar] [CrossRef] [PubMed]
- Poretsky, R.; Rodriguez-R, L.M.; Luo, C.; Tsementzi, D.; Konstantinidis, K.T. Strengths and Limitations of 16S rRNA Gene Amplicon Sequencing in Revealing Temporal Microbial Community Dynamics. PLoS ONE 2014, 9, e93827. [Google Scholar] [CrossRef]
- Wu, X.; Rensing, C.; Han, D.; Xiao, K.-Q.; Dai, Y.; Tang, Z.; Liesack, W.; Peng, J.; Cui, Z.; Zhang, F. Genome-Resolved Metagenomics Reveals Distinct Phosphorus Acquisition Strategies between Soil Microbiomes. mSystems 2022, 7, e01107-21. [Google Scholar] [CrossRef]
- Yuan, K.; Yu, K.; Yang, R.; Zhang, Q.; Yang, Y.; Chen, E.; Lin, L.; Luan, T.; Chen, W.; Chen, B. Metagenomic Characterization of Antibiotic Resistance Genes in Antarctic Soils. Ecotoxicol. Environ. Saf. 2019, 176, 300–308. [Google Scholar] [CrossRef]
- Xing, C.; Chen, J.; Zheng, X.; Chen, L.; Chen, M.; Wang, L.; Li, X. Functional Metagenomic Exploration Identifies Novel Prokaryotic Copper Resistance Genes from the Soil Microbiome. Metallomics 2020, 12, 387–395. [Google Scholar] [CrossRef] [PubMed]
- White, R.A.; Bottos, E.M.; Roy Chowdhury, T.; Zucker, J.D.; Brislawn, C.J.; Nicora, C.D.; Fansler, S.J.; Glaesemann, K.R.; Glass, K.; Jansson, J.K. Moleculo Long-Read Sequencing Facilitates Assembly and Genomic Binning from Complex Soil Metagenomes. mSystems 2016, 1, e00045-16. [Google Scholar] [CrossRef]
- Anthony, W.E.; Allison, S.D.; Broderick, C.M.; Chavez Rodriguez, L.; Clum, A.; Cross, H.; Eloe-Fadrosh, E.; Evans, S.; Fairbanks, D.; Gallery, R.; et al. From Soil to Sequence: Filling the Critical Gap in Genome-Resolved Metagenomics Is Essential to the Future of Soil Microbial Ecology. Environ. Microbiome 2024, 19, 56. [Google Scholar] [CrossRef]
- Song, W.; Wang, Y.; Peng, B.; Yang, L.; Gao, J.; Xiao, C. Structure and Function of Microbiomes in the Rhizosphere and Endosphere Response to Temperature and Precipitation Variation in Inner Mongolia Steppes. Front. Plant Sci. 2023, 14, 1297399. [Google Scholar] [CrossRef]
- Behnke, G.D.; Kim, N.; Zabaloy, M.C.; Riggins, C.W.; Rodriguez-Zas, S.; Villamil, M.B. Soil Microbial Indicators within Rotations and Tillage Systems. Microorganisms 2021, 9, 1244. [Google Scholar] [CrossRef]
- Kim, N.; Zabaloy, M.C.; Riggins, C.W.; Rodríguez-Zas, S.; Villamil, M.B. Microbial Shifts Following Five Years of Cover Cropping and Tillage Practices in Fertile Agroecosystems. Microorganisms 2020, 8, 1773. [Google Scholar] [CrossRef] [PubMed]
- Srour, A.Y.; Ammar, H.A.; Subedi, A.; Pimentel, M.; Cook, R.L.; Bond, J.; Fakhoury, A.M. Microbial Communities Associated with Long-Term Tillage and Fertility Treatments in a Corn-Soybean Cropping System. Front. Microbiol. 2020, 11, 1363. [Google Scholar] [CrossRef] [PubMed]
- Domnariu, H.; Trippe, K.M.; Botez, F.; Partal, E.; Postolache, C. Long-Term Impact of Tillage on Microbial Communities of an Eastern European Chernozem. Sci. Rep. 2025, 15, 642. [Google Scholar] [CrossRef] [PubMed]
- Sipilä, T.P.; Yrjälä, K.; Alakukku, L.; Palojärvi, A. Cross-Site Soil Microbial Communities under Tillage Regimes: Fungistasis and Microbial Biomarkers. Appl. Environ. Microbiol. 2012, 78, 8191–8201. [Google Scholar] [CrossRef]
- Hu, X.; Liu, J.; Liang, A.; Gu, H.; Liu, Z.; Jin, J.; Wang, G. Soil Metagenomics Reveals Reduced Tillage Improves Soil Functional Profiles of Carbon, Nitrogen, and Phosphorus Cycling in Bulk and Rhizosphere Soils. Agric. Ecosyst. Environ. 2025, 379, 109371. [Google Scholar] [CrossRef]
- Coughenour, C.M. Innovating Conservation Agriculture: The Case of No-Till Cropping. Rural Sociol. 2009, 68, 178–304. [Google Scholar] [CrossRef]
- Kiryushin, V.K.; Vlasenko, A.N.; Kalichkin, V.K. Adaptive Landscape Farming Systems of the Novosibirsk Region. Novosib. Izd. SO RASKhN Publ. House Sib. Branch Russ. Acad. Sci. 2002, 2002, 387. [Google Scholar]
- Danilova, A.A. Biodynamics of Arable Soil at Different Content of Organic Matter. Novosib. SFNCA RAS 2018, 156. [Google Scholar]
- Neal, A.L.; Bacq-Labreuil, A.; Zhang, X.; Clark, I.M.; Coleman, K.; Mooney, S.J.; Ritz, K.; Crawford, J.W. Soil as an Extended Composite Phenotype of the Microbial Metagenome. Sci. Rep. 2020, 10, 10649. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Kemmitt, S.; White, R.P.; Xu, J.; Brookes, P.C. Carbon Dynamics in a 60 Year Fallowed Loamy-Sand Soil Compared to That in a 60 Year Permanent Arable or Permanent Grassland UK Soil. Plant Soil 2012, 352, 51–63. [Google Scholar] [CrossRef]
- Zheng, H.; Liu, W.; Zheng, J.; Luo, Y.; Li, R.; Wang, H.; Qi, H. Effect of Long-Term Tillage on Soil Aggregates and Aggregate-Associated Carbon in Black Soil of Northeast China. PLoS ONE 2018, 13, e0199523. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Qi, S.; Gao, W.; Luo, Y.; Hou, Y.; Liang, Y.; Zheng, H.; Zhang, S.; Li, R.; Wang, M.; et al. Eight-Year Tillage in Black Soil, Effects on Soil Aggregates, and Carbon and Nitrogen Stock. Sci. Rep. 2023, 13, 8332. [Google Scholar] [CrossRef] [PubMed]
- Sorokin, A.; Owens, P.; Lang, V.; Jiang, Z.; Micheli, E.; Krasilnikov, P. “Black Soils” in the Russian Soil Classification System, the US Soil Taxonomy and the WRB: Quantitative Correlation and Implications for Pedodiversity Assessment. CATENA 2021, 196, 104824. [Google Scholar] [CrossRef]
- Medinski, T.; Freese, D.; Reitz, T. Changes in Soil Phosphorus Balance and Phosphorus-Use Efficiency under Long-Term Fertilization Conducted on Agriculturally Used Chernozem in Germany. Can. J. Soil Sci. 2018, 98, 650–662. [Google Scholar] [CrossRef]
- Balla Kovács, A.; Juhász, E.K.; Béni, Á.; Kincses, I.; Tállai, M.; Sándor, Z.; Kátai, J.; Rátonyi, T.; Kremper, R. Changes in Microbial Community and Activity of Chernozem Soil under Different Management Systems in a Long-Term Field Experiment in Hungary. Agronomy 2024, 14, 745. [Google Scholar] [CrossRef]
- Naumova, N.; Barsukov, P.; Baturina, O.; Rusalimova, O.; Kabilov, M. Soil Mycobiome Diversity under Different Tillage Practices in the South of West Siberia. Life 2022, 12, 1169. [Google Scholar] [CrossRef]
- Naumova, N.; Barsukov, P.; Baturina, O.; Rusalimova, O.; Kabilov, M. West-Siberian Chernozem: How Vegetation and Tillage Shape Its Bacteriobiome. Microorganisms 2023, 11, 2431. [Google Scholar] [CrossRef]
- Khmelevtsova, L.E.; Sazykin, I.S.; Azhogina, T.N.; Sazykina, M.A. Influence of Agricultural Practices on Bacterial Community of Cultivated Soils. Agriculture 2022, 12, 371. [Google Scholar] [CrossRef]
- Heanes, D.L. Determination of Total organic-C in Soils by an Improved Chromic Acid Digestion and Spectrophotometric Procedure. Commun. Soil Sci. Plant Anal. 1984, 15, 1191–1213. [Google Scholar] [CrossRef]
- Anderson, J.P.E.; Domsch, K.H. A Physiological Method for the Quantitative Measurement of Microbial Biomass in Soils. Soil Biol. Biochem. 1978, 10, 215–221. [Google Scholar] [CrossRef]
- Milham, P.J.; Awad, A.S.; Paull, R.E.; Bull, J.H. Analysis of Plants, Soils and Waters for Nitrate by Using an Ion-Selective Electrode. Analyst 1970, 95, 751–757. [Google Scholar] [CrossRef]
- Khaziev, F. Enzymatic Activity of Soils. Mosc. Nauka Publ. 1976, 180. [Google Scholar]
- Jiang, H.; Lei, R.; Ding, S.-W.; Zhu, S. Skewer: A Fast and Accurate Adapter Trimmer for next-Generation Sequencing Paired-End Reads. BMC Bioinform. 2014, 15, 182. [Google Scholar] [CrossRef]
- Wood, D.E.; Lu, J.; Langmead, B. Improved Metagenomic Analysis with Kraken 2. Genome Biol. 2019, 20, 257. [Google Scholar] [CrossRef]
- Zapala, M.A.; Schork, N.J. Multivariate Regression Analysis of Distance Matrices for Testing Associations between Gene Expression Patterns and Related Variables. Proc. Natl. Acad. Sci. USA 2006, 103, 19430–19435. [Google Scholar] [CrossRef]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor Package for Differential Expression Analysis of Digital Gene Expression Data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [PubMed]
- Boutet, E.; Lieberherr, D.; Tognolli, M.; Schneider, M.; Bansal, P.; Bridge, A.J.; Poux, S.; Bougueleret, L.; Xenarios, I. UniProtKB/Swiss-Prot, the Manually Annotated Section of the UniProt KnowledgeBase: How to Use the Entry View. In Plant Bioinformatics: Methods and Protocols; Edwards, D., Ed.; Springer: New York, NY, USA, 2016; pp. 23–54. ISBN 978-1-4939-3167-5. [Google Scholar]
- Kanehisa, M.; Sato, Y.; Kawashima, M.; Furumichi, M.; Tanabe, M. KEGG as a Reference Resource for Gene and Protein Annotation. Nucleic Acids Res. 2016, 44, D457–D462. [Google Scholar] [CrossRef] [PubMed]
- Buchfink, B.; Xie, C.; Huson, D.H. Fast and Sensitive Protein Alignment Using DIAMOND. Nat. Methods 2015, 12, 59–60. [Google Scholar] [CrossRef] [PubMed]
- Chendev, Y.G.; Sauer, T.J.; Ramirez, G.H.; Burras, C.L. History of East European Chernozem Soil Degradation; Protection and Restoration by Tree Windbreaks in the Russian Steppe. Sustainability 2015, 7, 705–724. [Google Scholar] [CrossRef]
- Van Der Heijden, M.G.; Bardgett, R.D.; Van Straalen, N.M. The Unseen Majority: Soil Microbes as Drivers of Plant Diversity and Productivity in Terrestrial Ecosystems. Ecol. Lett. 2008, 11, 296–310. [Google Scholar] [CrossRef] [PubMed]
- Monciardini, P.; Cavaletti, L.; Schumann, P.; Rohde, M.; Donadio, S. Conexibacter Woesei Gen. Nov., Sp. Nov., a Novel Representative of a Deep Evolutionary Line of Descent within the Class Actinobacteria. Int. J. Syst. Evol. Microbiol. 2003, 53, 569–576. [Google Scholar] [CrossRef]
- Vieira, S.; Huber, K.J.; Geppert, A.; Wolf, J.; Neumann-Schaal, M.; Luckner, M.; Wanner, G.; Müsken, M.; Overmann, J. Capillimicrobium Parvum Gen. Nov., Sp. Nov., a Novel Representative of Capillimicrobiaceae Fam. Nov. within the Order Solirubrobacterales, Isolated from a Grassland Soil. Int. J. Syst. Evol. Microbiol. 2022, 72, 005508. [Google Scholar] [CrossRef]
- Chao, A.; Shen, T.-J. Nonparametric Estimation of Shannon’s Index of Diversity When There Are Unseen Species in Sample. Environ. Ecol. Stat. 2003, 10, 429–443. [Google Scholar] [CrossRef]
- Sergaki, C.; Lagunas, B.; Lidbury, I.; Gifford, M.L.; Schäfer, P. Challenges and Approaches in Microbiome Research: From Fundamental to Applied. Front. Plant Sci. 2018, 9, 1205. [Google Scholar] [CrossRef]
- Skaalsveen, K.; Ingram, J.; Clarke, L. The Effect of No-till Farming on the Soil Functions of Water Purification and Retention in North-Western Europe: A Literature Review. Soil Tillage Res. 2019, 189, 98–109. [Google Scholar] [CrossRef]
- Degrune, F.; Theodorakopoulos, N.; Colinet, G.; Hiel, M.-P.; Bodson, B.; Taminiau, B.; Daube, G.; Vandenbol, M.; Hartmann, M. Temporal Dynamics of Soil Microbial Communities below the Seedbed under Two Contrasting Tillage Regimes. Front. Microbiol. 2017, 8, 1127. [Google Scholar] [CrossRef]
- Deng, F.; Wang, H.; Xie, H.; Bao, X.; He, H.; Zhang, X.; Liang, C. Low-Disturbance Farming Regenerates Healthy Deep Soil toward Sustainable Agriculture—Evidence from Long-Term No-Tillage with Stover Mulching in Mollisols. Sci. Total Environ. 2022, 825, 153929. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Guo, Z.; Zhang, J.; Gai, Z.; Liu, J.; Meng, Q.; Liu, X. No Tillage and Residue Mulching Method on Bacterial Community Diversity Regulation in a Black Soil Region of Northeastern China. PLoS ONE 2021, 16, e0256970. [Google Scholar] [CrossRef]
- Six, J.; Elliott, E.T.; Paustian, K. Soil Macroaggregate Turnover and Microaggregate Formation: A Mechanism for C Sequestration under No-Tillage Agriculture. Soil Biol. Biochem. 2000, 32, 2099–2103. [Google Scholar] [CrossRef]
- Chueirecc, L.M.O.; Ferreira, M.C.; de Andrade, D.S.; Hungria, M. Effects of Soil Tillage Management and Crop Rotation on Bradyrhizobia Population. In Nitrogen Fixation: From Molecules to Crop Productivity; Pedrosa, F.O., Hungria, M., Yates, G., Newton, W.E., Eds.; Springer: Dordrecht, The Netherlands, 2000; p. 551. ISBN 978-0-306-47615-0. [Google Scholar]
- Hara, S.; Morikawa, T.; Wasai, S.; Kasahara, Y.; Koshiba, T.; Yamazaki, K.; Fujiwara, T.; Tokunaga, T.; Minamisawa, K. Identification of Nitrogen-Fixing Bradyrhizobium Associated with Roots of Field-Grown Sorghum by Metagenome and Proteome Analyses. Front. Microbiol. 2019, 10, 407. [Google Scholar] [CrossRef]
- Agashe, R.; George, J.; Pathak, A.; Fasakin, O.; Seaman, J.; Chauhan, A. Shotgun Metagenomics Analysis Indicates Bradyrhizobium Spp. as the Predominant Genera for Heavy Metal Resistance and Bioremediation in a Long-Term Heavy Metal-Contaminated Ecosystem. Microbiol. Resour. Announc. 2024, 13, e00245-24. [Google Scholar] [CrossRef]
- Chaddad, Z.; Lamrabet, M.; Bennis, M.; Kaddouri, K.; Alami, S.; Bouhnik, O.; El Idrissi, M.M. Nitrogen-Fixing Bradyrhizobium Spp. as Plant Growth-Promoting Bacteria to Improve Soil Quality and Plant Tolerance to Biotic and Abiotic Stresses. In Soil Bacteria: Biofertilization and Soil Health; Dheeman, S., Islam, M.T., Egamberdieva, D., Siddiqui, M.d.N., Eds.; Springer Nature: Singapore, 2024; pp. 71–99. ISBN 978-981-9734-73-3. [Google Scholar]
- Jones, F.P.; Clark, I.M.; King, R.; Shaw, L.J.; Woodward, M.J.; Hirsch, P.R. Novel European Free-Living, Non-Diazotrophic Bradyrhizobium Isolates from Contrasting Soils That Lack Nodulation and Nitrogen Fixation Genes—A Genome Comparison. Sci. Rep. 2016, 6, 25858. [Google Scholar] [CrossRef]
- Li, Y.; Xiong, L.; Zeng, K.; Wei, Y.; Li, H.; Ji, X. Microbial-Driven Carbon Fixation in Natural Wetland. J. Basic. Microbiol. 2023, 63, 1115–1127. [Google Scholar] [CrossRef]
- Liu, S.; Li, H.; Xie, X.; Chen, Y.; Lang, M.; Chen, X. Long-Term Moderate Fertilization Increases the Complexity of Soil Microbial Community and Promotes Regulation of Phosphorus Cycling Genes to Improve the Availability of Phosphorus in Acid Soil. Appl. Soil Ecol. 2024, 194, 105178. [Google Scholar] [CrossRef]
- Rocabruna, P.; Domene, X.; Preece, C.; Fernández-Martínez, M.; Maspons, J.; Penuelas, J. Effect of Climate, Crop, and Management on Soil Phosphatase Activity in Croplands: A Global Investigation and Relationships with Crop Yield. Eur. J. Agron. 2024, 161, 127358. [Google Scholar] [CrossRef]
- Richardson, A.E.; Barea, J.-M.; McNeill, A.M.; Prigent-Combaret, C. Acquisition of Phosphorus and Nitrogen in the Rhizosphere and Plant Growth Promotion by Microorganisms. Plant Soil 2009, 321, 305–339. [Google Scholar] [CrossRef]
- Qin, L.; Xiao, Z.; Ming, A.; Teng, J.; Zhu, H.; Qin, J.; Liang, Z. Soil Phosphorus Cycling Microbial Functional Genes of Monoculture and Mixed Plantations of Native Tree Species in Subtropical China. Front. Microbiol. 2024, 15, 1419645. [Google Scholar] [CrossRef] [PubMed]
- Tanuwidjaja, I.; Vogel, C.; Pronk, G.J.; Schöler, A.; Kublik, S.; Vestergaard, G.; Kögel-Knabner, I.; Mrkonjic Fuka, M.; Schloter, M.; Schulz, S. Microbial Key Players Involved in P Turnover Differ in Artificial Soil Mixtures Depending on Clay Mineral Composition. Microb. Ecol. 2021, 81, 897–907. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.-L.; Liu, J.; Jia, P.; Yang, T.; Zeng, Q.; Zhang, S.; Liao, B.; Shu, W.; Li, J. Novel Phosphate-Solubilizing Bacteria Enhance Soil Phosphorus Cycling Following Ecological Restoration of Land Degraded by Mining. ISME J. 2020, 14, 1600–1613. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chen, Z.; Xu, C.; Elrys, A.; Shen, F.; Cheng, Y.; Chang, S. Organic Amendment Enhanced Microbial Nitrate Immobilization with Negligible Denitrification Nitrogen Loss in an Upland Soil. Environ. Pollut. 2021, 288, 117721. [Google Scholar] [CrossRef] [PubMed]
- Padilla, F.; Gallardo, M.; Manzano-Agugliaro, F. Global Trends in Nitrate Leaching Research in the 1960–2017 Period. Sci. Total Environ. 2018, 643, 400–413. [Google Scholar] [CrossRef]
- Zhong, C.; Hu, G.; Hu, C.; Xu, C.; Zhang, Z.; Ning, K. Comparative Genomics Analysis Reveals Genetic Characteristics and Nitrogen Fixation Profile of Bradyrhizobium. iScience 2024, 27, 108948. [Google Scholar] [CrossRef]
- Suman, J.; Rakshit, A.; Ogireddy, S.D.; Singh, S.; Gupta, C.; Chandrakala, J. Microbiome as a Key Player in Sustainable Agriculture and Human Health. Front. Soil Sci. 2022, 2, 821589. [Google Scholar] [CrossRef]
Soil Indicator | Long-Term Fallow | Conventional Tillage | No-Till Technology |
---|---|---|---|
TOC % | 4.1 ± 0.07 | 4.2 ± 0.06 | 4.2 ± 0.04 |
C in mortmass, mg/kg | 67 ± 12.5 | 817 ± 51.4 | 1133 ± 61.2 |
C in microbial biomass, μg/g | 30 ± 5.5 | 100 ± 10,2 | 120 ± 12.5 |
N-NO3, mg/kg | 78.6 ± 13.95 | 19.8 ± 7,78 | 4.4 ± 0.22 |
Phosphatase activity, μg, P2O5/g per hour | 13.8 ± 0.43 | 14.6 ± 0,64 | 26.2 ± 0.84 |
Gene Name | Enzyme Name | KEGG Enzyme Entry | Metabolic Pathway |
---|---|---|---|
accA | Acetyl-coenzyme A carboxylase carboxyl transferase subunit alpha | 2.1.3.15 | carbon |
argG | Argininosuccinate synthase (Forming carbon-nitrogen bonds) | 6.3.4.5 | |
acsA | Acetyl-coenzyme A synthetase | 6.2.1.1 | |
mphE | 4-hydroxy-2-oxovalerate aldolase | 4.1.3.39 | |
miaB | tRNA-2-methylthio-N(6)-dimethylallyladenosine synthase (catalyzes methylation) | 2.8.4.3 | |
phnJ | Alpha-D-ribose 1-methylphosphonate 5-phosphate C-P lyase | 4.7.1.1 | phosphorus |
phoB | Phosphate regulon transcriptional regulatory protein | 3.6.1.11 | |
ppa | Inorganic pyrophosphatase | 3.6.1.1 | |
pstB | Phosphate import ATP-binding protein | 7.3.2.1 | |
pnp | Polyribonucleotide nucleotidyltransferase (catalyzes the phosphorolysis) | 2.7.7.8 | |
queC | 7-cyano-7-deazaguanine synthase (Forming carbon-nitrogen bonds) | 6.3.4.20 | nitrogen |
amiF | Formamidase (Acting on carbon-nitrogen bonds) | 3.5.1.49 | |
pyrG | CTP synthase (glutamine hydrolysing) (Forming carbon-nitrogen bonds) | 6.3.4.2 | |
guaA | GMP synthase [glutamine-hydrolyzing] (Forming carbon-nitrogen bonds) | 6.3.5.2 | |
guaB | Inosine-5′-monophosphate dehydrogenase (Acting on the CH-OH group of donors) | 1.1.1.205 | |
napA | Periplasmic nitrate reductase | 1.9.6.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galanova, O.O.; Mitkin, N.A.; Danilova, A.A.; Pavshintsev, V.V.; Tsybizov, D.A.; Zakharenko, A.M.; Golokhvast, K.S.; Grigoryeva, T.V.; Markelova, M.I.; Vatlin, A.A. Assessment of Soil Health Through Metagenomic Analysis of Bacterial Diversity in Russian Black Soil. Microorganisms 2025, 13, 854. https://doi.org/10.3390/microorganisms13040854
Galanova OO, Mitkin NA, Danilova AA, Pavshintsev VV, Tsybizov DA, Zakharenko AM, Golokhvast KS, Grigoryeva TV, Markelova MI, Vatlin AA. Assessment of Soil Health Through Metagenomic Analysis of Bacterial Diversity in Russian Black Soil. Microorganisms. 2025; 13(4):854. https://doi.org/10.3390/microorganisms13040854
Chicago/Turabian StyleGalanova, Olesya O., Nikita A. Mitkin, Albina A. Danilova, Vsevolod V. Pavshintsev, Denis A. Tsybizov, Alexander M. Zakharenko, Kirill S. Golokhvast, Tatiana V. Grigoryeva, Maria I. Markelova, and Aleksey A. Vatlin. 2025. "Assessment of Soil Health Through Metagenomic Analysis of Bacterial Diversity in Russian Black Soil" Microorganisms 13, no. 4: 854. https://doi.org/10.3390/microorganisms13040854
APA StyleGalanova, O. O., Mitkin, N. A., Danilova, A. A., Pavshintsev, V. V., Tsybizov, D. A., Zakharenko, A. M., Golokhvast, K. S., Grigoryeva, T. V., Markelova, M. I., & Vatlin, A. A. (2025). Assessment of Soil Health Through Metagenomic Analysis of Bacterial Diversity in Russian Black Soil. Microorganisms, 13(4), 854. https://doi.org/10.3390/microorganisms13040854