Cases of Isolation of Escherichia albertii Strains from Commercial Quails with Gastroenteritis in Russia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Object of the Study
2.2. Nutrient Media and Seeding
2.3. Mass Spectrometric Analysis
2.4. PCR Analysis
2.5. CDT Typing
The mdh, lysP, and clpX Genes Are Specific to E. albertii | |||||
---|---|---|---|---|---|
Gene | Primer | 5′-3′ | Annealing, °C | Product Size (bp) | Reference |
Mdh malatedehydrogenase | mdh-F | CTGGAAGGCGCAGATGTGGTACTGATT | 55 | 115 | [13] |
mdh-R | CTTGCTGAACCAGATTCTTCACAATACCG | ||||
Lys Lysine-specific transporter | lysP-F | GGGCGCTGCTTTCATATATTCTT | 55 | 252 | [13] |
lysP-R | TCCAGATCCAACCGGGAGTATCAGGA | ||||
Clp Heat shock protein | clpX-F | TGGCGTCGAGTTGGGCA | 55 | 384 | [13] |
clpX-R | TCCTGCTGCGGATGTTTACG | ||||
Pre-denaturation 95 °C—5 min; 25 cycles: denaturation 95 °C—1 min, annealing 55 °C—1 min, elongation 72 °C—1 min. Final elongation 72 °C—3 min. | |||||
E. coli APEC virulence genes | |||||
cva colicin V plasmid | cvaF | CACACACAAACGGGAGCTGTT | 63 | 672 | [16] |
cvaR | CTTCCGCAGCATAGTTCCAT | ||||
omp episomal outer membrane protease | ompF | TCATCCCGGAAGCCTCCCTCACTACTAT | 63 | 496 | [17] |
ompR | TAGCGTTTGCTGCACTGGCTTCTGATAC | ||||
iroN salmochelinsidero-phore receptor | ironF | AAGTCAAAGCAGGGGTTGCCCG | 63 | 667 | [16] |
ironR | GATCGCCGACATTAAGACGCAG | ||||
fim fimbriae | fimF | GGATAAGCCGTGGCCGGTGG | 63 | 331 | [16] |
fimR | CTGCGGTTGTGCCGGAGAGG | ||||
iut Aerobactinsidero-phore receptor | iutF | GGCTGGACATCATGGGAACTGG | 63 | 302 | [17] |
iutR | CGTCGGGAACGGGTAGAATCG | ||||
iss Episomal gene for increased survival in serum | issF | CAGCAACCCGAACCACTTGATG | 63 | 323 | [16] |
issR | AGCATTGCCAGAGCGGCAGAA | ||||
hly hemolysin | hlyF | GGCCACAGTCGTTTAGGGTGCTTACC | 63 | 450 | [17] |
hlyR | GGCGGTTTAGGCATTCCGATACTCAG | ||||
eae intimin | eaeF | CATTGATCAGGATTTTTCTGGTGATA | 63 | 102 | [14] |
eaeR | CTCATGCGGAAATAGCCGTTA | ||||
Pre-denaturation 95 °C—5 min, 35 cycles: denaturation 95 °C—30 s, annealing 63 °C—45 s, elongation 72 °C—1 min 45 s. Final elongation 72 °C—5 min. | |||||
E. coli microcin genes | |||||
Microcin B17 | mcc B17-F | TCACGCCAGTCTCCATTAGGTGTTGGCATT | 60 | 135 | [18] |
mcc B17-R | TTCCGCCGCTGCCACCGTTTCCACCACTAC | ||||
Microcin C7 | mcc C7-F | CGTTCAACTGTTGCAATGCT | 60 | 134 | |
mcc C7-R | AGTTGAGGGGCGTGTAATTG | ||||
Microcin E492 | mcc E492-F | GTCTCTCCTGCACCAAAAGC | 60 | 291 | |
mcc E492-R | TTTTCAGTCATGGCGTTCTG | ||||
Microcin H47 | mcc H47-F | CACTTTCATCCCTTCGGATTG | 60 | 227 | |
mcc H47-R | AGCTGAAGTCGCTGGCGCACCTCC | ||||
Microcin J25 | mcc J25-F | TCAGCCATAGAAAGATATAGGTGTACCAAT | 60 | 175 | |
mcc J25-R | TGATTAAGCATTTTCATTTTAATAAAGTGT | ||||
Microcin L | mcc L-F | GGTAAATGATATATGAGAGAAATAACGTTA | 60 | 233 | |
mcc L-R | TTTCGCTGAGTTGGAATTTCCTGCTGCATC | ||||
Microcin V | mcc V-F | CACACACAAAACGGGAGCTGTT | 60 | 680 | |
mcc V-R | TTTCGCTGAGTTGGAATTTCCTGCTGCATC | ||||
Microcin M | micM-4-F | CGTTTATTAGCCCGGGATTT | 60 | 166 | |
micM-4-R | GCAGACGAAGAGGCACTTG | ||||
Pre-denaturation 95 °C—5 min, 35 cycles: denaturation 95 °C—30 s, annealing 60 °C—30 s, elongation 72 °C—30 s. Final elongation 72 °C—5 min. | |||||
Primers encoding different types of cdt genes and cif gene in E. coli | |||||
cdtB-II, cdtB-III, cdtB-V | CDT-s1 | GAAAGTAAATGGAATATAAATGTCCG | 60 | 467 | [15] |
CDT-as1 | AAATCACCAAGAATCATCCAGTTA | ||||
cdtB-II * | CDT-IIas | TTTGTGTTGCCGCCGCTGGTGAAA | 62 | 556 | |
cdtB-III, cdtB-V * | CDT-IIIas | TTTGTGTCGGTGCAGCAGGGAAAA | 62 | 555 | |
cdtB-I, cdtB-IV | CDT-s2 | GAAAATAAATGGAACACACATGTCCG | 56 | 467 | |
CDT-as2 | AAATCTCCTGCAATCATCCAGTTA | ||||
cdtB-I | CDT-Is | CAATAGTCGCCCACAGGA | 56 | 411 | |
CDT-Ias | ATAATCAAGAACACCACCAC | ||||
cdtB-IV | CDT-IVs | CCTGATGGTTCAGGAGGCTGGTTC | 56 | 350 | |
CDT-IVas | TTGCTCCAGAATCTATACCT | ||||
cdtC-V | P105 | GTCAACGAACATTAGATTAT | 49 | 748 | |
c2767r | ATGGTCATGCTTTGTTATAT | ||||
cif | cif-int-s | AACAGATGGCAACAGACTGG | 55 | 383 | |
cif-int-as | AGTCAATGCTTTATGCGTCAT | ||||
Pre-denaturation 95 °C—5 min, 35 cycles: denaturation 95 °C—30 s, annealing—30 s, elongation 72 °C—30 s. Final elongation 72 °C—5 min. |
2.6. Serotyping of Escherichia coli
2.7. Biochemical Identification and Susceptibility to Antimicrobials
2.8. Statistical Analysis
3. Results
3.1. Characteristics of E. albertii and Other Microorganisms
3.2. Results of Identification of E. albertii and Antimicrobial Susceptibility
3.3. Results of PCR Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oaks, J.L.; Besser, T.E.; Walk, S.T.; Gordon, D.M.; Beckmen, K.B.; Burek, K.A. Escherichia albertii in wild and domestic birds. Emerg. Infect. Dis. 2010, 16, 638–646. [Google Scholar] [CrossRef] [PubMed]
- Albert, M.J.; Alam, K.; Islam, M.; Montanaro, J.; Rahaman, A.S.; Haider, K. Hafnia alvei, a probable cause of diarrhea in humans. Infect. Immun. 1991, 59, 1507–1513. [Google Scholar] [PubMed]
- Gomes, T.A.T.; Ooka, T.; Hernandes, R.T.; Yamamoto, D.; Hayashi, T. Escherichia albertii Pathogenesis. EcoSal Plus 2020, 9, 10-1128. [Google Scholar] [CrossRef] [PubMed]
- Masuda, K.; Ooka, T.; Akita, H.; Hiratsuka, T.; Takao, S.; Fukada, M. Epidemiological Aspects of Escherichia albertii Outbreaks in Japan and Genetic Characteristics of the Causative Pathogen. Foodborne Pathog. Dis. 2020, 17, 144–150. [Google Scholar] [PubMed]
- Tokuoka, E.; Furukawa, K.; Nagamura, T.; Harada, F.; Ekinaga, K.; Tokunaga, H. Food poisoning outbreak due to atypical EPEC OUT:HNM. Infect. Agents Surveill. Rep. 2012, 33, 8–9. [Google Scholar]
- Murakami, K.; Maeda-Mitani, E.; Kimura, H.; Honda, M.; Ikeda, T.; Sugitani, W. Non-biogroup 1 or 2 Strains of the Emerging Zoonotic Pathogen Escherichia albertii, Their Proposed Assignment to Biogroup 3, and Their Commonly Detected Characteristics. Front. Microbiol. 2019, 10, 1543. [Google Scholar]
- Liu, B.; Knirel, Y.A.; Feng, L.; Perepelov, A.V.; Senchenkova, S.N.; Reeves, P.R. Structural diversity in Salmonella O antigens and its genetic basis. FEMS Microbiol. Rev. 2014, 38, 56–89. [Google Scholar] [CrossRef]
- Muchaamba, F.; Barmettler, K.; Treier, A.; Houf, K.; Stephan, R. Microbiology and Epidemiology of Escherichia albertii—An Emerging Elusive Foodborne Pathogen. Microorganisms 2022, 10, 875. [Google Scholar] [CrossRef]
- Liu, Q.; Bai, X.; Yang, X.; Fan, G.; Wu, K.; Song, W. Identification and Genomic Characterization of Escherichia albertii in Migratory Birds from Poyang Lake, China. Pathogens 2022, 12, 9. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, L.; Cao, L.; Zeng, X.; Gillespie, B.; Lin, J. Isolation and characterization of Escherichia albertii originated from the broiler farms in Mississippi and Alabama. Vet. Microbiol. 2022, 267, 109379. [Google Scholar]
- Barmettler, K.; Biggel, M.; Treier, A.; Muchaamba, F.; Vogler, B.R.; Stephan, R. Occurrence and Characteristics of Escherichia albertii in Wild Birds and Poultry Flocks in Switzerland. Microorganisms 2022, 10, 2265. [Google Scholar] [CrossRef] [PubMed]
- Alispahic, M.; Hummel, K.; Jandreski-Cvetkovic, D.; Nöbauer, K.; Razzazi-Fazeli, E.; Hess, M. Species-specific identification and differentiation of Arcobacter, Helicobacter and Campylobacter by full-spectral matrix-associated laser desorption/ionization time of flight mass spectrometry analysis. J. Med. Microbiol. 2010, 59, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Fujioka, M.; Yoshioka, S.; Ito, M.; Ahsan, C.R. Characterization of the Emerging Enteropathogen Escherichia albertii Isolated from Urine Samples of Patients Attending Sapporo Area Hospitals, Japan. Int. J. Microbiol. 2022, 6, 4236054. [Google Scholar] [CrossRef] [PubMed]
- HPSC VTEC Sub-Committee Laboratory Subgroup. Guidance for Laboratory Diagnosis of Human Verotoxigenic E. coli Infection Produced by The Laboratory Sub-Group of the VTEC Sub-Committee of the Health Protection Surveillance Centre Scientific Advisory Committee, Ireland; HPSC VTEC Sub-Committee Laboratory Chapter; HPSC: Dublin, Ireland, 2014; pp. 1–27. [Google Scholar]
- Dubois, D.; Delmas, J.; Cady, A.; Robin, F.; Sivignon, A.; Oswald, E. Cyclomodulins in urosepsis strains of Escherichia coli. J. Clin. Microbiol. 2010, 48, 2122–2129. [Google Scholar] [CrossRef] [PubMed]
- van der Westhuizen, W.A.; Bragg, R.R. Multiplex polymerase chain reaction for screening avian pathogenic Escherichia coli for virulence genes. Avian Pathol. 2012, 41, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T.J.; Wannemuehler, Y.; Doetkott, C.; Johnson, S.J.; Rosenberger, S.C.; Nolan, L.K. Identification of minimal predictors of avian pathogenic Escherichia coli virulence for use as a rapid diagnostic tool. J. Clin. Microbiol. 2008, 46, 3987–3996. [Google Scholar] [CrossRef]
- Telhig, S.; Ben Said, L.; Zirah, S.; Fliss, I.; Rebuffat, S. Bacteriocins to Thwart Bacterial Resistance in Gram Negative Bacteria. Front. Microbiol. 2020, 11, 586433. [Google Scholar] [CrossRef] [PubMed]
- Rood, J.I.; Adams, V.; Lacey, J.; Lyras, D.; McClane, B.A.; Melville, S.B. Expansion of the Clostridium perfringens toxin-based typing scheme. Anaerobe 2018, 53, 5–10. [Google Scholar] [CrossRef]
- Kallapura, G.; Morgan, M.J.; Pumford, N.R.; Bielke, L.R.; Wolfenden, A.D.; Faulkner, O.B. Evaluation of the respiratory route as a viable portal of entry for Salmonella in poultry via intratracheal challenge of Salmonella enteritidis and Salmonella typhimurium. Poult. Sci. 2014, 93, 340–346. [Google Scholar] [CrossRef]
- Camba, S.I.; Del Valle, F.P.; Shirota, K.; Sasai, K.; Katoh, H. Evaluation of 3-week-old layer chicks intratracheally challenged with Salmonella isolates from serogroup c1 (O:6,7) and Salmonella enteritidis. Avian Pathol. 2020, 49, 305–310. [Google Scholar] [CrossRef]
- Moore, J.E.; Murray, L.; Fanning, S.; Cormican, M.; Daly, M.; Delappe, N. Comparison of phenotypic and genotypic characteristics of Salmonella bredeney associated with a poultry-related outbreak of gastroenteritis in Northern Ireland. J. Infect. 2003, 47, 33–39. [Google Scholar] [PubMed]
- Teymurazov, M.G.; Platonov, M.E.; Tazina, O.I.; Manin, T.B. The biological properties of the strains Avibacterium paragallinarum and Gallybacterium anatis isolated in the Russian Federation in 2015. Veterinary 2016, 6, 26–29. (In Russian) [Google Scholar]
- Manin, T.B.; Maximov, T.P.; Teimurazov, M.G.; Platonov, M.E. The new data of spread of infectious coryza in Russia and some CIS countries in 2013–2015 years. Veterinary 2016, 4, 13–16. (In Russian) [Google Scholar]
- Persson, G.; Bojesen, A.M. Bacterial determinants of importance in the virulence of Gallibacterium anatis in poultry. Vet. Res. 2015, 46, 57. [Google Scholar] [PubMed]
- Song, X.; Jiang, H.; Qi, Z.; Shen, X.; Xue, M.; Hu, J. APEC infection affects cytokine-cytokine receptor interaction and cell cycle pathways in chicken trachea. Res. Vet. Sci. 2020, 130, 144–152. [Google Scholar] [PubMed]
- Luo, L.; Wang, H.; Payne, M.J.; Liang, C.; Bai, L.; Zheng, H.; Zhang, Z.; Zhang, L.; Zhang, X.; Yan, G.; et al. Comparative genomics of Chinese and international isolates of Escherichia albertii: Population structure and evolution of virulence and antimicrobial resistance. Microb. Genom. 2021, 7, 000710. [Google Scholar] [PubMed]
- La Ragione, R.M.; McLaren, I.M.; Foster, G.; Cooley, W.A.; Woodward, M.J. Phenotypic and genotypic characterization of avian Escherichia coli O86:K61 isolates possessing a gamma-like intimin. Appl. Environ. Microbiol. 2002, 68, 4932–4942. [Google Scholar]
- Vassiliadis, G.; Destoumieux-Garzón, D.; Lombard, C.; Rebuffat, S.; Peduzzi, J. Isolation and characterization of two members of the siderophore-microcin family, microcins M and H47. Antimicrob. Agents Chemother. 2010, 54, 288–297. [Google Scholar]
- Li, Y.M.; Milne, J.C.; Madison, L.L.; Kolter, R.; Walsh, C.T. From peptide precursors to oxazole and thiazole-containing peptide antibiotics: Microcin B17 synthase. Science 1996, 274, 1188–1193. [Google Scholar]
No. of Sample, Workshop, Age | Parenchymatous Organs (Liver, Lungs, Heart, Spleen) | The Contents of the Sinuses, Trachea | Intestines | |
---|---|---|---|---|
1 line, 21 d | 1 | Staphylococcus piscifermentans | Salmonella enterica Bredeney, Streptococcus pluranimalium, Bordetella hinzii | Clostridium perfringens |
2 | S. piscifermentans | S. enterica Bredeney, B. hinzii | C. perfringens | |
3 | S. piscifermentans | S. enterica Bredeney | C. perfringens | |
4 | S. piscifermentans | S. enterica Bredeney, S. pluranimalium, B. hinzii | ||
5 | S. enterica Bredeney, B. hinzii | |||
2 line, 21 d | 1 | S. piscifermentans | S. enterica Bredeney, S. pluranimalium | |
2 | S. piscifermentans | Gallibacterium anatis, S. piscifermentans | C. perfringens | |
3 | S. piscifermentans | S. pluranimalium | ||
4 | S. piscifermentans | G. anatis, S. piscifermentans | ||
5 | S. piscifermentans | G. anatis, S. piscifermentans | C. perfringens | |
3 line, 18 d | 1 | S. piscifermentans | G. anatis, S. pluranimalium, B. hinzii | |
2 | S. enterica Bredeney, S. pluranimalium, B. hinzii | |||
3 | S. piscifermentans | S. enterica Bredeney, S. pluranimalium, B. hinzii, G. anatis | ||
4 | S. piscifermentans | S. pluranimalium, B. hinzii | ||
5 | G. anatis, S. enterica Bredeney | |||
4 line, 18 d | 1 | G. anatis, S. pluranimalium, E.coli | ||
2 | S. piscifermentans | G. anatis, S. pluranimalium, S. piscifermentans | ||
3 | G. anatis | |||
4 | S. piscifermentans | G. anatis, S. pluranimalium, S. piscifermentans | ||
5 | S. piscifermentans | S. piscifermentans | Escherichia albertii | |
m/f, 18 d | 1 | S. enterica Bredeney | E. albertii, C. perfringens | |
2 | S. piscifermentans | E.coli | ||
3 | E.coli | E. albertii | ||
4 | S. enterica Bredeney | E. albertii | ||
5 | S. enterica Bredeney | E. albertii |
Antimicrobials | E. albertii Group 1 with the eae Gene (N = 11) | E. albertii Group 2 Without eae Gene (N = 1) | ||
---|---|---|---|---|
MIC, mg/L | Interpretation | MIC, mg/L | Interpretation | |
ESBL * | - | - | ||
Ampicillin | 8 [100%; 95% CI] | S | 16 | R |
Amoxicillin/clavulonic acid | 8 [100%; 95% CI] | S | 16 | R |
Cefotaxime | ≤0.25 [100%; 95% CI] | S | ≤0.25 | S |
Ceftazidime | ≤0.12 [100%; 95% CI] | S | ≤0.12 | S |
Cefipime | ≤0.12 [100%; 95% CI] | S | ≤0.12 | S |
Ertapenem | ≤0.12 [100%; 95% CI] | S | ≤0.12 | S |
Meropenem | ≤0.25 [100%; 95% CI] | S | ≤0.25 | S |
Amikacin | ≤2 [100%; 95% CI] | S | ≤2 | S |
Gentamicin | ≤1 [100%; 95% CI] | S | ≤1 | S |
Netilmicin | ≤1 [100%; 95% CI] | ND | ≤1 | ND |
Ciprofloxacin | 1 [100%; 95% CI] | R | 1 | R |
Tigecycline | ≤0.5 [100%; 95% CI] | S | ≤0.5 | S |
Fosfomycin | ≤16 [100%; 95% CI] | S | ≤16 | S |
Nitrofurantoin | ≤16 [100%; 95% CI] | S | ≤16 | S |
Trimethoprim/sulfamethoxazole | ≤20 [100%; 95% CI] | S | ≤20 | S |
Colistin | ≤0.5 [100%; 95% CI] | S | ≤0.5 | S |
Antimicrobials | Salmonella spp. (N = 12) | E. coli (N = 4) | ||
---|---|---|---|---|
MIC, mg/L | Interpretation | MIC, mg/L | Interpretation | |
Piperacillin | 2 [100%; 95% CI] | S | 2 [100%; 95% CI] | S |
Piperacillin/tazobactame | 2/4 [100%; 95% CI] | S | ≤1/4 [100%; 95% CI] | S |
Cefotaxime | 0.25 [100%; 95% CI] | S | 0.25 [100%; 95% CI] | S |
Ceftazidime | 2 [100%; 95% CI] | S | 0.5 [100%; 95% CI] | S |
Cefipime | ≤0.12 [100%; 95% CI] | S | ≤0.12 [100%; 95% CI] | S |
Cefoperazone | ≤0.5 [100%; 95% CI] | S | ≤0.5 [100%; 95% CI] | S |
Cefoperazone/sulbactam | ≤0.5/0.25 [100%; 95% CI] | S | ≤0.5/0.25 [100%; 95% CI] | S |
Ertapenem | ≤0.015 [100%; 95% CI] | S | ≤0.015 [100%; 95% CI] | S |
Meropenem | ≤0.12 [100%; 95% CI] | S | ≤0.12 [100%; 95% CI] | S |
Netilmicin | 1 [100%; 95% CI] | S | 1 [100%; 95% CI] | S |
Tobramycin | 2 [100%; 95% CI] | S | 0.5 [100%; 95% CI] | S |
Tigecycline | 0.25 [100%; 95% CI] | S | 0.25 [100%; 95% CI] | S |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teymurazov, M.G.; Kartsev, N.N.; Abaimova, A.A.; Tazina, O.I.; Skryabin, Y.P.; Khokhlova, O.E. Cases of Isolation of Escherichia albertii Strains from Commercial Quails with Gastroenteritis in Russia. Microorganisms 2025, 13, 816. https://doi.org/10.3390/microorganisms13040816
Teymurazov MG, Kartsev NN, Abaimova AA, Tazina OI, Skryabin YP, Khokhlova OE. Cases of Isolation of Escherichia albertii Strains from Commercial Quails with Gastroenteritis in Russia. Microorganisms. 2025; 13(4):816. https://doi.org/10.3390/microorganisms13040816
Chicago/Turabian StyleTeymurazov, Marat G., Nikolay N. Kartsev, Alena A. Abaimova, Olga I. Tazina, Yuriy P. Skryabin, and Olga E. Khokhlova. 2025. "Cases of Isolation of Escherichia albertii Strains from Commercial Quails with Gastroenteritis in Russia" Microorganisms 13, no. 4: 816. https://doi.org/10.3390/microorganisms13040816
APA StyleTeymurazov, M. G., Kartsev, N. N., Abaimova, A. A., Tazina, O. I., Skryabin, Y. P., & Khokhlova, O. E. (2025). Cases of Isolation of Escherichia albertii Strains from Commercial Quails with Gastroenteritis in Russia. Microorganisms, 13(4), 816. https://doi.org/10.3390/microorganisms13040816