Baseline Characteristics of Bronchial Secretions and Bronchoalveolar Lavage Fluid in Patients with Ventilator-Associated Pneumonia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Outcomes
2.3. Microbial Evaluation
2.4. Samples
2.4.1. Evaluation of the Total Protein Levels
2.4.2. Evaluation of the Cytokine Levels
2.4.3. Cell Count and Cell Type Evaluation
2.5. Statistical Analysis
3. Results
3.1. Clinical Characteristics in VAP Manifestations
3.2. Infection Characteristics
3.3. Total Protein Levels
3.4. Cytokine Levels
3.5. Cell Count and Type Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rohrs, E.C.; Bassi, T.G.; Fernandez, K.C.; Ornowska, M.; Nicholas, M.; Wittmann, J.C.; Reynolds, S.C. Diaphragm neurostimulation during mechanical ventilation reduces atelectasis and transpulmonary plateau pressure, preserving lung homogeneity and PaO2/FIO2. J. Appl. Physiol. 2021, 131, 290–301. [Google Scholar] [CrossRef] [PubMed]
- Gattinoni, L.; Marini, J.J.; Collino, F.; Maiolo, G.; Rapetti, F.; Tonetti, T.; Vasques, F.; Quintel, M. The future of mechanical ventilation: Lessons from the present and the past. Crit. Care 2017, 21, 183. [Google Scholar] [CrossRef]
- Tobin, M.; Sockrider, M.; Kulkarni, H.S.; Long, A.C. Mechanical Ventilation. Am. J. Respir. Crit. Care Med. 2017, 196, 3–4. [Google Scholar] [CrossRef]
- Patil, H.V.; Patil, V.C. Incidence, bacteriology, and clinical outcome of ventilator associated pneumonia at tertiary care hospital. J. Nat. Sci. Biol. Med. 2017, 8, 46–55. [Google Scholar] [CrossRef]
- Garnacho-Montero, J.; Ortiz-Leyba, C.; Fernández-Hinojosa, E.; Aldabó-Pallás, T.; Cayuela, A.; Marquez-Vácaro, J.A.; Andrés Garcia-Curiel, A.; Jiménez-Jiménez, F.J. Acinetobacter baumannii ventilator-associated pneumonia: Epidemiological and clinical findings. Intensive Care Med. 2005, 31, 649–655. [Google Scholar] [CrossRef] [PubMed]
- Giantsou, E.; Liratzopoulos, N.; Efraimidou, E.; Panopoulou, M.; Alepopoulou, E.; Kartali-Ktenidou, S.; Minopoulos, G.I.; Zakynthinos, S.; Manolas, K.I. Both early-onset and late-onset ventilator-associated pneumonia are caused mainly by potentially multiresistant bacteria. Intensive Care Med. 2005, 31, 1488–1494. [Google Scholar] [CrossRef] [PubMed]
- Martin-Loeches, I.; Deja, M.; Koulenti, D.; Dimopoulos, G.; Marsh, B.; Torres, A.; Niederman, M.S.; Rello, J.; EU-VAP Study Investigators. EU-VAP Study Investigators: Potentially resistant microorganisms in intubated patients with hospital-acquired pneumonia: The interaction of ecology, shock and risk factors. Intensive Care Med. 2013, 39, 672–681. [Google Scholar] [CrossRef]
- Hoth, J.J.; Franklin, G.A.; Stassen, N.A.; Girard, S.M.; Rodriguez, R.J.; Rodriguez, J.L. Prophylactic antibiotics adversely affect nosocomial infection in trauma patients. J. Trauma 2003, 55, 249–254. [Google Scholar] [CrossRef]
- Li, Y.; Roberts, J.A.; Walker, M.M.; Aslan, A.T.; Harris, P.N.; Sime, F.B. The global epidemiology of ventilator-associated pneumonia caused by multi-drug-resistant Pseudomonas aeruginosa: A systematic review and meta-analysis. Int. J. Infect. Dis. 2024, 139, 78–85. [Google Scholar] [CrossRef]
- Suljevic, I.; Asotic, D.; Surkovic, I.; Turan, M.; Spahovic, H. Frequency of Ventilator Associated Pneumonias in Patients in the Intensive Care Unit. Med. Arch. 2020, 74, 285–288. [Google Scholar] [CrossRef]
- Dudeck, M.A.; Horan, T.C.; Peterson, K.D.; Allen-Bridson, K.; Morrell, G.C.; Pollock, D.A.; Edwards, J.R. National Healthcare Safety Network (NHSN) report, data summary for 2009, device associated module. Am. J. Infect. Control 2011, 39, 349–367. [Google Scholar] [CrossRef] [PubMed]
- Park, D.R. The microbiology of ventilator-associated pneumonia. Respir. Care 2005, 50, 742–763. [Google Scholar]
- Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Tablan, O.C.; Anderson, L.J.; Besser, R.; Bridges, C.; Hajjeh, R.; CDC; Healthcare Infection Control Practices Advisory Committee. Guidelines for preventing healthcare—Associated pneumonia, 2003: Recommendations of CDC and the Healthcare Infection Control Practices Advisory Committee. MMWR Recomm. Rep. 2004, 53, 1–36. [Google Scholar] [PubMed]
- Modi, A.R.; Kovacs, C.S. Hospital-acquired and ventilator-associated pneumonia: Diagnosis, management, and prevention. Clevel. Clin. J. Med. 2020, 87, 633–639. [Google Scholar] [CrossRef]
- Koulenti, D.; Lisboa, T.; Brun-Buisson, C.; Krueger, W.; Macor, A.; Sole-Violan, J.; Diaz, E.; Topeli, A.; DeWaele, J.; Carneiro, A.; et al. Spectrum of practice in the diagnosis of nosocomial pneumonia in patients requiring mechanical ventilation in European intensive care units. Crit. Care Med. 2009, 37, 2360–2368. [Google Scholar] [CrossRef] [PubMed]
- Canadian Critical Care Trials Group. A randomized trial of diagnostic techniques for ventilator-associated pneumonia. N. Engl. J. Med. 2006, 355, 2619–2630. [Google Scholar] [CrossRef]
- Chastre, J. Conference summary: Ventilator-associated pneumonia. Respir. Care 2005, 50, 975–983. [Google Scholar]
- Stamatiou, R.; Tsolaki, V.; Hatziefthimiou, A.; Zakynthinos, E.; Makris, D. Evaluation of airway inflammation in mechanically ventilated patients using cell count and protein concentration. Sci. Rep. 2021, 11, 19803. [Google Scholar] [CrossRef]
- Becker, J.M.; Caldwell, G.A.; Zachgo, E.A. Exercise 13—Protein Assays. In Biotechnology, 2nd ed.; Becker, J.M., Caldwell, G.A., Zachgo, E.A., Eds.; Academic Press: Cambridge, MA, USA, 1996; pp. 119–124. [Google Scholar]
- Montoya, R.; Deckerman, P.; Guler, M.O. Protein recognition methods for diagnostics and therapy. BBA Adv. 2025, 7, 100149. [Google Scholar] [CrossRef]
- Chang, A.B.; Faoagali, J.; Cox, N.C.; Marchant, J.M.; Dean, B.; Petsky, H.L.; Masters, I.B. A bronchoscopic scoring system for airway secretions—Airway cellularity and microbiological validation. Pediatr. Pulmonol. 2006, 41, 887–892. [Google Scholar] [CrossRef] [PubMed]
- Frattari, A.; Polilli, E.; Primiterra, V.; Savini, V.; Ursini, T.; Di Iorio, G.; Parruti, G. Analysis of peripheral blood lymphocyte subsets in critical patients at ICU admission: A preliminary investigation of their role in the prediction of sepsis during ICU stay. Int. J. Immunopathol. Pharmacol. 2018, 32. [Google Scholar] [CrossRef]
- Cajander, S.; Kox, M.; Scicluna, B.P.; Weigand, M.A.; Mora, R.A.; Flohé, S.B.; Martin-Loeches, I.; Lachmann, G.; Girardis, M.; Garcia-Salido, A.; et al. Profiling the dysregulated immune response in sepsis: Overcoming challenges to achieve the goal of precision medicine. Lancet Respir. Med. 2024, 12, 305–322. [Google Scholar] [CrossRef]
- Hunninghake, G.W.; Gadek, J.E.; Kawanami, O.; Ferrans, V.J.; Crystal, R.G. Inflammatory and immune processes in the human lung in health and disease: Evaluation by bronchoalveolar lavage. Am. J. Pathol. 1979, 97, 149–206. [Google Scholar]
- El-Khatib, M.F.; Jamaleddine, G.W. Clinical relevance of the PaO2/FiO2 ratio. Crit. Care 2008, 12, 407. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.L.; Dubois, M.J.; Navickis, R.J.; Wilkes, M.M. Hypoalbuminemia in acute illness: Is there a rationale for intervention? Ann. Surg. 2003, 237, 319–334. [Google Scholar] [CrossRef] [PubMed]
- Alp, E.; Güven, M.; Yıldız, O.; Aygen, B.; Voss, A.; Doganay, M. Incidence, risk factors and mortality of nosocomial pneumonia in intensive care units: A prospective study. Ann. Clin. Microbiol. Antimicrob. 2004, 3, 17. [Google Scholar] [CrossRef]
- Pinheiro, M.R.; Lacerda, H.R.; Melo, R.G.; Maciel, M.A. Pseudomonas aeruginosa infections: Factors relating to mortality with emphasis on resistance pattern and antimicrobial treatment. Braz. J. Infect. Dis. 2008, 12, 509–515. [Google Scholar] [CrossRef]
- Conway Morris, A.; Kefala, K.; Wilkinson, T.S.; Moncayo-Nieto, O.L.; Dhaliwal, K.; Farrell, L.; Walsh, T.S.; Mackenzie, S.J.; Swann, D.G.; Andrews, P.J.; et al. Diagnostic importance of pulmonary interleukin-1beta and interleukin-8 in ventilator-associated pneumonia. Thorax 2010, 65, 201–207. [Google Scholar] [CrossRef]
- Ramírez, P.; Ferrer, M.; Gimeno, R.; Tormo, S.; Valencia, M.; Piñer, R.; Menendez, R.; Torres, A. Systemic inflammatory response and increased risk for ventilator-associated pneumonia: A preliminary study. Crit. Care Med. 2009, 37, 1691–1695. [Google Scholar] [CrossRef]
- Millo, J.L.; Schultz, M.J.; Williams, C.; Weverling, G.J.; Ringrose, T.; Mackinlay, C.I.; van der Poll, T.; Garrard, C.S. Compartmentalisation of cytokines and cytokine inhibitors in ventilator-associated pneumonia. Intensive Care Med. 2004, 30, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Ballinger, M.N.; Standiford, T.J. Innate Immune Responses in Ventilator-Associated Pneumonia. Mucosal Immunol. Acute Bact. Pneumonia 2012, 26, 185–212. [Google Scholar]
- Schulte, W.; Bernhagen, J.; Bucala, R. Cytokines in sepsis: Potent immunoregulators and potential therapeutic targets—An updated view. Mediat. Inflamm. 2013, 2013, 165974. [Google Scholar] [CrossRef]
- Makris, D.; Luna, C.; Nseir, S. Ten ineffective interventions to prevent ventilator-associated pneumonia. Intensive Care Med. 2018, 44, 83–86. [Google Scholar] [CrossRef] [PubMed]
- Makris, D.; Manoulakas, E.; Komnos, A.; Papakrivou, E.; Tzovaras, N.; Hovas, A.; Zintzaras, E.; Zakynthinos, E. Effect of pravastatin on the frequency of ventilator-associated pneumonia and on intensive care unit mortality: Open-label, randomized study. Crit. Care Med. 2011, 39, 2440–2446. [Google Scholar] [CrossRef]
VAP Mean (SD) | Non-VAP Mean (SD) | p-Value | |
---|---|---|---|
Age | 65.38 (4.55) | 66.5 (3.83) | 0.85 |
APACHE II | 22.46 (2.19) | 16.06 (2.05) | 0.04 * |
SOFA | 9.4 (0.63) | 8 (1.26) | 0.48 |
PO2/FIO2 | 180.5 (24.6) | 274.4 (26.51) | 0.01 ** |
PCO2 (cm H2O) | 35.77 (2.83) | 33.63 (1.31) | 0.47 |
NORADREN (mg/mL) | 2.39 (0.22) | 1.53 (0.17) | 0.24 |
WBC (cells × 103/mL) | 13,785 (2667) | 13,588 (1472) | 0.94 |
CRP (mg/dL) | 15.71 (2.6) | 9.28 (2.29) | 0.07 |
Albumin (g/dL) | 2.335 (0.28) | 2.67 (0.21) | 0.12 |
Proteins (g/kg) | 4.7 (0.34) | 4.8 (0.38) | 0.95 |
P plateau (cm H2O) | 24.33 (2.3) | 18.06 (0.95) | 0.007 ** |
VT (mL) | 464.2 (14.54) | 492.5 (11.87) | 0.22 |
MDR Mean (SD) | Non-MDR Mean (SD) | p-Value | |
---|---|---|---|
Age | 71.3 (7.4) | 59.2 (7.59) | 0.12 |
APACHE II | 22 (4.76) | 21.2 (0.86) | 0.93 |
SOFA | 9.3 (0.61) | 8.25 (1.37) | 0.62 |
PO2/FIO2 | 283.4 (29.96) | 153.6 (30.87) | 0.03 * |
PCO2 (cm H2O) | 31.33 (4) | 42.6 (3.98) | 0.12 |
NORADREN (mg/mL) | 2.4 (1.15) | 1.34 (0.32) | 0.92 |
WBC (cells × 103/mL) | 14,950 (5054) | 9620 (1188) | 0.66 |
CRP (mg/dL) | 18.08 (4.18) | 10.42 (2.41) | 0.18 |
Albumin (g/dL) | 1.89 (0.15) | 2.89 (0.66) | 0.03 * |
Proteins (g/Kg) | 4.53 (0.47) | 5 (0.75) | 0.79 |
P plateau (cm H2O) | 23 (3.3) | 24.8 (2.9) | 0.33 |
VT (mL) | 482 (19.85) | 432 (23.11) | 0.16 |
PEEP (cm H2O) | 7.18 (1.33) | 7.57 (1.13) | 0.56 |
Driving pressure (cm H2O) | 17 (6.63) | 17.57 (5.5) | 0.86 |
MDR | Microorganism | Coexistent Sepsis Source | Day of VAP Manifestation | Total MV Duration |
---|---|---|---|---|
1 | Klebsiella pneumoniae | Blood | 15 | 20 |
2 | Acinetobacter baumanii | Blood | 15 | 19 |
3 | Pseudomonas aeruginosa | Lung | 7 | 7 |
4 | Pseudomonas aeruginosa | Abdomen | 7 | 9 |
5 | Stenotrophomonas maltophila | Lung | 3 | 7 |
6 | Pseudomonas aeruginosa | Pleura | 4 | 9 |
7 | Klebsiella pneumoniae | Lung | 4 | 10 |
Total = 7 | Mean: 7.85 * p < 0.05 (p = 0.0476) compared to the non-MDR microorganisms | Mean: 11.57 * p < 0.05 (p = 0.0344) compared to the non-MDR microorganisms | ||
Non-MDR | ||||
1 | MSSA | Aorta | 2 | 2 |
2 | Candida spp. | Lung | 3 | 5 |
3 | Klebsiella pneumoniae | Lung | 4 | 5 |
4 | Candida spp. | Lung | 5 | 9 |
5 | Pseudomonas aeruginosa | Lung | 7 | 10 |
6 | Klebsiella pneumoniae | Lung | 15 | 15 |
Total = 6 | Mean: 6 | Mean: 7.66 |
MDR Pathogens | Non-MDR Pathogens | ||
---|---|---|---|
Antimicrobial | % | Antimicrobial | % |
Meropenem | 71.43 | Meropenem | 50 |
Piperacillin/tazobactam | 85.71 | Piperacillin/tazobactam | 66.67 |
Gentamicin | 57.14 | Gentamicin | 16.67 |
Colistin | 57.14 | Colistin | 33.33 |
Ampicillin | 100 | Ampicillin | 83.33 |
Ampicillin/sulbactam | 85.71 | Ampicillin/sulbactam | 66.67 |
Ciprofloxacin | 100 | Ciprofloxacin | 83.33 |
Tigecycline | 71.43 | Tigecycline | 33.33 |
Non-VAP | VAP | VAP-MDR | VAP-Non MDR | |||||
---|---|---|---|---|---|---|---|---|
BAL | AC | BAL | AC | BAL | AC | BAL | AC | |
Total protein (μg/mL) | 8.94 * (p = 0.0468) Compared to BAL VAP | 12.04 | 15.13 | 15.18 | 18.02 | 14.64 | 12.83 | 15.83 |
IL-1β (ng/mL) | 752.5 ** (p = 0.0012) Compared to BAL VAP | 427.5 * (p = 0.0277) Compared to BAL non VAP | 962.5 | 661.5 **** (p < 0.0001) Compared to BAL VAP | 1528 | 715.8 * (p = 0.036) Compared to BAL VAP-MDR | 1083 ** (p = 0.0082) Compared to BAL VAP-MDR | 710.0 *** (p = 0.0002) Compared to BAL VAP-non MDR |
TNFα (ng/mL) | 738.3 | 1135 * (p = 0.0205) Compared to BAL non VAP | 986.0 *** (p = 0.0004) Compared to AC VAP | 1601 ** (p = 0.0067) Compared to AC non VAP | 832.0 | 1621 ** (p = 0.0095) Compared to BAL VAP-MDR | 1060 | 1450 **** (p < 0.0001) Compared to BAL VAP-non MDR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stamatiou, R.; Gerovasileiou, E.; Angeli, M.; Deskata, K.; Tsolaki, V.; Mantzarlis, K.; Zakynthinos, E.; Makris, D. Baseline Characteristics of Bronchial Secretions and Bronchoalveolar Lavage Fluid in Patients with Ventilator-Associated Pneumonia. Microorganisms 2025, 13, 676. https://doi.org/10.3390/microorganisms13030676
Stamatiou R, Gerovasileiou E, Angeli M, Deskata K, Tsolaki V, Mantzarlis K, Zakynthinos E, Makris D. Baseline Characteristics of Bronchial Secretions and Bronchoalveolar Lavage Fluid in Patients with Ventilator-Associated Pneumonia. Microorganisms. 2025; 13(3):676. https://doi.org/10.3390/microorganisms13030676
Chicago/Turabian StyleStamatiou, Rodopi, Efrosyni Gerovasileiou, Maria Angeli, Konstantina Deskata, Vasiliki Tsolaki, Konstantinos Mantzarlis, Epameinondas Zakynthinos, and Demosthenes Makris. 2025. "Baseline Characteristics of Bronchial Secretions and Bronchoalveolar Lavage Fluid in Patients with Ventilator-Associated Pneumonia" Microorganisms 13, no. 3: 676. https://doi.org/10.3390/microorganisms13030676
APA StyleStamatiou, R., Gerovasileiou, E., Angeli, M., Deskata, K., Tsolaki, V., Mantzarlis, K., Zakynthinos, E., & Makris, D. (2025). Baseline Characteristics of Bronchial Secretions and Bronchoalveolar Lavage Fluid in Patients with Ventilator-Associated Pneumonia. Microorganisms, 13(3), 676. https://doi.org/10.3390/microorganisms13030676