Impact of Grape Harvest Time on Wild Yeast Biodiversity and Its Influence on Wine Fermentation
Abstract
1. Introduction
2. Materials and Methods
2.1. Spontaneous Fermentation
2.2. Yeasts Isolation
2.3. Yeasts Identification and Genotyping
2.4. Laboratory Scale Fermentations of S. cerevisiae Strains
2.5. Fermentation Monitoring
2.6. Oenological Characterization of Musts and Wines
2.7. Microvinifications at Pilot Scale
2.8. Determination of Wine Aroma Compounds
2.9. Organoleptic Evaluation
2.10. Statistical Analysis in XLSTAT
3. Results and Discussion
3.1. Spontaneous Fermentations
| Must Variety | Parameter | B | O | A |
|---|---|---|---|---|
| Grenache Noir | ° Brix | 23.6 | 27.2 | 27.6 |
| Potential alcohol (% v/v) | 13.7 | 16.1 | 16.65 | |
| Density (g/cm3) | 1.100 | 1.118 | 1.119 | |
| Carignan | °Brix | 19.6 | 22.7 | 24 |
| Potential alcohol (% v/v) | 11 | 13 | 14 | |
| Density (g/cm3) | 1.082 | 1.096 | 1.100 |
3.2. Yeasts Isolated During Spontaneous Fermentation
3.3. Characterization of S. cerevisiae Strains Fermentation Performance
3.4. Pilot Scale Fermentations
3.5. Fermentative Aromas
3.6. Sensorial Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
| Must | ° Brix | PA (% v/v) | Density (g/cm3) | ATT (g/L) | pH | PAN | NH4 | NFA | L-Malic Acid (g/L) |
|---|---|---|---|---|---|---|---|---|---|
| Laboratory scale, Grenache Noir | 23.9 | 14.06 | 1098 | 3.3 | 3.69 | 127 | 88.5 | 196 | 2.3 |
| Laboratory scale, Carignan | 27 | 15.98 | 1114 | 3.3 | 3.69 | 127 | 88.5 | 196 | 2.25 |
| Pilot scale | 19 | 10.73 | 1.078 | 6.0 | 3.357 | 73.4 | 42.6 | 107 | 1.2245 |
References
- Bokulich, N.A.; Collins, T.S.; Masarweh, C.; Allen, G.; Heymann, H.; Ebeler, S.E.; Mills, D.A. Associations among Wine Grape Microbiome, Metabolome, and Fermentation Behavior Suggest Microbial Contribution to Regional Wine Characteristics. mBio 2016, 7, e00631-16. [Google Scholar] [CrossRef] [PubMed]
- Loureiro, V.; Ferreira, M.M.; Monteiro, S.; Ferreira, R.B. The Microbial Community of Grape Berry. In The Biochemistry of the Grape Berry; Hernâni, G., Chaves, M.M., Delrot, S., Eds.; Bentham Science: Oak Park, IL, USA, 2012; pp. 241–268. [Google Scholar]
- Liu, D.; Zhang, P.; Chen, D.; Howell, K. From the Vineyard to the Winery: How Microbial Ecology Drives Regional Distinctiveness of Wine. Front. Microbiol. 2019, 10, 2679. [Google Scholar] [CrossRef]
- Mas, A.; Padilla, B.; Esteve-Zarzoso, B.; Beltran, G.; Reguant, C.; Bordons, A. Taking Advantage of Natural Biodiversity for Wine Making: The WILDWINE Project. Agric. Agric. Sci. Procedia 2016, 8, 4–9. [Google Scholar] [CrossRef]
- Mas, A.; Portillo, M.C. Strategies for Microbiological Control of the Alcoholic Fermentation in Wines by Exploiting the Microbial Terroir Complexity: A Mini-Review. Int. J. Food Microbiol. 2022, 367, 109592. [Google Scholar] [CrossRef]
- Bisson, L.F. Stuck and Sluggish Fermentations. Am. J. Enol. Vitic. 1999, 50, 107–119. [Google Scholar] [CrossRef]
- Maisonnave, P.; Sanchez, I.; Moine, V.; Dequin, S.; Galeote, V. Stuck Fermentation: Development of a Synthetic Stuck Wine and Study of a Restart Procedure. Int. J. Food Microbiol. 2013, 163, 239–247. [Google Scholar] [CrossRef]
- Lappa, I.K.; Kachrimanidou, V.; Pateraki, C.; Koulougliotis, D.; Eriotou, E.; Kopsahelis, N. Indigenous Yeasts: Emerging Trends and Challenges in Winemaking. Curr. Opin. Food Sci. 2020, 32, 133–143. [Google Scholar] [CrossRef]
- Mas, A.; Guillamón, J.M.; Beltran, G. Editorial: Non-Conventional Yeast in the Wine Industry. Front. Microbiol. 2016, 7, 1494. [Google Scholar] [CrossRef]
- Fernández-Vázquez, D.; Sunyer-Figueres, M.; Vázquez, J.; Puxeu, M.; Nart, E.; De Lamo, S.; Andorrà, I. Selection and Use of Wild Lachancea thermotolerans Strains from Rioja AOC with Bioacidificant Capacity as Strategy to Mitigate Climate Change Effects in Wine Industry. Beverages 2025, 11, 70. [Google Scholar] [CrossRef]
- Sun, Q.; Granco, G.; Groves, L.; Voong, J.; Van Zyl, S. Viticultural Manipulation and New Technologies to Address Environmental Challenges Caused by Climate Change. Climate 2023, 11, 83. [Google Scholar] [CrossRef]
- Andorrà, I.; Miró, G.; Espligares, N.; Maria Mislata, A.; Puxeu, M.; Ferrer-Gallego, R. Wild Yeast and Lactic Acid Bacteria of Wine. In Yeasts in Biotechnology; Peixoto Basso, T., Ed.; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Granchi, L.; Ganucci, D.; Buscioni, G.; Mangani, S.; Guerrini, S. The Biodiversity of Saccharomyces cerevisiae in Spontaneous Wine Fermentation: The Occurrence and Persistence of Winery-Strains. Fermentation 2019, 5, 86. [Google Scholar] [CrossRef]
- Goold, H.D.; Kroukamp, H.; Williams, T.C.; Paulsen, I.T.; Varela, C.; Pretorius, I.S. Yeast’s Balancing Act between Ethanol and Glycerol Production in Low-alcohol Wines. Microb. Biotechnol. 2017, 10, 264–278. [Google Scholar] [CrossRef]
- Cray, J.A.; Bell, A.N.W.; Bhaganna, P.; Mswaka, A.Y.; Timson, D.J.; Hallsworth, J.E. The Biology of Habitat Dominance; Can Microbes Behave as Weeds? Microb. Biotechnol. 2013, 6, 453–492. [Google Scholar] [CrossRef]
- Jolly, N.P.; Varela, C.; Pretorius, I.S. Not Your Ordinary Yeast: Non- Saccharomyces Yeasts in Wine Production Uncovered. FEMS Yeast Res. 2014, 14, 215–237. [Google Scholar] [CrossRef]
- Vázquez, J.; Mislata, A.M.; Vendrell, V.; Moro, C.; De Lamo, S.; Ferrer-Gallego, R.; Andorrà, I. Enological Suitability of Indigenous Yeast Strains for ‘Verdejo’ Wine Production. Foods 2023, 12, 1888. [Google Scholar] [CrossRef] [PubMed]
- Fugelsang, K.C.; Edwards, C.G. Wine Microbiology: Practical Applications and Procedures, 2nd ed.; Springer: New York, NY, USA, 2007. [Google Scholar]
- Bindon, K.; Varela, C.; Kennedy, J.; Holt, H.; Herderich, M. Relationships between Harvest Time and Wine Composition in Vitis vinifera L. Cv. Cabernet Sauvignon 1. Grape and Wine Chemistry. Food Chem. 2013, 138, 1696–1705. [Google Scholar] [CrossRef]
- Meléndez, E.; Ortiz, M.C.; Sarabia, L.A.; Íñiguez, M.; Puras, P. Modelling Phenolic and Technological Maturities of Grapes by Means of the Multivariate Relation between Organoleptic and Physicochemical Properties. Anal. Chim. Acta 2013, 761, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Ramos, R.; Andrade, P.B.; Seabra, R.M.; Pereira, C.; Ferreira, M.A.; Faia, M.A. A Preliminary Study of Non-Coloured Phenolics in Wines of Varietal White Grapes (CóDega, Gouveio and Malvasia Fina): Effcts of Grape Variety, Grape Maturation and Technology of Winemaking. Food Chem. 1999, 67, 39–44. [Google Scholar] [CrossRef]
- Tian, R.-R.; Pan, Q.-H.; Zhan, J.-C.; Li, J.-M.; Wan, S.-B.; Zhang, Q.-H.; Huang, W.-D. Comparison of Phenolic Acids and Flavan-3-Ols During Wine Fermentation of Grapes with Different Harvest Times. Molecules 2009, 14, 827–838. [Google Scholar] [CrossRef]
- Querol, A.; Barrio, E.; Ramón, D. A Comparative Study of Different Methods of Yeast Strain Characterization. Syst. Appl. Microbiol. 1992, 15, 439–446. [Google Scholar] [CrossRef]
- Esteve-Zarzoso, B.; Belloch, C.; Uruburu, F.; Querol, A. Identification of yeasts by RFLP analysis of the 5.8S rRNA gene and the two ribosomal internal transcribed spacers. Int. J. Syst. Bacteriol. 1999, 49, 329–337. [Google Scholar] [CrossRef]
- Legras, J.-L.; Karst, F. Optimisation of Interdelta Analysis for Saccharomyces cerevisiae Strain Characterisation. FEMS Microbiol. Lett. 2003, 221, 249–255. [Google Scholar] [CrossRef]
- Morris, E.O.; Eddy, A. A Method for the measurement of wild yeast infection in pitching yeast. J. Inst. Brew. 1957, 63, 34–35. [Google Scholar] [CrossRef]
- International Organisation of Vine and Wine. Compendium of Intenational Methods of Wine and Must Analysis, 2023rd ed.; OIV: Dijon, France, 2023; Volumes 1 and 2. [Google Scholar]
- Monnin, L.; Nidelet, T.; Noble, J.; Galeote, V. Insights into Intraspecific Diversity of Central Carbon Metabolites in Saccharomyces cerevisiae during Wine Fermentation. Food Microbiol. 2024, 121, 104513. [Google Scholar] [CrossRef]
- Mislata, A.M.; Puxeu, M.; Tomás, E.; Nart, E.; Ferrer-Gallego, R. Influence of the Oxidation in the Aromatic Composition and Sensory Profile of Rioja Red Aged Wines. Eur. Food Res. Technol. 2020, 246, 1167–1181. [Google Scholar] [CrossRef]
- Vilanova, M.; Martínez, C. First Study of Determination of Aromatic Compounds of Red Wine from Vitis vinifera cv. Castañal Grown in Galicia (NW Spain). Eur. Food Res. Technol. 2007, 224, 431–436. [Google Scholar] [CrossRef]
- Vilanova, M.; Genisheva, Z.; Graña, M.; Oliveira, J.M. Determination of Odorants in Varietal Wines from International Grape Cultivars (Vitis vinífera) Grown in NW Spain. S. Afr. J. Enol. Vitic. 2016, 34, 212–222. [Google Scholar] [CrossRef]
- Guth, H. Quantitation and Sensory Studies of Character Impact Odorants of Different White Wine Varieties. J. Agric. Food Chem. 1997, 45, 3027–3032. [Google Scholar] [CrossRef]
- ISO 8586:2023; Sensory Analysis—Selection and Training of Sensory Assessors (3rd ed.). International Organization for Standarization (ISO): Geneva, Switzerland, 2023.
- ISO 17025:2017; General Requirements for the Competence of Testing and Calibration Laboratories. International Organization for Standardization: Geneva, Switzerland, 2017.
- ISO 8589:2007; Sensory Analysis-General Guidance for the Design of Test Rooms. International Organization for Standardization: Geneva, Switzerland, 2007.
- Bender, T.; Sørensen, S.M.; Kashani, A.; Hjorleifsson, E.; Hyldig, G.; Hauberg, S.; Belongie, S.; Warburg, F. Learning to Taste: A Multimodal Wine Dataset. arXiv 2023. [Google Scholar] [CrossRef]
- Šnuderl, K.; Mocák, J.; Brodnjak-Von, D.; Sedláčková, B. Classification of white varietal wines using chemical analysis and sensorial evaluations. Acta Chim. Slov. 2009, 56, 765–772. [Google Scholar]
- Lleixà, J.; Kioroglou, D.; Mas, A.; Portillo, M.d.C. Microbiome dynamics during spontaneous fermentations of sound grapes in comparison with sour rot and Botrytis infected grapes. Int. J. Food Microbiol. 2018, 281, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Mas, A.; Esteve-Zarzoso, B. The interaction between Saccharomyces cerevisiae and non-Saccharomyces yeast during alcohol fermentation is species and strain specific. Front. Microbiol. 2016, 7, 502. [Google Scholar] [CrossRef] [PubMed]
- Malherbe, S.; Bauer, F.F.; Du Toit, M. Understanding Problem Fermentations—A Review. S. Afr. J. Enol. Vitic. 2016, 28, 169–186. [Google Scholar] [CrossRef]
- Schütz, M.; Gafner, J. Sluggish Alcoholic Fermentation in Relation to Alterations of the Glucose-Fructose Ratio. Chem. Mikrobiol. Technol. Lebensm. 1993, 15, 73–78. [Google Scholar]
- Berthels, N.J.; Cordero Otero, R.R.; Bauer, F.F.; Pretorius, I.S.; Thevelein, J.M. Correlation between Glucose/Fructose Discrepancy and Hexokinase Kinetic Properties in Different Saccharomyces cerevisiae Wine Yeast Strains. Appl. Microbiol. Biotechnol. 2008, 77, 1083–1091. [Google Scholar] [CrossRef]
- Berthels, N.; Cordero Otero, R.; Bauer, F.; Thevelein, J.; Pretorius, I. Discrepancy in Glucose and Fructose Utilisation during Fermentation by Wine Yeast Strains. FEMS Yeast Res. 2004, 4, 683–689. [Google Scholar] [CrossRef]
- Zuehlke, J.; Childs, B.; Edwards, C. Evaluation of Zygosaccharomyces bailii to Metabolize Residual Sugar Present in Partially-Fermented Red Wines. Fermentation 2015, 1, 3–12. [Google Scholar] [CrossRef]
- Magyar, I.; Tóth, T. Comparative Evaluation of Some Oenological Properties in Wine Strains of Candida stellata, Candida zemplinina, Saccharomyces uvarum and Saccharomyces cerevisiae. Food Microbiol. 2011, 28, 94–100. [Google Scholar] [CrossRef]
- Blesa, J.; Soriano, J.M.; Moltó, J.C.; Mañes, J. Factors Affecting the Presence of Ochratoxin A in Wines. Crit. Rev. Food Sci. Nutr. 2006, 46, 473–478. [Google Scholar] [CrossRef]
- Bagheri, B.; Bauer, F.; Setati, M. The Impact of Saccharomyces cerevisiae on a Wine Yeast Consortium in Natural and Inoculated Fermentations. Front. Microbiol. 2017, 8, 1988. [Google Scholar] [CrossRef]
- Benito, S. The Impact of Torulaspora delbrueckii Yeast in Winemaking. Appl. Microbiol. Biotechnol. 2018, 102, 3081–3094. [Google Scholar] [CrossRef] [PubMed]
- Godoy, L.; Acuña-Fontecilla, A.; Catrileo, D. Formation of Aromatic and Flavor Compounds in Wine: A Perspective of Positive and Negative Contributions of Non- Saccharomyces Yeasts. In Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging; Cosme, F., Nunes, F.M., Filipe-Ribeiro, L., Eds.; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Roca-Mesa, H.; Delgado-Yuste, E.; Mas, A.; Torija, M.-J.; Beltran, G. Importance of Micronutrients and Organic Nitrogen in Fermentations with Torulaspora delbrueckii and Saccharomyces cerevisiae. Int. J. Food Microbiol. 2022, 381, 109915. [Google Scholar] [CrossRef]
- Mestre, M.V.; Maturano, Y.P.; Gallardo, C.; Combina, M.; Mercado, L.; Toro, M.E.; Carrau, F.; Vazquez, F.; Dellacassa, E. Impact on Sensory and Aromatic Profile of Low Ethanol Malbec Wines Fermented by Sequential Culture of Hanseniaspora uvarum and Saccharomyces cerevisiae Native Yeasts. Fermentation 2019, 5, 65. [Google Scholar] [CrossRef]
- Englezos, V.; Cachón, D.C.; Rantsiou, K.; Blanco, P.; Petrozziello, M.; Pollon, M.; Giacosa, S.; Río Segade, S.; Rolle, L.; Cocolin, L. Effect of Mixed Species Alcoholic Fermentation on Growth and Malolactic Activity of Lactic Acid Bacteria. Appl. Microbiol. Biotechnol. 2019, 103, 7687–7702. [Google Scholar] [CrossRef] [PubMed]
- Russo, P.; Tufariello, M.; Renna, R.; Tristezza, M.; Taurino, M.; Palombi, L.; Capozzi, V.; Rizzello, C.G.; Grieco, F. New Insights into the Oenological Significance of Candida zemplinina: Impact of Selected Autochthonous Strains on the Volatile Profile of Apulian Wines. Microorganisms 2020, 8, 628. [Google Scholar] [CrossRef]
- Englezos, V.; Rantsiou, K.; Cravero, F.; Torchio, F.; Ortiz-Julien, A.; Gerbi, V.; Rolle, L.; Cocolin, L. Starmerella bacillaris and Saccharomyces cerevisiae Mixed Fermentations to Reduce Ethanol Content in Wine. Appl. Microbiol. Biotechnol. 2016, 100, 5515–5526. [Google Scholar] [CrossRef]
- Bedoya, K.; Buetas, L.; Rozès, N.; Mas, A.; Portillo, M.d.C. Influence of Different Stress Factors during Grape Must’s Pied de Cuve on the Dymanics of Yeast Populations During Alcoholic Fermentation. Food Microbiol 2024, 123, 104571. [Google Scholar] [CrossRef]
- Capece, A.; Granchi, L.; Guerrini, S.; Mangani, S.; Romaniello, R.; Vincenzini, M.; Romano, P. Diversity of Saccharomyces cerevisiae Strains Isolated from Two Italian Wine-Producing Regions. Front. Microbiol. 2016, 7, 1018. [Google Scholar] [CrossRef]
- Molinet, J.; Cubillos, F.A. Wild Yeast for the Future: Exploring the Use of Wild Strains for Wine and Beer Fermentation. Front. Genet. 2020, 11, 589350. [Google Scholar] [CrossRef]
- Camarasa, C.; Sanchez, I.; Brial, P.; Bigey, F.; Dequin, S. Phenotypic Landscape of Saccharomyces cerevisiae during Wine Fermentation: Evidence for Origin-Dependent Metabolic Traits. PLoS ONE 2011, 6, e25147. [Google Scholar] [CrossRef] [PubMed]
- Tilloy, V.; Cadière, A.; Ehsani, M.; Dequin, S. Reducing Alcohol Levels in Wines through Ration and Evolutionary Engineering of Saccharomyces cerevisiae. Int. J. Food Microbiol. 2015, 213, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, R.; Guindal, A.M.; Tronchoni, J.; Morales, P. Biotechnological Approaches to Lowering the Ethanol Yield during Wine Fermentation. Biomolecules 2021, 11, 1569. [Google Scholar] [CrossRef] [PubMed]
- Tronchoni, J.; Gonzalez, R.; Guindal, A.M.; Calleja, E.; Morales, P. Exploring the Suitability of Saccharomyces cerevisiae Strains for Winemaking under Aerobic Conditions. Food Microbiol. 2022, 101, 103893. [Google Scholar] [CrossRef]
- Du, G.; Zhan, J.; Li, J.; You, Y.; Zhao, Y.; Huang, W. Effect of Fermentation Temperature and Culture Medium on Glycerol and Ethanol during Wine Fermentation. Am. J. Enol. Vitic. 2012, 63, 132–138. [Google Scholar] [CrossRef]
- Nidelet, T.; Brial, P.; Camarasa, C.; Dequin, S. Diversity of Flux Distribution in Central Carbon Metabolism of S. cerevisiae Strains from Diverse Environments. Microb. Cell Factories 2016, 15, 58. [Google Scholar] [CrossRef]
- Noble, A.C.; Bursick, G.F. The Contribution of Glycerol to Perceived Viscosity and Sweetness in White Wine. Am. J. Enol. Vitic. 1984, 35, 110. [Google Scholar] [CrossRef]
- Bartowsky, E.J.; Pretorius, I.S. Microbial Formation and Modification of Flavor and Off-Flavor Compounds in Wine. In Biology of Microorganisms on Grapes, in Must and in Wine; König, H., Unden, G., Fröhlich, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 209–231. [Google Scholar] [CrossRef]
- Carpena, M.; Fraga-Corral, M.; Otero, P.; Nogueira, R.A.; Garcia-Oliveira, P.; Prieto, M.A.; Simal-Gandara, J. Secondary Aroma: Influence of Wine Microorganisms in Their Aroma Profile. Foods 2020, 10, 51. [Google Scholar] [CrossRef]
- Bartowsky, E.J.; Henschke, P.A. Acetic Acid Bacteria Spoilage of Bottled Red Wine—A Review. Int. J. Food Microbiol. 2008, 125, 60–70. [Google Scholar] [CrossRef]
- DOP Montsant Plec de Condicions del Producte. 2024. Available online: https://www.domontsant.com/wp-content/uploads/2024/10/Plec-de-condicions-DO-Montsant-versio-2024.pdf (accessed on 12 December 2024).
- Mendes Ferreira, A.; Mendes-Faia, A. The Role of Yeasts and Lactic Acid Bacteria on the Metabolism of Organic Acids during Winemaking. Foods 2020, 9, 1231. [Google Scholar] [CrossRef] [PubMed]
- Vicente, J.; Baran, Y.; Navascués, E.; Santos, A.; Calderón, F.; Marquina, D.; Rauhut, D.; Benito, S. Biological Management of Acidity in Wine Industry: A Review. Int. J. Food Microbiol. 2022, 375, 109726. [Google Scholar] [CrossRef]
- Yéramian, N.; Chaya, C.; Suárez Lepe, J.A. l-(−)-Malic Acid Production by Saccharomyces spp. during the Alcoholic Fermentation of Wine (1). J. Agric. Food Chem. 2007, 55, 912–919. [Google Scholar] [CrossRef]
- Vion, C.; Peltier, E.; Bernard, M.; Muro, M.; Marullo, P. Marker Assisted Selection of Malic-Consuming Saccharomyces cerevisiae Strains for Winemaking. Efficiency and Limits of a QTL’s Driven Breeding Program. J. Fungi 2021, 7, 304. [Google Scholar] [CrossRef]
- Santos, J.A.; Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Dinis, L.-T.; Correia, C.; Moriondo, M.; Leolini, L.; Dibari, C.; Costafreda-Aumedes, S. A Review of the Potential Climate Change Impacts and Adaptation Options for European Viticulture. Appl. Sci. 2020, 10, 3092. [Google Scholar] [CrossRef]
- Morata, A.; Bañuelos, M.A.; Vaquero, C.; Loira, I.; Cuerda, R.; Palomero, F.; González, C.; Suárez-Lepe, J.A.; Wang, J.; Han, S. Lachancea thermotolerans as a Tool to Improve pH in Red Wines from Warm Regions. Eur. Food Res. Technol. 2019, 245, 885–894. [Google Scholar] [CrossRef]
- Mislata, A.M.; Puxeu, M.; Andorrà, I.; Espligares, N.; De Lamo, S.; Mestres, M.; Ferrer-Gallego, R. Effect of the Addition of Non-Saccharomyces at First Alcoholic Fermentation on the Enological Characteristics of Cava Wines. Fermentation 2021, 7, 64. [Google Scholar] [CrossRef]
- Kemp, B.; Alexandre, H.; Robillard, B.; Marchal, R. Effect of Production Phase on Bottle-Fermented Sparkling Wine Quality. J. Agric. Food Chem. 2015, 63, 19–38. [Google Scholar] [CrossRef]
- Vion, C.; Muro, M.; Bernard, M.; Richard, B.; Valentine, F.; Yeramian, N.; Masneuf-Pomarède, I.; Tempère, S.; Marullo, P. New Malic Acid Producer Strains of Saccharomyces cerevisiae for Preserving Wine Acidity during Alcoholic Fermentation. Food Microbiol. 2023, 112, 104209. [Google Scholar] [CrossRef]
- Tufariello, M.; Fragasso, M.; Pico, J.; Panighel, A.; Castellarin, S.D.; Flamini, R.; Grieco, F. Influence of Non-Saccharomyces on Wine Chemistry: A Focus on Aroma-Related Compounds. Molecules 2021, 26, 644. [Google Scholar] [CrossRef]
- Maicas, S.; Mateo, J.J. The Life of Saccharomyces and Non-Saccharomyces Yeasts in Drinking Wine. Microorganisms 2023, 11, 1178. [Google Scholar] [CrossRef]
- Lemos Junior, W.J.F.; De Oliveira, V.S.; Guerra, A.F.; Giacomini, A.; Corich, V. From the Vineyard to the Cellar: New Insights of Starmerella bacillaris (Synonym Candida zemplinina) Technological Properties and Genomic Perspective. Appl. Microbiol. Biotechnol. 2021, 105, 493–501. [Google Scholar] [CrossRef]
- Ciani, M.; Picciotti, G. The Growth Kinetics and Fermentation Behaviour of Some Non-Saccharomyces Yeasts Associated with Wine-Making. Biotechnol. Lett. 1995, 17, 1247–1250. [Google Scholar] [CrossRef]
- Romano, P.; Suzzi, G.; Comi, G.; Zironi, R. Higher Alcohol and Acetic Acid Production by Apiculate Wine Yeasts. J. Appl. Bacteriol. 1992, 73, 126–130. [Google Scholar] [CrossRef]
- Tristezza, M.; Di Feo, L.; Tufariello, M.; Grieco, F.; Capozzi, V.; Spano, G.; Mita, G.; Grieco, F. Simultaneous Inoculation of Yeasts and Lactic Acid Bacteria: Effects on Fermentation Dynamics and Chemical Composition of Negroamaro Wine. LWT Food Sci. Technol. 2016, 66, 406–412. [Google Scholar] [CrossRef]
- Medina, K.; Boido, E.; Fariña, L.; Gioia, O.; Gomez, M.E.; Barquet, M.; Gaggero, C.; Dellacassa, E.; Carrau, F. Increased Flavour Diversity of Chardonnay Wines by Spontaneous Fermentation and Co-Fermentation with Hanseniaspora vineae. Food Chem. 2013, 141, 2513–2521. [Google Scholar] [CrossRef]
- Del Fresno, J.M.; Escott, C.; Loira, I.; Carrau, F.; Cuerda, R.; Schneider, R.; Bañuelos, M.A.; González, C.; Suárez-Lepe, J.A.; Morata, A. The Impact of Hanseniaspora vineae Fermentation and Ageing on Lees on the Terpenic Aromatic Profile of White Wines of the Albillo Variety. Int. J. Mol. Sci. 2021, 22, 2195. [Google Scholar] [CrossRef]
- Lemos Junior, W.J.F.; Nadai, C.; Crepalde, L.T.; De Oliveira, V.S.; De Matos, A.D.; Giacomini, A.; Corich, V. Potential Use of Starmerella bacillaris as Fermentation Starter for the Production of Low-Alcohol Beverages Obtained from Unripe Grapes. Int. J. Food Microbiol. 2019, 303, 1–8. [Google Scholar] [CrossRef]
- Belda, I.; Zarraonaindia, I.; Perisin, M.; Palacios, A.; Acedo, A. From Vineyard Soil to Wine Fermentation: Microbiome Approximations to Explain the “Terroir” Concept. Front. Microbiol. 2017, 8, 821. [Google Scholar] [CrossRef]
- Čuš, F.; Jenko, M. The Influence of Yeasts Strains on the Composition and Sensory Quality of Gewürztraminer. Food Technol. Biotechnol. 2013, 51, 547–553. [Google Scholar]
- Puertas, B.; Jiménez, M.J.; Cantos-Villar, E.; Cantoral, J.M.; Rodríguez, M.E. Use of Torulaspora delbrueckii and Saccharomyces cerevisiae in Semi-Industrial Sequential Inoculation to Improve Quality of Palomino and Chardonnay Wines in Warm Climates. J. Appl. Microbiol. 2017, 122, 733–746. [Google Scholar] [CrossRef]
- Canonico, L.; Solomon, M.; Comitini, F.; Ciani, M.; Varela, C. Volatile Profile of Reduced Alcohol Wines Fermented with Selected Non-Saccharomyces Yeasts under Different Aeration Conditions. Food Microbiol. 2019, 84, 103247. [Google Scholar] [CrossRef]
- Puškaš, V.S.; Miljić, U.D.; Djuran, J.J.; Vučurović, V.M. The Aptitude of Commercial Yeast Strains for Lowering the Ethanol Content of Wine. Food Sci. Nutr. 2020, 8, 1489–1498. [Google Scholar] [CrossRef]
- Fernandes, T.; Silva-Sousa, F.; Pereira, F.; Rito, T.; Soares, P.; Franco-Duarte, R.; Sousa, M.J. Biotechnological Importance of Torulaspora delbrueckii: From the Obscurity to the Spotlight. J. Fungi 2021, 7, 712. [Google Scholar] [CrossRef]
- Thivijan, S.; Pavalakumar, D.; Gunathunga, C.J.; Undugoda, L.J.S.; Manage, P.M.; Nugara, R.N.; Bandara, P.C.; Thambugala, K.M.; Al-Asmari, F.; Promputtha, I. Influence of Indigenous Non-Saccharomyces Yeast Strains on the Physicochemical and Sensory Properties of Wine Fermentation: A Promising Approach to Enhancing Wine Quality. Front. Cell. Infect. Microbiol. 2024, 14, 1495177. [Google Scholar] [CrossRef]
- Ferrando, N.; Araque, I.; Ortís, A.; Thornes, G.; Bautista-Gallego, J.; Bordons, A.; Reguant, C. Evaluating the effect of using non-Saccharomyces on Oenococcus oeni and wine malolactic fermentation. Food Res. Int. 2020, 138, 109779. [Google Scholar] [CrossRef]
- Balmaseda, A.; Rozès, N.; Bordons, A.; Reguant, C. The use of Torulaspora delbrueckii to improve malolactic fermentation. Microb. Biotech. 2023, 17, e14302. [Google Scholar] [CrossRef]
- Callejon, R.M.; Clavijo, A.; Ortiguerira, P.; Troncoso, A.M.; Paneque, P.; Morales, M.L. Volatile and sensory profile of organic red wines produced by different selected autochthonous and commercial Saccharomyces cerevisiae strains. Analyti. Chim. Acta 2010, 660, 68–75. [Google Scholar] [CrossRef]
- Liu, S.; Laaksonen, O.; Marsol-Vall, A.; Zhu, B.; Yang, B. Comparison of Volatile Composition between Alcoholic Bilberry Beverages Fermented with Non-Saccharomyces Yeasts and Dynamic Changes in Volatile Compounds during Fermentation. Agric. Food Chem. 2020, 68, 3626–3637. [Google Scholar] [CrossRef]
- García, M.; Esteve-Zarzoso, B.; Crespo, J.; Cabellos, J.M.; Arroyo, T. Influence of Native Saccharomyces cerevisiae Strains from D.O. “Vinos de Madrid” in the Volatile Profile of White Wines. Fermentation 2019, 5, 94. [Google Scholar] [CrossRef]
- Escott, C.; Del Fresno, J.M.; Loira, I.; Morata, A.; Tesfaye, W.; González, M.D.C.; Suárez-Lepe, J.A. Formation of Polymeric Pigments in Red Wines through Sequential Fermentation of Flavanol-Enriched Musts with Non-Saccharomyces Yeasts. Food Chem. 2018, 239, 975–983. [Google Scholar] [CrossRef]
- Contreras, A.; Hidalgo, C.; Henschke, P.A.; Chambers, P.J.; Curtin, C.; Varela, C. Evaluation of Non-Saccharomyces Yeasts for the Reduction of Alcohol Content in Wine. Appl. Environ. Microbiol. 2014, 80, 1670–1678. [Google Scholar] [CrossRef]
- Padilla, B.; Gil, J.V.; Manzanares, P. Past and Future of Non-Saccharomyces Yeasts: From Spoilage Microorganisms to Biotechnological Tools for Improving Wine Aroma Complexity. Front. Microbiol. 2016, 7, 411. [Google Scholar] [CrossRef] [PubMed]











| PDM | ACarF20 | ACarF20 + T. delbrueckii | ACarF2 | ACarF2 + H. opuntiae | AGreM7 | AGreM7 + H. uvarum | AGreF13 | AGreF13 + S. bacillaris | |
|---|---|---|---|---|---|---|---|---|---|
| Ethyl butyrate | 15 ± 0.01 e | 154 ± 1.66 a | 25 ± 0.21 c | 20 ± 0.21 d | 25 ± 0.09 c | 26 ± 0.21 c | 22 ± 0.06 d | 26 ± 0.14 c | 29 ± 0.09 b |
| Ethyl isovalerate | 3 ± 0.00 b | 132 ± 1.42 a | 3 ± 0.03 b | 3 ± 0.04 b | 4 ± 0.01 b | 4 ± 0.03 b | 4 ± 0.01 b | 3 ± 0.02 b | 3 ± 0.01 b |
| Ethyl hexanoate | 1168 ± 1.1 f | 1190 ± 12.8 f | 1422 ± 11.60 de | 1523 ± 16.04 bc | 1413 ± 5.40 e | 1519 ± 12.69 c | 1583 ± 4.67 a | 1454 ± 7.78 d | 1561 ± 4.60 ab |
| Ethyl octanoate | 2435 ± 2.3 f | 2668 ± 28.7 e | 3201 ± 26.11 d | 3555 ± 37.43 a | 3434 ± 13.08 b | 3577 ± 29.87 a | 3637 ± 10.72 a | 3320 ± 17.7 c | 3429 ± 10.20 b |
| Ethyl decanoate | 390 ± 0.37 h | 623 ± 6.7 g | 722 ± 5.89 f | 859 ± 9.05 c | 886 ± 3.38 b | 801 ± 6.69 d | 945 ± 2.79 a | 763 ± 4.08 e | 777 ± 2.29 e |
| Ethyl dodecaonate | 13 ± 0.01 i | 15 ± 0.16 h | 46 ± 0.38 d | 51 ± 0.54 c | 62 ± 0.24 b | 39 ± 0.33 e | 64 ± 0.19 a | 18 ± 0.1 g | 30 ± 0.09 f |
| Diethyl succinate | 782 ± 0.75 a | 607 ± 6.53 de | 608 ± 4.96 de | 651 ± 6.85 c | 620 ± 2.37 d | 748 ± 6.25 b | 599 ± 1.77 e | 603 ± 3.23 e | 640 ± 1.89 c |
| Total esthers | 4805 ± 4.60 g | 5389 ± 57.98 f | 6027 ± 49.17 e | 6663 ± 70.16 bc | 6434 ± 24.57 d | 6714 ± 56.07 ab | 6854 ± 20.21 a | 6187 ± 33.11 e | 6498 ± 19.16 cd |
| Ethyl acetate | 2968 ± 2.84 e | 4101 ± 44.12 a | 3885 ± 31.69 b | 3494 ± 36.8 d | 3459 ± 13.21 d | 4125 ± 34.45 a | 3657 ± 10.78 c | 4027 ± 21.6 a | 3696 ± 10.9 c |
| Isobutyl acetate | 19 ± 0.02 i | 80 ± 0.86 a | 37 ± 0.3 c | 28 ± 0.3 f | 30 ± 0.12 e | 22 ± 0.18 h | 26 ± 0.08 g | 40 ± 0.21 b | 33 ± 0.1 d |
| Isoamyl acetate | 344 ± 0.33 h | 703 ± 7.57 a | 518 ± 4.23 e | 448 ± 4.71 g | 550 ± 2.1 d | 492 ± 4.11 f | 510 ± 1.5 e | 618 ± 3.31 c | 649 ± 1.91 b |
| 2-phenylehtyl acetate | 7 ± 0.01 g | 7 ± 0.08 f | 7 ± 0.06 g | 9 ± 0.09 b | 8 ± 0.03 d | 8 ± 0.06 e | 6 ± 0.02 h | 9 ± 0.05 c | 9 ± 0.03 a |
| Total ethyl acetates | 3338 ± 3.20 f | 4891 ± 52.63 a | 4447 ± 36.28 c | 3979 ± 41.90 e | 4048 ± 15.46 e | 4647 ± 38.81 b | 4199 ± 12.38 d | 4693 ± 25.12 b | 4388 ± 12.94 c |
| Isobutanol | 622 ± 0.6 f | 1746 ± 18.79 a | 809 ± 6.6 c | 765 ± 8.05 d | 688 ± 2.63 e | 511 ± 4.27 h | 560 ± 1.65 g | 839 ± 4.49 b | 775 ± 2.29 d |
| Isoamyl alcohol | 5406 ± 5.18 e | 7147 ± 76.9 a | 5018 ± 40.93 f | 6093 ± 64.16 c | 5657 ± 21.61 d | 4773 ± 39.87 g | 5501 ± 16.22 de | 6117 ± 32.7 c | 6426 ± 18.95 b |
| Benzyl alcohol | 43 ± 0.04 b | 39 ± 0.42 c | 26 ± 0.21 g | 53 ± 0.56 a | 26 ± 0.1 g | 52 ± 0.44 a | 30 ± 0.09e | 33 ± 0.17 d | 28 ± 0.08 f |
| 2-phenylethyl alcohol | 95 ± 0.09 b | 94 ± 1.01 b | 71 ± 0.58 d | 136 ± 1.43 a | 70 ± 0.27 d | 78 ± 0.65 c | 55 ± 0.16 e | 71 ± 0.38 d | 77 ± 0.23 c |
| Alcohols | 6166 ± 5.91 e | 9026 ± 97.12 a | 5923 ± 48.32 f | 7046 ± 74.19 c | 6442 ± 24.60 d | 5414 ± 45.22 g | 6147 ± 18.12 e | 7060 ± 37.79 c | 7307 ± 21.54 b |
| Hexanoic acid | 386 ± 0.37 d | 390 ± 4.19 d | 467 ± 3.81 c | 500 ± 5.27 b | 469 ± 1.79 c | 503 ± 4.2 b | 531 ± 1.57 a | 476 ± 2.55 c | 521 ± 1.54 a |
| Octanoic acid | 100 ± 0.1 de | 134 ± 1.44 c | 100 ± 0.82 d | 205 ± 2.16 a | 88 ± 0.34 f | 150 ± 1.25 b | 97 ± 0.28 de | 86 ± 0.46 f | 96 ± 0.28 e |
| Decanoic acid | 17 ± 0.02 g | 27 ± 0.3 b | 19 ± 0.15 ef | 35 ± 0.37 a | 21 ± 0.08 d | 24 ± 0.2 c | 19 ± 0.06 e | 18 ± 0.1 f | 5 ± 0.02 h |
| Fatty acids | 503 ± 0.48 g | 552 ± 5.93 f | 586 ± 4.78 e | 740 ± 7.79 a | 578 ± 2.21e | 677 ± 5.66 b | 647 ± 1.91 c | 580 ± 3.11 e | 622 ± 1.83 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sunyer-Figueres, M.; Fernández-Vázquez, D.; Cuesta-Martí, C.; Horcajo-Abal, I.; Sánchez-Mateos, C.; Domènech, A.; Nart, E.; Castillo-Olaya, V.A.; Andorrà, I.; Puxeu, M. Impact of Grape Harvest Time on Wild Yeast Biodiversity and Its Influence on Wine Fermentation. Microorganisms 2025, 13, 2836. https://doi.org/10.3390/microorganisms13122836
Sunyer-Figueres M, Fernández-Vázquez D, Cuesta-Martí C, Horcajo-Abal I, Sánchez-Mateos C, Domènech A, Nart E, Castillo-Olaya VA, Andorrà I, Puxeu M. Impact of Grape Harvest Time on Wild Yeast Biodiversity and Its Influence on Wine Fermentation. Microorganisms. 2025; 13(12):2836. https://doi.org/10.3390/microorganisms13122836
Chicago/Turabian StyleSunyer-Figueres, Mercè, Daniel Fernández-Vázquez, Cristina Cuesta-Martí, Inés Horcajo-Abal, Carlos Sánchez-Mateos, Alba Domènech, Enric Nart, Victoria A. Castillo-Olaya, Immaculada Andorrà, and Miquel Puxeu. 2025. "Impact of Grape Harvest Time on Wild Yeast Biodiversity and Its Influence on Wine Fermentation" Microorganisms 13, no. 12: 2836. https://doi.org/10.3390/microorganisms13122836
APA StyleSunyer-Figueres, M., Fernández-Vázquez, D., Cuesta-Martí, C., Horcajo-Abal, I., Sánchez-Mateos, C., Domènech, A., Nart, E., Castillo-Olaya, V. A., Andorrà, I., & Puxeu, M. (2025). Impact of Grape Harvest Time on Wild Yeast Biodiversity and Its Influence on Wine Fermentation. Microorganisms, 13(12), 2836. https://doi.org/10.3390/microorganisms13122836

