Toxicity Assay and Pathogenic Process Analysis of Clonostachys rogersoniana Infecting Cephalcia chuxiongica
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Isolation and Purification of Pathogen
2.3. Pathogenicity Tests
2.4. Morphological Identification and Molecular Phylogenetic Analysis
2.5. Growth and Conidia Condition of Swfuy-02 on Different Medium
2.6. Scanning Electron Microscopic Observation of the Body Wall of Swfuy-02 Infected Larvae
2.7. Swfuy-02 Effective Concentration Determination
2.8. Statistical Analysis
3. Results
3.1. Isolation of Strains Determination of Pathogenicity Analysis
3.2. Identification of Pathogen Analysis
3.3. Growth and Conidia Condition of Swfuy-02 on Different Media Analysis
3.4. Scanning Electron Microscopic Observation
3.5. Swfuy-02 Effective Concentration Determination Analysis
4. Discussion
4.1. Comparative Analysis with Preceding Research
4.2. Implications Unveiled by the Present Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moctezuma López, G.; Flores, A. Economic importance of pine (Pinus spp.) as a natural resource in Mexico. Rev. Mex. Cienc. For. 2020, 11, 161–185. [Google Scholar] [CrossRef]
- Mullin, T.; Andersson, B.; Bastien, J.-C.; Beaulieu, J.; Burdon, R.; Dvorak, W.; King, J.; Kondo, T.; Krakowski, J.; Lee, S. Economic importance, breeding objectives and achievements. In Genetics, Genomics and Breeding of Conifers; CRC Press: Boca Raton, FL, USA, 2011; pp. 40–127. [Google Scholar] [CrossRef]
- Peter, G.F. Southern pines: A resource for bioenergy. In Genetic Improvement of Bioenergy Crops; Springer: Berlin/Heidelberg, Germany, 2008; pp. 421–449. [Google Scholar]
- Liu, L.; Yan, D.; Qi, R.; Liu, D.; Yan, Z.; Liu, H. Circadian rhythm of emergence and reproduction of Cephalcia chuxiongica Xiao (Hymenoptera: Pamphiliidae). For. Pest Dis. 2014, 33, 5–8. [Google Scholar]
- Yan, Z.-L.; Ma, H.; Mao, Y.-L.; Liu, L. Gravid females of Cephalcia chuxiongica (Hymenoptera, Pamphiliidae) are attracted to egg-carrying needles of Pinus yunnanensis. J. Hymenopt. Res. 2018, 65, 157–166. [Google Scholar] [CrossRef]
- Chen, M.; Liu, F.-Y.; Li, Y.-H. Constituents of volatile materials from the needles of Pinus yunnanensis based on the oviposition preference of Cephalcia chuxiongica. J. Fujian Agric. Forest. Univ. 2018, 47, 398–402. [Google Scholar] [CrossRef]
- Xu, R.; Chen, Y.-H.; Xia, J.-F.; Zeng, T.-X.; Li, Y.-H.; Zhu, J.-Y. Metabolic dynamics across prolonged diapause development in larvae of the sawfly, Cephalcia chuxiongica (Hymenoptera: Pamphiliidae). J. Asia-Pac. Entomol. 2021, 24, 1–6. [Google Scholar] [CrossRef]
- Yu, H.; Shi, M.-R.; Xu, J.; Chen, P.; Liu, J.-H. Mating-induced trade-offs upon egg production versus fertilization and offspring’s survival in a sawfly with facultative parthenogenesis. Insects 2021, 12, 693. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, N.; Wang, C. Toxicity of the pyrethroid bifenthrin insecticide. Environ. Chem. Lett. 2018, 16, 1377–1391. [Google Scholar] [CrossRef]
- Ju, D.; Liu, Y.-X.; Liu, X.; Dewer, Y.; Mota-Sanchez, D.; Yang, X.-Q. Exposure to lambda-cyhalothrin and abamectin drives sublethal and transgenerational effects on the development and reproduction of Cydia pomonella. Ecotoxicol. Environ. Saf. 2023, 252, 114581. [Google Scholar] [CrossRef]
- Ortiz-Urquiza, A.; Keyhani, N.O. Action on the surface: Entomopathogenic fungi versus the insect cuticle. Insects 2013, 4, 357–374. [Google Scholar] [CrossRef]
- Quesada-Moraga, E.; González-Mas, N.; Yousef-Yousef, M.; Garrido-Jurado, I.; Fernández-Bravo, M. Key role of environmental competence in successful use of entomopathogenic fungi in microbial pest control. J. Pest Sci. 2024, 97, 1–15. [Google Scholar] [CrossRef]
- Guesmi-Jouini, J.; Garrido-Jurado, I.; López-Díaz, C.; Halima-Kamel, M.B.; Quesada-Moraga, E. Establishment of fungal entomopathogens Beauveria bassiana and Bionectria ochroleuca (Ascomycota: Hypocreales) as endophytes on artichoke Cynara scolymus. J. Invertebr. Pathol. 2014, 119, 1–4. [Google Scholar] [CrossRef]
- Liu, J.; Sun, Y.; Liu, M.; Gou, C.; Li, H.; Yang, F.; Lu, J. Isolation and Identification of Apiospora intestini from Hedera nepalensis Leaf Blight and Determination of Antagonism of Phomopsis sp. Curr. Microbiol. 2025, 82, 103. [Google Scholar] [CrossRef]
- Huang, J.; Jiang, Z. Phylogenetic analysis of Endophytes from Bitter Melon (Momordica charantia) in Guangdong Province. Agric. Sci. 2015, 6, 609–621. [Google Scholar] [CrossRef]
- Celar, F.A.; Kos, K. Effects of selected herbicides and fungicides on growth, sporulation and conidial germination of entomopathogenic fungus Beauveria bassiana. Pest Manag. Sci. 2016, 72, 2110–2117. [Google Scholar] [CrossRef]
- Zhang, J.; Yao, T.; Gong, W.; Gao, Y.; Zhao, G. Additive screening and formula optimization of microbial inhibitor having disease prevention and growth promotion effects on Avena sativa. Front. Microbiol. 2023, 14, 1208591. [Google Scholar] [CrossRef]
- Bhunjun, C.S.; Phillips, A.J.L.; Jayawardena, R.S.; Promputtha, I.; Hyde, K.D. Importance of molecular data to identify fungal pant pathogens and guidelines for pathogenicity testing based on Koch’s postulates. Pathogens 2021, 10, 1096. [Google Scholar] [CrossRef]
- Alfiky, A. Screening and identification of indigenous entomopathogenic fungal isolates from agricultural farmland soils in Nile Delta, Egypt. J. Fungi 2022, 8, 54. [Google Scholar] [CrossRef]
- Liu, Y.-C.; Ni, N.-T.; Chang, J.-C.; Li, Y.-H.; Lee, M.R.; Kim, J.S.; Nai, Y.-S. Isolation and selection of entomopathogenic fungi from soil samples and evaluation of fungal virulence against insect pests. J. Vis. Exp. 2021, 175, e62882. [Google Scholar] [CrossRef]
- Beemrote, A.; Srinivasan, M.; Jeyarani, S.; Kumar, S.M.; Kalaiselvi, T.; Palle, P.; Singh, K.S. Isolation and identification of entomopathogenic fungi from soils of Manipur (NE India). Indian J. Agric. Res. 2024, 58, 698–705. [Google Scholar]
- Shahriari, M.; Zibaee, A.; Khodaparast, S.A.; Fazeli-Dinan, M. Screening and virulence of the entomopathogenic fungi associated with Chilo suppressalis walker. J. Fungi 2021, 7, 34. [Google Scholar] [CrossRef]
- Wang, D.; Xing, P.-X.; Diao, H.-L.; Zhou, W.-W.; Li, X.-W.; Zhang, L.-J.; Ma, R.-Y. Pathogenicity characteristics of the entomopathogenic fungus Cordyceps javanica IJ-tg19 to Acyrthosiphon pisum. BioControl 2023, 68, 447–458. [Google Scholar] [CrossRef]
- Raja, H.A.; Miller, A.N.; Pearce, C.J.; Oberlies, N.H. Fungal Identification Using Molecular Tools: A Primer for the Natural Products Research Community. J. Nat. Prod. 2017, 80, 756–770. [Google Scholar] [CrossRef] [PubMed]
- Carbone, I.; Kohn, L.M. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 1999, 91, 553–556. [Google Scholar] [CrossRef]
- Kumar, M.; Shukla, P.K. Use of PCR targeting of internal transcribed spacer regions and single-stranded conformation polymorphism analysis of sequence variation in different regions of rrna genes in fungi for rapid diagnosis of mycotic keratitis. J. Clin. Microbiol. 2005, 43, 662–668. [Google Scholar] [CrossRef]
- Lousie, G.N.; Donaldson, G.C. Development of primer sets designed for use with the PCR to amplify conserved genes from Filamentous Ascomycetes. Appl. Environ. Microbiol. 1995, 61, 1323–1330. [Google Scholar] [CrossRef]
- Valenzuela-Lopez, N.; Cano-Lira, J.F.; Guarro, J.; Sutton, D.A.; Wiederhold, N.; Crous, P.W.; Stchigel, A.M. Coelomycetous Dothideomycetes with emphasis on the families Cucurbitariaceae and Didymellaceae. Stud. Mycol. 2018, 90, 1–69. [Google Scholar] [CrossRef]
- Xie, T.; Wang, Y.; Yu, D.; Zhang, Q.; Zhang, T.; Wang, Z.; Huang, B. MrSVP, a secreted virulence-associated protein, contributes to thermotolerance and virulence of the entomopathogenic fungus Metarhizium robertsii. BMC Microbiol. 2019, 19, 25. [Google Scholar] [CrossRef]
- Cabanillas, H.E.; Jones, W.A. Effects of temperature and culture media on vegetative growth of an entomopathogenic fungus Isaria sp. (Hypocreales: Clavicipitaceae) naturally affecting the whitefly, Bemisia tabaci in Texas. Mycopathologia 2009, 167, 263–271. [Google Scholar] [CrossRef]
- Safavi, S.A.; Shah, F.A.; Pakdel, A.K.; Reza Rasoulian, G.; Bandani, A.R.; Butt, T.M. Effect of nutrition on growth and virulence of the entomopathogenic fungus Beauveria bassiana. FEMS Microbiol. Lett. 2007, 270, 116–123. [Google Scholar] [CrossRef]
- Li, X.; Chen, Q.; Li, Y. The morphology of the parasitic isopod Tachaea chinensis (Isopoda, Cymothoida) revealed through scanning electron microscopy and histological analysis. Crustaceana 2021, 94, 63–75. [Google Scholar] [CrossRef]
- Geroh, M.; Gulati, R.; Tehri, K. Determination of lethal concentration and lethal time of entomopathogen Beauveria bassiana (Balsamo) Vuillemin against Tetranychus urticae Koch. Int. J. Agric. Sci. 2015, 7, 523–528. [Google Scholar]
- Siddartha, D.; Revannavar, R. Median Lethal Time and Concentrations of Selected Insecticides against Third Instar Larvae of Plutella xylostella (Lepidoptera: Plutellidae). Biosciences 2014, 7, 1693–1699. [Google Scholar]
- Brown, E.A.; Hendrix, F.F. Pathogenicity and histopathology of Botryosphaeria dothidea on apple stems. Phytopathology 1981, 71, 375–379. [Google Scholar] [CrossRef]
- Cannon, P.F. A Monograph of Bionectria (Ascomycota, Hypocreales, Bionectriaceae) and its Clonostachys Anamorphs. Mycologist 2003, 17, 73. [Google Scholar] [CrossRef]
- Afshari, N.; Hemmati, R. First report of the occurrence and pathogenicity of Clonostachys rosea on faba bean. Australas. Plant Pathol. 2017, 46, 231–234. [Google Scholar] [CrossRef]
- Pastirčáková, K.; Baková, K.; Adamčíková, K.; Barta, M.; Lalík, M.; Pavlík, M.; Kunca, A.; Galko, J.; Pastirčák, M. Fungi associated with ambrosia beetle Xylosandrus germanus in Slovakia. Biologia 2024, 79, 2387–2400. [Google Scholar] [CrossRef]
- Severns, P.M.; Oliver, J.E. Visually Asymptomatic Leaf Loss in Xylella fastidiosa-Infected Blueberry Plants. Pathogens 2024, 13, 904. [Google Scholar] [CrossRef]
- Sönmez, E.; Sevim, A.; Demirbağ, Z.; Demir, İ. Isolation, characterization and virulence of entomopathogenic fungi from Gryllotalpa gryllotalpa (Orthoptera: Gryllotalpidae). Appl. Entomol. Zool. 2016, 51, 213–223. [Google Scholar] [CrossRef]
- Gao, X.-M.; Chen, S.; Lv, G.-Z.; Li, L.; Sun, X.-D.; Liu, X.-H.; Zhu, W.-Q. The finding of the genus Clonostachys (Hyphomycetes) in China. Mycosystema 2008, 27, 62–65. [Google Scholar] [CrossRef]
- Şahin, F.; Yanar, Y. Isolation and identification of entomopathogenic fungi from coastal districts of Ordu province, Turkey. Plant Prot. Bull. 2023, 63, 17–24. [Google Scholar] [CrossRef]
- Kumar, D.; Kumari, N.; Mhatre, P.H.; Pal, D.; Naga, K.C.; Watpade, S. Characterization and pathogenicity of newly recorded Clonostachys rogersoniana against woolly apple aphid (Eriosoma lanigerum Hausmann) from India. Egypt. J. Biol. Pest Control 2024, 34, 57. [Google Scholar] [CrossRef]
- Tamta, A.K.; Pandey, R.; Sharma, J.R.; Rai, R.; Barman, M.; Deeksha, M.G.; Mitra, D.; Mohapatra, P.K.D.; Sami, R.; Al-Mushhin, A.A.M. First Record of Clonostachys rosea (Ascomycota: Hypocreales) Entomopathogenic Fungus in the Mango Hopper Amritodus atkinsoni (Hemiptera: Cicadellidae). Pathogens 2022, 11, 1447. [Google Scholar] [CrossRef]
- Keyser, C.A.; Jensen, B.; Meyling, N.V. Dual effects of Metarhizium spp. and Clonostachys rosea against an insect and a seed-borne pathogen in wheat. Pest Manag. Sci. 2016, 72, 517–526. [Google Scholar] [CrossRef] [PubMed]
- Butt, T.; Coates, C.; Dubovskiy, I.; Ratcliffe, N. Entomopathogenic fungi: New insights into host-pathogen interactions. Adv. Genet. 2016, 94, 307–364. [Google Scholar] [CrossRef]
- Shin, T.Y.; Lee, M.R.; Park, S.E.; Lee, S.J.; Kim, W.J.; Kim, J.S. Pathogenesis-related genes of entomopathogenic fungi. Arch. Insect Biochem. Physiol. 2020, 105, e21747. [Google Scholar] [CrossRef]
- Islam, W.; Adnan, M.; Shabbir, A.; Naveed, H.; Abubakar, Y.S.; Qasim, M.; Tayyab, M.; Noman, A.; Nisar, M.S.; Khan, K.A. Insect-fungal-interactions: A detailed review on entomopathogenic fungi pathogenicity to combat insect pests. Microb. Pathog. 2021, 159, 105122. [Google Scholar] [CrossRef] [PubMed]
- Mora, M.A.E.; Castilho, A.M.C.; Fraga, M.E. Classification and infection mechanism of entomopathogenic fungi. Arq. Inst. Biol. 2017, 84, e0552015. [Google Scholar] [CrossRef]
- Fan, Y.; Pei, X.; Guo, S.; Zhang, Y.; Luo, Z.; Liao, X.; Pei, Y. Increased virulence using engineered protease-chitin binding domain hybrid expressed in the entomopathogenic fungus Beauveria bassiana. Microb. Pathog. 2010, 49, 376–380. [Google Scholar] [CrossRef]
- Gebremariam, A.; Chekol, Y.; Assefa, F. Extracellular enzyme activity of entomopathogenic fungi, Beauveria bassiana and Metarhizium anisopliae and their pathogenicity potential as a bio-control agent against whitefly pests, Bemisia tabaci and Trialeurodes vaporariorum (Hemiptera: Aleyrodidae). BMC Res. Notes 2022, 15, 117. [Google Scholar] [CrossRef]
- Zare, M.; Talaei-Hassanloui, R.; Fotouhifar, K.-B. Relatedness of proteolytic potency and virulence in entomopathogenic fungus Beauveria bassiana isolates. J. Crop Prot. 2014, 3, 425–434. [Google Scholar]
- Omeroglu, M.A.; Albayrak, S.; Arslan, N.P.; Ozkan, H.; Adiguzel, A.; Taskin, M. Evaluation of wool protein hydrolysate as peptone for production of microbial enzymes. 3 Biotech 2023, 13, 31. [Google Scholar] [CrossRef]
- Gao, Y.-P.; Luo, M.; Wang, X.-Y.; He, X.Z.; Lu, W.; Zheng, X.-L. Pathogenicity of Beauveria bassiana PfBb and immune responses of a non-target host, Spodoptera frugiperda (Lepidoptera: Noctuidae). Insects 2022, 13, 914. [Google Scholar] [CrossRef]
- Nakamura, A.; Takahashi, H.; Sulaiman, S.; Phraephaisarn, C.; Keeratipibul, S.; Kuda, T.; Kimura, B. Evaluation of peptones from chicken waste as a nitrogen source for micro-organisms. Lett. Appl. Microbiol. 2021, 72, 408–414. [Google Scholar] [CrossRef]
- Nakamura, M.; Akada, R. Blending of selected yeast extract and peptone for inducible and constitutive protein production in Escherichia coli using the pET system. J. Biosci. Bioeng. 2024, 138, 548–556. [Google Scholar] [CrossRef] [PubMed]
- Saulou-Berion, C.; Delettre, J.; Béal, C. Culture conditions affect Lactobacillus reuteri DSM 17938 ability to perform glycerol bioconversion into 3-hydroxypropionic acid. J. Biosci. Bioeng. 2021, 131, 501–508. [Google Scholar] [CrossRef]
- Şahin, F.; Yanar, Y. Pathogenicity of some local entomopathogenic fungus isolates on the cotton leafworm larvae, Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae). Egypt. J. Biol. Pest Control 2021, 31, 150. [Google Scholar] [CrossRef]
- Mahmoudi, H.; Amini, A.; Mirzaee, M.R.; Sadeghi, H.; Tavakkoli, G. Clonostachys rosea, a new and promising entomopathogenic fungus infecting pupa of jujube fruit fly, Carpomya vesuviana. Mycol. Iran. 2018, 5, 43–49. [Google Scholar] [CrossRef]
- Bamisile, B.S.; Akutse, K.S.; Siddiqui, J.A.; Xu, Y. Model application of entomopathogenic fungi as alternatives to chemical pesticides: Prospects, challenges, and insights for next-generation sustainable agriculture. Front. Plant Sci. 2021, 12, 741804. [Google Scholar] [CrossRef]
- Nishi, O.; Sushida, H.; Higashi, Y.; Iida, Y. Epiphytic and endophytic colonisation of tomato plants by the entomopathogenic fungus Beauveria bassiana strain GHA. Mycology 2021, 12, 39–47. [Google Scholar] [CrossRef]
- Mohammed, A.A.; Ahmed, F.A.; Younus, A.S.; Kareem, A.A.; Salman, A.M. Molecular identification of two entomopathogenic fungus Clonostachys rosea strains and their efficacy against two aphid species in Iraq. J. Genet. Eng. 2022, 20, 67. [Google Scholar] [CrossRef]
- Nishi, O.; Sushida, H.; Higashi, Y.; Iida, Y. Entomopathogenic fungus Akanthomyces muscarius (Hypocreales: Cordycipitaceae) strain IMI 268317 colonises on tomato leaf surface through conidial adhesion and general and microcycle conidiation. Mycology 2022, 13, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Basheer, M.A.; Abutaleb, K.; Abed, N.N.; Mekawey, A.A.I. Mycosynthesis of silver nanoparticles using marine fungi and their antimicrobial activity against pathogenic microorganisms. J. Genet. Eng. Biotechnol. 2023, 21, 127. [Google Scholar] [CrossRef]
- Li, H.; Hao, T.; Duan, X.; Zhang, Y.; Jiang, J.; Qian, L.; Liu, S. Functional Study of FgNiR Gene in Pathogenicity and Utilisation Capacity of Nitrogen Sources of Fusarium graminearum. J. Phytopathol. 2025, 173, e70044. [Google Scholar] [CrossRef]
- Thakur, N.; Nigam, M.; Mann, N.A.; Gupta, S.; Hussain, C.M.; Shukla, S.K.; Shah, A.A.; Casini, R.; Elansary, H.O.; Khan, S.A. Host-mediated gene engineering and microbiome-based technology optimization for sustainable agriculture and environment. Funct. Integr. Genom. 2023, 23, 57. [Google Scholar] [CrossRef]
- Banu, A.N.; Kudesia, N. Mycological nanoparticles and their impact on lepidopteran pests: A short review. J. Entomol. Res. 2024, 48, 366–370. [Google Scholar] [CrossRef]
- Deshmukh, S.K.; Sridhar, K. The Role of Entomopathogenic Fungi in Agriculture; CRC Press: Boca Raton, FL, USA, 2025. [Google Scholar] [CrossRef]
- Deshmukh, S.K.; Sridhar, K.R. Entomopathogenic Fungi: Prospects and Challenges; Springer: Berlin/Heidelberg, Germany, 2024. [Google Scholar] [CrossRef]
Culture Medium | Colony Diameter (mm) After 15 Days | Sporulation Quantity (×106/cm2) After 15 Days |
---|---|---|
Potato Dextrose Agar | 70.17 ± 1.2 c | 3.10 ± 0.16 b |
Czapek-Dox Agar | 63.67 ± 1.01 d | 1.24 ± 0.12 c |
Peptone Potato Dextrose Agar | 83.62 ± 0.97 a | 19.07 ± 0.18 a |
Sabouraud Dextrose Agar with Yeast Extract | 71.22 ± 1.03 b | 0.00 ± 0.00 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, J.; Liu, J.; Li, H.; Sun, Y.; Liu, S.; Wang, M.; Li, Y. Toxicity Assay and Pathogenic Process Analysis of Clonostachys rogersoniana Infecting Cephalcia chuxiongica. Microorganisms 2025, 13, 709. https://doi.org/10.3390/microorganisms13040709
Lu J, Liu J, Li H, Sun Y, Liu S, Wang M, Li Y. Toxicity Assay and Pathogenic Process Analysis of Clonostachys rogersoniana Infecting Cephalcia chuxiongica. Microorganisms. 2025; 13(4):709. https://doi.org/10.3390/microorganisms13040709
Chicago/Turabian StyleLu, Junjia, Jian Liu, Huali Li, Yajiao Sun, Shuwen Liu, Mengyao Wang, and Yonghe Li. 2025. "Toxicity Assay and Pathogenic Process Analysis of Clonostachys rogersoniana Infecting Cephalcia chuxiongica" Microorganisms 13, no. 4: 709. https://doi.org/10.3390/microorganisms13040709
APA StyleLu, J., Liu, J., Li, H., Sun, Y., Liu, S., Wang, M., & Li, Y. (2025). Toxicity Assay and Pathogenic Process Analysis of Clonostachys rogersoniana Infecting Cephalcia chuxiongica. Microorganisms, 13(4), 709. https://doi.org/10.3390/microorganisms13040709