In Vitro Probiotic Potential of Lactic Acid Bacteria Isolated from Brazilian Dry-Cured Loin (Socol)
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Isolation and Enumeration of Lactic Acid Bacteria (LAB)
2.3. In Vitro Assessment of the Probiotic Potential of LAB
2.3.1. Tolerance to Artificial Gastric Juice
2.3.2. Tolerance to Bile Salts
2.3.3. Spot-on-the-Lawn Antagonism
2.3.4. Antimicrobial Resistance Profile
3. Results and Discussion
3.1. Enumeration and Identification of Lactic Acid Bacteria (LAB)
3.2. Evaluation of the In Vitro Probiotic Potential of Microorganisms Isolated from Socol
3.2.1. Tolerance to Gastric Juice and Bile Salts
3.2.2. Bacterial Antagonism (Spot-on-the-Lawn)
3.2.3. Antimicrobial Resistance Profile
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- INPI (Instituto Nacional da Propriedade Industrial). Revista da Propriedade Industrial; Indicações Geográficas; Seção IV; INPI (Instituto Nacional da Propriedade Industrial): Rio de Janeiro, Brazil, 2018; Volume 2475. Available online: https://revistas.inpi.gov.br/pdf/Indicacoes_Geograficas2475.pdf (accessed on 2 October 2025).
- Mutz, Y.S.; Rosario, D.K.A.; Bernardo, Y.A.A.; Vieira, C.P.; Moreira, R.V.P.; Bernardes, P.C.; Conte-Junior, C.A. Unravelling the relation between natural microbiota and biogenic amines in Brazilian dry-cured loin: A chemometric approach. Int. J. Food Sci. Technol. 2022, 57, 1621–1629. [Google Scholar] [CrossRef]
- Soemarie, Y.B.; Milanda, T.; Barliana, M.I. Fermented Foods as Probiotics: A Review. J. Adv. Pharm. Technol. Res. 2021, 12, 335–339. [Google Scholar] [CrossRef]
- Laranjo, M.; Potes, M.E.; Elias, M. Role of starter cultures on the safety of fermented meat products. Front. Microbiol. 2019, 10, 1–11. [Google Scholar] [CrossRef]
- Young, N.W.G.; O’Sullivan, G.R. The influence of ingredients on product stability and shelf life. In Food and Beverage Stability and Shelf Life Sawston; Kilcast, D., Subramaniam, P., Eds.; Woodhead Publishing: Cambridge, UK, 2011; pp. 132–183. [Google Scholar]
- Fraqueza, M.J. Antibiotic resistance of lactic acid bacteria isolated from dry-fermented sausages. Int. J. Food. Sci. Microbiol. 2015, 212, 76–88. [Google Scholar] [CrossRef] [PubMed]
- FAO/WHO. Guidelines for the Evaluation of Probiotics in Food—Joint Food and Agricultural Organization of the United Nations and World Health Organization Working Group Meeting Report; FAO/WHO: London, ON, Canada, 2002; Available online: https://isappscience.org/wp-content/uploads/2019/04/probiotic_guidelines.pdf (accessed on 2 October 2025).
- Munekata, P.E.S.; Pateiro, M.; Zhang, W.; Domínguez, R.; Xing, L.; Fierro, E.M.; Lorenzo, J.M. Autochthonous Probiotics in Meat Products: Selection, Identification, and Their Use as Starter Culture. Microorganisms 2020, 8, 1833. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, K.O.; Campos, G.Z.; Scafuro Lima, J.M.; Rocha, R.d.S.; Vaz-Velho, M.; Todorov, S.D. The Role of Lactic Acid Bacteria in Meat Products, Not Just as Starter Cultures. Foods 2024, 13, 3170. [Google Scholar] [CrossRef]
- Lopes, M.P.; Teixeira, S.C.; Vieira, L.H.S.; Pereira, L.L. Caracterização da Associação de Produtores de Socol como Arranjo Produtivo Local: Uma contribuição para a valorização do agronegócio artesanal. Entrepreneurship 2019, 3, 9–25. [Google Scholar] [CrossRef]
- IDF Standard 117A; Yogurt: Enumeration of Characteristics Microorganisms Colony Count Technique at 37 °C. IDF (International Dairy Federation): Brussels, Belgium, 1988; pp. 1–5.
- Assis, G.B.N.; Pereira, F.L.; Zegarra, A.U.; Taveres, G.C.; Leal, C.A.; Figueiredo, H.C.P. Use of MALDI-TOF Mass Spectrometry for the fast identification of Gram-Positive fish pathogens. Front. Microbiol. 2017, 8, 1492. [Google Scholar] [CrossRef]
- Singhal, N.; Kumar, M.; Kanaujia, P.K.; Virdi, J.S. MALDI-TOF mass spectrometry: An emerging technology for microbial identification and diagnosis. Front. Microbiol. 2015, 6, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Neumann, E. Comportamento “in vitro” de estirpes de Lactobacillus acidophilus sensível e resistente à bacteriocina sob condições do trato digestivo. Ph.D. Thesis, Universidade Federal de Viçosa, Viçosa, Brazil, 1991; pp. 1–86. [Google Scholar]
- Silva, B.C.; Jung, L.C.R.; Sandes, S.H.C.; Alvim, L.B.; Bomfim, M.R.Q.; Nicoli, J.R.; Neumann, E.; Nunes, A.C. In vitro assessment of functional properties of lactic acid bacteria isolated from faecal microbiota of healthy dogs for potential use as probiotics. Benef. Microbes 2013, 4, 267–275. [Google Scholar] [CrossRef]
- Acurcio, L.B.; Souza, M.R.; Nunes, A.C.; Oliveira, D.L.S.; Sandes, S.H.C.; Alvim, L.B. Isolation, enumeration, molecular identification and probiotic potential evaluation of lactic acid bacteria isolated from sheep milk. Arq. Bras. Med. Vet. Zootec. 2014, 66, 940–948. [Google Scholar] [CrossRef]
- Walker, D.K.; Gilliland, S.E. Relationships among bile tolerance, bile salt deconjugation, and assimilation of cholesterol by Lactobacillus acidophilus. J. Dairy Sci. 1993, 76, 956–961. [Google Scholar] [CrossRef]
- Tagg, J.R.; Dajani, A.S.; Wannamaker, L.W. Bacteriocins of Gram-positive bacteria. Bacteriol. Rev. 1976, 40, 722–756. [Google Scholar] [CrossRef]
- Charteris, W.P.; Kely, P.; Morelli, L. Antibiotic susceptibility of potentially probiotic Lactobacillus species. J. Food Prot. 1998, 61, 1636–1643. [Google Scholar] [CrossRef] [PubMed]
- Yao, K.; Liu, D.; Liang, M.; Brennan, C.S.; Brennan, M. Detection of nitrite degradation by Lactobacillus plantarum DMDL9010 through the anaerobic respiration electron transport chain using proteomic analysis. Int. J. Food Sci. Technol. 2020, 56, 1608–1622. [Google Scholar] [CrossRef]
- Ferrocino, I.; Bellio, A.; Giordano, M.; Macori, G.; Romano, A.; Rantsiou, K.; Decastelli, L.; Coolin, L. Shotgun Metagenomics and Volatilome Profile of the Microbiota of Fermented Sausages. Appl. Environ. Microbiol. 2018, 84, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Rebecchi, A.; Pisacane, V.; Miragoli, F.; Polka, J.; Falaskoni, I.; Morelli, L.; Puglisi, E. High-throughput assessment of bacterial ecology in hog, cow and ovine casings used in sausages production. Int. J. Food Microbiol. 2015, 212, 49–59. [Google Scholar] [CrossRef]
- Nguyen, D.T.L.; Van Hoorde, K.; Cnockaert, M.; De Brandt, E.; De Bruyne, K.; Binh Le, B.T.; Vandamme, P. A culture-dependent and independent approach for the identification of lactic acid bacteria associated with the production of nem chua, a Vietnamese fermented meat product. Food Res. Int. 2013, 50, 232–240. [Google Scholar] [CrossRef]
- Federici, S.; Ciarrocchi, F.; Campana, R.; Ciandrini, E.; Blasi, G.; Baffone, W. Identification and functional traits of lactic acid bacteria isolated from Ciauscolo salami produced in Central Italy. Meat Sci. 2014, 98, 575–584. [Google Scholar] [CrossRef]
- Prpich, N.Z.P.; Castro, M.P.; Cayré, M.E.; Garro, O.A.; Vignolo, G.M. Autochthonous starter culture selection to keep traditions in the manufacture of dry sausages alive. Ann. Microbiol. 2015, 65, 1709–1719. [Google Scholar] [CrossRef]
- Parlindungan, E.; Lugli, G.A.; Ventura, M.; van Sinderen, D.; Mahony, J. Lactic Acid Bacteria Diversity and Characterization of Probiotic Candidates in Fermented Meats. Foods 2021, 10, 1519. [Google Scholar] [CrossRef] [PubMed]
- Vinderola, C.G.; Reinheimer, J.A. Lactic acid starter and probiotic bacteria: A comparative ‘‘in vitro’’ study of probiotic characteristics and biological barrier resistance. Food Res. Int. 2003, 36, 895–904. [Google Scholar] [CrossRef]
- Merritt, M.E.; Donaldson, J.R. Effect of bile salts on the DNA and membrane integrity of enteric bacteria. J. Med. Microbiol. 2009, 58, 1533–1541. [Google Scholar] [CrossRef]
- Kong, H.B.; Chen, Q.; Sun, F.; Zhang, H. In vitro comparison of probiotic properties of lactic acid bacteria isolated from Harbin dry sausages and selected probiotics. J. Funct. Foods 2017, 32, 391–400. [Google Scholar] [CrossRef]
- Moreno, I.; Marasca, E.T.G.; de Sá, P.B.Z.R.; Moutinho, J.S.; Marquezini, M.G.; Alves, M.R.C.; Bromberg, R. Evaluation of Probiotic Potential of Bacteriocinogenic Lactic Acid Bacteria Strains Isolated from Meat Products. Probiotics Antimicrob. Proteins 2018, 10, 762–774. [Google Scholar] [CrossRef]
- Lucumi-Banguero, R.S.; Ramírez-Toro, C.; Bolívar, G.A. Potential Use of Lactic Acid Bacteria with Pathogen Inhibitory Capacity as a Biopreservative Agent for Chorizo. Processes 2021, 9, 1582. [Google Scholar] [CrossRef]
- Kaveh, S.; Hashemi, S.M.B.; Abedi, E.; Amiri, M.J.; Conte, F.L. Bio-Preservation of Meat and Fermented Meat Products by Lactic Acid Bacteria Strains and Their Antibacterial Metabolites. Sustainability 2023, 15, 10154. [Google Scholar] [CrossRef]
- Rzepkowska, A.; Zielińska, D.; Ołdak, A.; Kołozyn-Krajewska, D. Organic whey as a source of Lactobacillus strains with selected technological and antimicrobial properties. Int. J. Food Sci. Technol. 2017, 52, 1983–1994. [Google Scholar] [CrossRef]
- Laranjo, M.; Elias, M.; Fraqueza, M.J. The use of starter cultures in traditional meat products. J. Food Qual. 2017, 2017, 9546026. [Google Scholar] [CrossRef]
- Toomey, N.; Bolton, D.; Fanning, S. Characterisation and transferability of antibiotic resistance genes from lactic acid bacteria isolated from Irish pork and beef abattoirs. Res. Microbiol. 2010, 161, 127–135. [Google Scholar] [CrossRef]
- Borriello, S.P.; Hammes, W.P.; Holzapfel, W.; Marteau, P.; Schrezenmeir, J.; Vaara, M.; Valtonen, V. Safety of probiotics that contain lactobacilli or bifidobacteria. Clin. Infect. Dis. 2003, 36, 775–780. [Google Scholar] [CrossRef] [PubMed]
- Miranda, C.; Contente, D.; Igrejas, G.; Câmara, S.P.A.; Dapkevicius, M.D.L.E.; Poeta, P. Role of Exposure to Lactic Acid Bacteria from Foods of Animal Origin in Human Health. Foods 2021, 10, 2092. [Google Scholar] [CrossRef] [PubMed]
| Lactic Acid Bacteria | Gastric Juice | Bile Salts |
|---|---|---|
| L. brevis SFC1A | 22.53 ± 12.86 (T) | −24.19 ± 3.87 (T) |
| L. sakei SFC2A | 50.55 ± 14.05 (MT) | 31.69 ± 16.81 (T) |
| L. curvatus SFC6A | 1.52 ± 0.95 (T) | −15.03 ± 10.50 (T) |
| P. acidilactici SFC9A | −19.42 ± 16.52 (T) | −18.39 ± 8.09 (T) |
| L. curvatus SFC11A | −16.27 ± 2.95 (T) | −15.13 ± 10.59 (T) |
| P. pentosaceus SFC11B | 15.23 ± 7.49 (T) | −8.82 ± 1.44 (T) |
| Lactic Acid Bacteria | Means ± Standard Deviation of Inhibition Haloes (mm) | ||||
|---|---|---|---|---|---|
| EC | LM | ST | SA | SFC11A | |
| L. brevis SFC1A | 44.72 ± 3.9 | 49.53 ± 6.7 | 32.58 ± 4.2 | 16.41 ± 14.4 | 32.35 ± 0.7 |
| L. sakei SFC2A | 41.67 ± 8.5 | 39.71 ± 1.4 | 7.77 ± 13.5 | 0 | 7.95 ± 13.8 |
| L. curvatus SFC6A | 31.69 ± 3.1 | 30.1 ± 4.8 | 0 | 0 | 0 |
| P. acidilactici SFC9A | 57.17 ± 4.2 | 62.57 ± 2.9 | 34.82 ± 2.5 | 32.25 ± 1.3 | 42.22 ± 5.9 |
| L. curvatus SFC11A | 30.35 ± 5.8 | 23.04 ± 4.7 | 0 | 0 | 0 |
| P. pentosaceus SFC11B | 50.37 ± 2.6 | 44.96 ± 6.6 | 17.65 ± 15.3 | 0 | 27.58 ± 5.3 |
| Lactic Acid Bacteria | Antimicrobial | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| CEF | CLI | CIP | ERY | GEN | OXA | PEN | TET | VAN | CHL | AMI | SUL | |
| L. brevis SFC1A | S | S | R | S | R | R | MS | S | R | S | R | R |
| L. sakei SFC2A | R | S | R | S | S | R | S | S | S | S | MS | R |
| L. curvatus SFC6A | S | MS | S | S | R | R | S | S | R | S | R | R |
| P. acidilactici SFC9A | S | S | R | S | S | R | S | S | R | S | R | R |
| L. curvatus SFC11A | S | S | MS | S | R | R | S | S | R | S | R | R |
| P. pentosaceus SFC11B | S | S | R | S | S | R | MS | S | R | S | R | R |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chow, F.C.; Valente, G.L.C.; Santos, V.P.F.; Soares, C.F.; Figueiredo, H.C.P.; Cançado, S.d.V.; Figueiredo, T.C.; Souza, M.R. In Vitro Probiotic Potential of Lactic Acid Bacteria Isolated from Brazilian Dry-Cured Loin (Socol). Microorganisms 2025, 13, 2749. https://doi.org/10.3390/microorganisms13122749
Chow FC, Valente GLC, Santos VPF, Soares CF, Figueiredo HCP, Cançado SdV, Figueiredo TC, Souza MR. In Vitro Probiotic Potential of Lactic Acid Bacteria Isolated from Brazilian Dry-Cured Loin (Socol). Microorganisms. 2025; 13(12):2749. https://doi.org/10.3390/microorganisms13122749
Chicago/Turabian StyleChow, Felipe Coser, Gustavo Lucas Costa Valente, Viviana Patrícia Fraga Santos, Carla Ferreira Soares, Henrique César Pereira Figueiredo, Silvana de Vasconcelos Cançado, Tadeu Chaves Figueiredo, and Marcelo Resende Souza. 2025. "In Vitro Probiotic Potential of Lactic Acid Bacteria Isolated from Brazilian Dry-Cured Loin (Socol)" Microorganisms 13, no. 12: 2749. https://doi.org/10.3390/microorganisms13122749
APA StyleChow, F. C., Valente, G. L. C., Santos, V. P. F., Soares, C. F., Figueiredo, H. C. P., Cançado, S. d. V., Figueiredo, T. C., & Souza, M. R. (2025). In Vitro Probiotic Potential of Lactic Acid Bacteria Isolated from Brazilian Dry-Cured Loin (Socol). Microorganisms, 13(12), 2749. https://doi.org/10.3390/microorganisms13122749

