Operative Risk Factors and Microbiologic Profiles of Deep Infection Following Pilon Fracture Fixation
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Demographic, Injury, and Operative Characteristics
3.2. Influence of Operative Factors on Deep Tissue Infection
3.3. Microbial Profile of Deep Tissue Infections and Clinical Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AO/OTA | Arbeitsgemeinschaft für Osteosynthesefragen/Orthopaedic Trauma Association |
| BKA | Below-Knee Amputation |
| BMI | Body Mass Index |
| CI | Confidence Interval |
| CPT | Current Procedural Terminology |
| ED | Emergency Department |
| IMN | Intramedullary Nail |
| ICD | International Classification of Diseases |
| IRB | Institutional Review Board |
| MSSA | Methicillin-Susceptible Staphylococcus aureus |
| MRSA | Methicillin-Resistant Staphylococcus aureus |
| OR | Odds Ratio |
| ORIF | Open Reduction and Internal Fixation |
| PTOA | Post-Traumatic Osteoarthritis |
| SD | Standard Deviation |
| SSI | Surgical Site Infection |
| STROBE | Strengthening the Reporting of Observational Studies in Epidemiology |
| TAA | Total Ankle Arthroplasty |
References
- Murawski, C.D.; Mittwede, P.N.; Wawrose, R.A.; Belayneh, R.; Tarkin, I.S. Management of High-Energy Tibial Pilon Fractures. J. Bone Jt. Surg. Am. 2023, 105, 1123–1137. [Google Scholar] [CrossRef]
- Wennergren, D.; Bergdahl, C.; Ekelund, J.; Juto, H.; Sundfeldt, M.; Möller, M. Epidemiology and incidence of tibia fractures in the Swedish Fracture Register. Injury 2018, 49, 2068–2074. [Google Scholar] [CrossRef]
- Helfet, D.L.; Koval, K.; Pappas, J.; Sanders, R.W.; DiPasquale, T. Intraarticular “pilon” fracture of the tibia. Clin. Orthop. Relat. Res. 1994, 298, 221–228. [Google Scholar] [CrossRef]
- Kottmeier, S.A.; Madison, R.D.; Divaris, N. Pilon Fracture: Preventing Complications. J. Am. Acad. Orthop. Surg. 2018, 26, 640–651. [Google Scholar] [CrossRef] [PubMed]
- Spitler, C.A.; Hulick, R.M.; Weldy, J.; Howell, K.; Bergin, P.F.; Graves, M.L. What are the Risk Factors for Deep Infection in OTA/AO 43C Pilon Fractures? J. Orthop. Trauma 2020, 34, e189–e194. [Google Scholar] [CrossRef]
- Li, P.Z.; He, J.W.; Xia, X.S. Risk factors for surgical site infections in patients with pilon fractures: A systematic review and meta-analysis. J. Foot Ankle Surg. 2025. [Google Scholar] [CrossRef]
- Olson, J.J.; Anand, K.; Esposito, J.G.; von Keudell, A.G.; Rodriguez, E.K.; Smith, R.M.; Weaver, M.J. Complications and Soft-Tissue Coverage After Complete Articular, Open Tibial Plafond Fractures. J. Orthop. Trauma 2021, 35, e371–e376. [Google Scholar] [CrossRef] [PubMed]
- Yeramosu, T.; Satpathy, J.; Perdue, P.W.; Toney, C.B.; Torbert, J.T.; Cinats, D.J.; Patel, T.T.; Kates, S.L. Risk Factors for Infection and Subsequent Adverse Clinical Results in the Setting of Operatively Treated Pilon Fractures. J. Orthop. Trauma 2022, 36, 406–412. [Google Scholar] [CrossRef]
- Ren, T.; Ding, L.; Xue, F.; He, Z.; Xiao, H. Risk factors for surgical site infection of pilon fractures. Clin. Sao Paulo Braz. 2015, 70, 419–422. [Google Scholar] [CrossRef] [PubMed]
- Kortram, K.; Bezstarosti, H.; Metsemakers, W.-J.; Raschke, M.J.; Van Lieshout, E.M.M.; Verhofstad, M.H.J. Risk factors for infectious complications after open fractures; a systematic review and meta-analysis. Int. Orthop. 2017, 41, 1965–1982. [Google Scholar] [CrossRef]
- Wang, J.; Cambre, B.N.; Cho, D.H.; Dugan, A.L.M.; Panchbhavi, V.; Wang, A.S.; Panchbhavi, V.K. Impact of Nicotine Dependence on Postoperative Outcomes in Pilon Fracture Open Reduction and Internal Fixation: A Comparative Cohort Analysis. J. Orthop. Trauma 2025. [Google Scholar] [CrossRef] [PubMed]
- Oladeji, L.O.; Platt, B.; Crist, B.D. Diabetic Pilon Factures: Are They as Bad as We Think? J. Orthop. Trauma 2021, 35, 149–153. [Google Scholar] [CrossRef]
- Hebert-Davies, J.; Kleweno, C.P.; Nork, S.E. Contemporary Strategies in Pilon Fixation. J. Orthop. Trauma 2020, 34 (Suppl. 1), S14–S20. [Google Scholar] [CrossRef]
- Calori, G.M.; Tagliabue, L.; Mazza, E.; de Bellis, U.; Pierannunzii, L.; Marelli, B.M.; Colombo, M.; Albisetti, W. Tibial pilon fractures: Which method of treatment? Injury 2010, 41, 1183–1190. [Google Scholar] [CrossRef]
- Seidelman, J.L.; Mantyh, C.R.; Anderson, D.J. Surgical Site Infection Prevention: A Review. JAMA 2023, 329, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Jing, C.; Ralph, J.E.; Chang, K.; Helmkamp, J.; Krez, A.; Anastasio, A.T.; Wu, K.A.; Cathey, J.; Bryniarski, A.; Torrey, J.; et al. Risk Factors for Postoperative Infection and Associated Outcomes After Pilon Fracture Fixation: A Propensity-Matched Cohort Study. Foot Ankle Int. 2025, 46, 1049–1058. [Google Scholar] [CrossRef] [PubMed]
- Cuschieri, S. The STROBE guidelines. Saudi J. Anaesth. 2019, 13, S31–S34. [Google Scholar] [CrossRef]
- Stevens, D.L.; Bisno, A.L.; Chambers, H.F.; Dellinger, E.P.; Goldstein, E.J.C.; Gorbach, S.L.; Hirschmann, J.V.; Kaplan, S.L.; Montoya, J.G.; Wade, J.C. Practice Guidelines for the Diagnosis and Management of Skin and Soft Tissue Infections: 2014 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2014, 59, e10–e52. [Google Scholar] [CrossRef]
- Nicholson, J.A.; Yapp, L.Z.; Keating, J.F.; Simpson, A.H.R.W. Monitoring of fracture healing. Update on current and future imaging modalities to predict union. Injury 2021, 52 (Suppl. 2), S29–S34. [Google Scholar] [CrossRef]
- Wittauer, M.; Burch, M.-A.; McNally, M.; Vandendriessche, T.; Clauss, M.; Della Rocca, G.J.; Giannoudis, P.V.; Metsemakers, W.-J.; Morgenstern, M. Definition of long-bone nonunion: A scoping review of prospective clinical trials to evaluate current practice. Injury 2021, 52, 3200–3205. [Google Scholar] [CrossRef]
- Holzer, N.; Salvo, D.; Marijnissen, A.C.A.; Vincken, K.L.; Ahmad, A.C.; Serra, E.; Hoffmeyer, P.; Stern, R.; Lübbeke, A.; Assal, M. Radiographic evaluation of posttraumatic osteoarthritis of the ankle: The Kellgren-Lawrence scale is reliable and correlates with clinical symptoms. Osteoarthr. Cartil. 2015, 23, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Chen, B.P.-H.; Soleas, I.M.; Ferko, N.C.; Cameron, C.G.; Hinoul, P. Prolonged Operative Duration Increases Risk of Surgical Site Infections: A Systematic Review. Surg. Infect. (Larchmt) 2017, 18, 722–735. [Google Scholar] [CrossRef] [PubMed]
- Shafiq, B.; Zhang, B.; Zhu, D.; Gupta, D.K.; Cubberly, M.; Stepanyan, H.; Rezzadeh, K.; Lim, P.K.; Hacquebord, J.; Gupta, R. Reducing Complications in Pilon Fracture Surgery: Surgical Time Matters. J. Orthop. Trauma 2023, 37, 532–538. [Google Scholar] [CrossRef]
- Esposito, J.G.; van der Vliet, Q.M.J.; Heng, M.; Potter, J.; Cronin, P.K.; Harris, M.B.; Weaver, M.J. Does Surgical Approach Influence the Risk of Postoperative Infection After Surgical Treatment of Tibial Pilon Fractures? J. Orthop. Trauma 2020, 34, 126–130. [Google Scholar] [CrossRef]
- Güzel, İ.; Ulusoy, İ.; Yılmaz, M.; Tantekin, M.F.; Kıvrak, A. Early versus Delayed Plate Fixation in Pilon Fractures. J. Am. Podiatr. Med. Assoc. 2025, 115, 1–34. [Google Scholar] [CrossRef]
- Olson, J.J.; Anand, K.; von Keudell, A.; Esposito, J.G.; Rodriguez, E.K.; Smith, R.M.; Weaver, M.J. Judicious Use of Early Fixation of Closed, Complete Articular Pilon Fractures Is Not Associated With an Increased Risk of Deep Infection or Wound Complications. J. Orthop. Trauma 2021, 35, 300–307. [Google Scholar] [CrossRef]
- Kim, Y.J.; Richard, R.D.; Scott, B.L.; Parry, J.A. Acute Fixation Protocol for High-Energy Tibial Pilon Fractures Decreases Time to Fixation and Lowers Operative Costs Without Affecting Wound Complications and Reoperations. J. Orthop. Trauma 2023, 37, 525–531. [Google Scholar] [CrossRef]
- Howard, J.L.; Agel, J.; Barei, D.P.; Benirschke, S.K.; Nork, S.E. A Prospective Study Evaluating Incision Placement and Wound Healing for Tibial Plafond Fractures. J. Orthop. Trauma 2008, 22, 299. [Google Scholar] [CrossRef]
- Molina, C.S.; Stinner, D.J.; Fras, A.R.; Evans, J.M. Course of treatment and rate of successful salvage following the diagnosis of deep infection in patients treated for pilon fractures (AO/OTA: 43). J. Orthop. 2015, 12 (Suppl. 1), S18–S24. [Google Scholar] [CrossRef] [PubMed]
- Cierny, G.; Mader, J.T.; Penninck, J.J. A clinical staging system for adult osteomyelitis. Clin. Orthop. Relat. Res. 2003, 414, 7–24. [Google Scholar] [CrossRef]
- Sudduth, J.D.; Moss, J.A.; Spitler, C.A.; Pham, V.-L.H.; Jones, L.C.; Brown, J.T.; Bergin, P.F. Open Fractures: Are We Still Treating the Same Types of Infections? Surg. Infect. (Larchmt) 2020, 21, 766–772. [Google Scholar] [CrossRef]
- Boraiah, S.; Kemp, T.J.; Erwteman, A.; Lucas, P.A.; Asprinio, D.E. Outcome following open reduction and internal fixation of open pilon fractures. J. Bone Jt. Surg. Am. 2010, 92, 346–352. [Google Scholar] [CrossRef]
- Macias-Valcayo, A.; Aguilera-Correa, J.-J.; Broncano, A.; Parron, R.; Auñon, A.; Garcia-Cañete, J.; Blanco, A.; Esteban, J. Comparative In Vitro Study of Biofilm Formation and Antimicrobial Susceptibility in Gram-Negative Bacilli Isolated from Prosthetic Joint Infections. Microbiol. Spectr. 2022, 10, e0085122. [Google Scholar] [CrossRef] [PubMed]
- Hinojosa, C.A.; Boyer-Duck, E.; Anaya-Ayala, J.E.; Nunez-Salgado, A.; Laparra-Escareno, H.; Torres-Machorro, A.; Lizola, R. Impact of the bacteriology of diabetic foot ulcers in limb loss. Wound Repair Regen. 2016, 24, 923–927. [Google Scholar] [CrossRef] [PubMed]
- Sen, P.; Demirdal, T.; Emir, B. Meta-analysis of risk factors for amputation in diabetic foot infections. Diabetes Metab. Res. Rev. 2019, 35, e3165. [Google Scholar] [CrossRef] [PubMed]
- Gitajn, I.; Werth, P.; O’Toole, R.V.; Joshi, M.; Jevsevar, D.; Wise, B.; Rane, A.; Horton, S.; McClure, E.A.; Ross, B.; et al. Microbial Interspecies Associations in Fracture-Related Infection. J. Orthop. Trauma 2022, 36, 309–316. [Google Scholar] [CrossRef]


| Covariate | Deep Infection (n = 9) | No Deep Infection (n = 114) | p-Value | Effect Size |
|---|---|---|---|---|
| Hardware | 0.097 | Cramer’s V = 0.20 | ||
| Locking plate alone | 6 (66.7%) | 90 (78.9%) | ||
| IMN | 0 (0.0%) | 12 (10.5%) | ||
| Dual construct | 3 (33.3%) | 12 (10.5%) | ||
| Approach | 0.67 | Cramer’s V = 0.18 | ||
| Anterolateral | 3 (33.3%) | 25 (21.9%) | ||
| Anteromedial | 0 (0.0%) | 18 (15.8%) | ||
| Direct anterior | 2 (22.2%) | 32 (28.1%) | ||
| Posterolateral | 1 (11.1%) | 9 (7.9%) | ||
| Posteromedial | 1 (11.1%) | 7 (6.1%) | ||
| Lateral | 2 (22.2%) | 13 (11.4%) | ||
| Medial | 0 (0.0%) | 10 (8.8%) | ||
| Operative time (minutes) | 274 ± 123 | 185 ± 102 | 0.007 | r = 0.24 |
| Staged ORIF | 70 (61.4%) | 7 (77.8%) | 0.048 | Cramer’s V = 0.09 |
| Time to definitivefixation (days) | 10.8 ± 6.7 | 12.1 ± 18.6 | 0.48 | r = 0.06 |
| Covariate | OR (95% CI) | p-Value |
|---|---|---|
| Dual construct | 2.93 (0.53–16.4) | 0.22 |
| Operative time * | 1.51 (0.81–2.83) | 0.20 |
| Diabetes mellitus | 3.56 (0.50–25.2) | 0.20 |
| Open fracture | 2.01 (0.40–10.1) | 0.40 |
| AO/OTA 43C3 | 2.33 (0.46–11.8) | 0.31 |
| Patient ID | Age (Years) | Sex | Fracture Pattern (AO/OTA) | Operative Technique | Time from Surgery to Infection Diagnosis (Days) | Organism | Polymicrobial |
|---|---|---|---|---|---|---|---|
| 1 | 33 | M | 43C3.2, closed | Locking plate (staged ORIF), direct anterior approach | 17 | MSSA | No |
| 2 | 79 | F | 43A3.3, closed | Locking plate (immediate ORIF), posteromedial approach | 168 | Pseudomonas aeruginosa | No |
| 3 | 57 | M | 43C3.3, closed | Locking plate (staged ORIF), anterolateral approach | 63 | Enterococcus faecalis, Peptoniphilus asaccharolyticus, Proteus mirabilis, Pseudomonas aeruginosa, Streptococcus agalactiae Group B. | Yes |
| 4 | 25 | M | 43C3.1, closed | Locking plate (staged ORIF), direct anterior approach | 93 | MRSA, Eikenella corrodens, Streptococcus constellatus, Pseudomonas aeruginosa, Mixed aerobic and anaerobic organisms, | Yes |
| 5 | 58 | M | 43C2.1, open | Dual construct (staged ORIF), anterolateral approach | 266 | MRSA, Streptococcus dysgalactiae group C, Streptococcus mitis group (viridans Streptococcus) | Yes |
| 6 | 35 | M | 43C3.2, open | Locking plate (staged ORIF), lateral approach | 59 | Enterococcus faecalis | No |
| 7 | 54 | M | 43A3.2, open | Dual construct (staged ORIF), lateral approach | 5 | Enterobacter aerogenes, Enterobacter cloacae, Enterococcus (ampicillin susceptible), Klebsiella oxytoca | Yes |
| 8 | 20 | M | 43C3.3, open | Dual construct (staged ORIF), anterolateral approach | 16 | Enterobacter cloacae | No |
| 9 | 74 | F | 43B3.2, closed | Locking plate (immediate ORIF), posterolateral approach | 60 | Mixed aerobic and anaerobic organisms | Yes |
| Patient ID | Antibiotic Regimen | No. of OR Washouts | Hardware Management & Additional Operations | Union Status | PTOA | Fusion/TAA | Amputation | Final Status & Follow-Up Duration |
|---|---|---|---|---|---|---|---|---|
| 1 | PO doxycycline and PO ciprofloxacin x6 months | 4 | Coverage with radial forearm free flap at 1-month post-ORIF; hardware retention | Nonunion | No | No | No | Full weightbearing with viable flap coverage and no recurrence of infection at 10 months follow-up |
| 2 | IV cefepime x6 weeks | 1 | Fibular osteotomy at 5 months post-ORIF; hardware retention | Nonunion | Yes, at 61 weeks post-ORIF | No | No | Full weightbearing, persistent valgus deformity and hindfoot and lower extremity shortening, no recurrence of infection, and asymptomatic PTOA, at 17 months follow-up |
| 3 | IV piperacillin/tazobactam x6 weeks | 2 | Placement of external fixator, plate removal, and coverage with proximal thigh STSG at 2 months post-ORIF for infected nonunion with hardware failure; external fixator removed 3 months after placement; repair of nonunion at 7 months post-ORIF with 3 weeks in hexapod external fixator | Nonunion | Yes, at 30 weeks post-ORIF | No | No | Full weightbearing, no recurrence of infection, and asymptomatic PTOA at 17 months follow-up |
| 4 | IV vancomycin, IV ceftriaxone, and PO metronidazole x6 weeks, followed by PO doxycycline x6 weeks and PO amoxicillin/clavulanate x36 weeks | 1 | Plate removal and radial forearm free flap coverage at 16 weeks post-ORIF | Nonunion | Yes, at 50 weeks post-ORIF | Yes, arthrodesis at 117 weeks post-ORIF 2/2 severe PTOA | No | Full weightbearing, no recurrence of infection, and symptomatic PTOA at 45 months follow-up |
| 5 | IV vancomycin x6 weeks | 3 | Dual construct removal and coverage with medial gastrocnemius flap and STSG from posterior thigh at 2 months post-ORIF | Union by 37 weeks post-ORIF | Yes, at 31 weeks post-ORIF | No | No | Partial weightbearing (in setting of polytrauma, concomitant ipsilateral femur fracture) and symptomatic PTOA at 9 months follow-up |
| 6 | IV daptomycin x6 weeks, followed by PO doxycycline x6 weeks and PO amoxicillin x8 months (until BKA) | 1 | Placement of antibiotic nail, plate removal, and coverage with anterolateral thigh free flap at 2 months post-ORIF | Nonunion | No | No | Yes, BKA at 8 months post-ORIF 2/2 ongoing deep tissue infection with concurrent osteomyelitis | Ambulatory with prosthesis at 20 months follow-up without infection recurrence |
| 7 | IV vancomycin and IV piperacillin/tazobactam x6 weeks, PO ciprofloxacin x8 weeks | 3 | Vastus lateralis flap coverage at time of attempted limb salvage and ORIF; dual construct removal at time of BKA (5 days post-ORIF) | NA (acute BKA) | NA (acute BKA) | NA (acute BKA) | Yes, BKA 2/2 at 5 days post-ORIF deep tissue infection (contaminated hardware) and failed flap; conversion AKA 2 weeks thereafter 2/2 insufficient source control | Ambulatory with prosthesis 8 months follow-up without infection recurrence |
| 8 | PO ciprofloxacin and PO doxycycline x6 weeks, followed by PO trimethoprim/sulfamethoxazole x6 weeks | 3 | Hardware retention | Union by 10 weeks post-ORIF | No | No | No | Full weightbearing at 7 months follow-up without recurrence of infection |
| 9 | IV vancomycin x6 weeks and PO ciprofloxacin, recurrent courses over 15 months (until BKA) | 5 | Plate removal at 2 months post-ORIF | Nonunion | No | No | Yes, BKA at 15 months post-ORIF 2/2 recurrent diabetic foot ulcer | Non ambulatory at 39 months follow-up; underwent contralateral BKA 2/2 diabetic foot ulcer; no ipsilateral infection recurrence |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cathey, J.M.; Jing, C.; Ralph, J.E.; Chang, K.; Krez, A.; Helmkamp, J.; Bryniarski, A.; O'Neill, C.; Adams, S.; Anastasio, A.T. Operative Risk Factors and Microbiologic Profiles of Deep Infection Following Pilon Fracture Fixation. Microorganisms 2025, 13, 2837. https://doi.org/10.3390/microorganisms13122837
Cathey JM, Jing C, Ralph JE, Chang K, Krez A, Helmkamp J, Bryniarski A, O'Neill C, Adams S, Anastasio AT. Operative Risk Factors and Microbiologic Profiles of Deep Infection Following Pilon Fracture Fixation. Microorganisms. 2025; 13(12):2837. https://doi.org/10.3390/microorganisms13122837
Chicago/Turabian StyleCathey, Jackson M., Crystal Jing, Julia E. Ralph, Kathleen Chang, Alexandra Krez, Joshua Helmkamp, Anna Bryniarski, Conor O'Neill, Samuel Adams, and Albert T. Anastasio. 2025. "Operative Risk Factors and Microbiologic Profiles of Deep Infection Following Pilon Fracture Fixation" Microorganisms 13, no. 12: 2837. https://doi.org/10.3390/microorganisms13122837
APA StyleCathey, J. M., Jing, C., Ralph, J. E., Chang, K., Krez, A., Helmkamp, J., Bryniarski, A., O'Neill, C., Adams, S., & Anastasio, A. T. (2025). Operative Risk Factors and Microbiologic Profiles of Deep Infection Following Pilon Fracture Fixation. Microorganisms, 13(12), 2837. https://doi.org/10.3390/microorganisms13122837

