Mineral-Targeted Microbial Enhanced Oil Recovery
Abstract
1. Introduction
2. MEOR
3. Microbial Inhibition of Clay Swelling
| No. | Year | Type | Microorganism | Mechanism | Result | Ref. |
|---|---|---|---|---|---|---|
| 1 | 2013 | Laboratory experiment | Enterobacter cloacae | Biosurfactants alter mineral wettability | Increased crude oil recovery by 5% to 10% | [41] |
| 2 | 2016 | Field test | Sporosarcina pasteurii | Microbially induced calcium carbonate precipitation | Pressure rose, injection rate dropped (from 1.9 to 0.47 L/min) | [80] |
| 3 | 2017 | Laboratory experiment | Microbial communities | Microbial acids-induced carbonate dissolution | Porosity increased by 14.89–68.29%, and permeability improved by 35.77–137.83% | [81] |
| 4 | 2018 | Field test | Sporosarcina pasteurii | Microbially induced calcium carbonate precipitation | Injection rate dropped (1.28 gallons per minute (gpm) to less than 0.05 gpm) | [82] |
| 5 | 2018 | Laboratory experiment | 4 Fe(III)-reducing microbial strains | Inhibition of montmorillonite hydro-swelling | Inhibition of Ca-montmorillonite swelling at a rate of 48.9% | [33] |
| 6 | 2018 | Laboratory experiment | Alcaligenes faecalis | Biosurfactants alter mineral wettability | Contact angle decreased from 156° to 86°, shifting from oil-wet to intermediate-wet, enhancing oil recovery by 5.2–8.2% | [42] |
| 7 | 2019 | Laboratory experiment | Bacillus subtilis | Biosurfactants alter mineral wettability | The wettability was modified from the values indicating an intermediate water-wet condition to a strong water-wet condition | [39] |
| 8 | 2020 | Laboratory experiment | Sporosarcina pasteurii | Microbially induced calcium carbonate precipitation | The permeability of large-, medium-, and small-aperture core samples declined to 47%, 32%, and 16% of their initial values, respectively | [83] |
| 9 | 2022 | Laboratory experiment | Proteus hauseri | Inhibition of montmorillonite hydro-swelling | The waterflooding injection pressure was reduced by 61.1%, while the core permeability and oil recovery were enhanced by 49.6% and 8.1%, respectively | [84] |
| 10 | 2023 | Laboratory experiment | Flaviflexus huanghaiensis, Shewanella chilikensis | Inhibition of hydro-swelling and prevention of plugging-related damage | The relative anti-swelling rate of montmorillonite in water improved by 46.2%, 39.7%, 36.6%, 38.4%, and 34.6% under different pressures | [34] |
| 11 | 2023 | Laboratory experiment | Acidithiobacillus thiooxidans, Acidithiobacillus ferrooxidans, Sulfobacillus thermosulfidooxidans | Biosurfactants alter mineral wettability | Microorganisms promoted a highly water-wet condition but enhanced asphaltene adsorption | [40,85] |
| 12 | 2025 | Laboratory experiment | Paenibacillus mucilaginosus | Microbial-mediated crystallization | Core permeability decreased by 66.67%, the porosity dropped to 8.32%, the plugging rate reached 63.08% | [35] |
| 13 | 2025 | Laboratory experiment | Paenibacillus mucilaginosus | Dissolution of silicate minerals under neutral conditions | The porosity increased by 1.4% and permeability increased by 12.3 mD of low-permeability cores | [37] |
| 14 | 2025 | Laboratory experiment | Bacillus subtilis | Prevention of asphaltene adsorption on carbonate minerals | The bioproducts reduced the asphaltene adsorption by up to 75% | [86] |
4. Microbially Induced Precipitation
5. Microbial Weathering of Silicates and Carbonate Minerals
6. Wettability Alteration
7. Impact of Minerals on Microbial Hydrocarbon Degradation
| No. | Mineral | Substrate | Effect | Mechanism of Influence | Degrader | Ref. |
|---|---|---|---|---|---|---|
| 1 | Mix clay | Crude oil | Stimulation for saturated hydrocarbons, neutral for aromatic hydrocarbons | Increases biological accessibility | Microbial community | [145] |
| 2 | Kaolinite | Heavy oil in the environment | Stimulation | C-O-Na-Si stimulates metabolism | Microbial community | [146] |
| 3 | Montmorillonite | Heavy oil in the environment | Stimulation | Stimulates growth and buffer pH | Pseudomonas aeruginosa + Microbial community | [147] |
| Kaolinite | ||||||
| 4 | Montmorillonite | Heavy oil in the environment | Stimulation | Stimulates growth and buffer pH, C-O-Na-Si stimulates metabolism | Microbial community | [148] |
| Montmorillonite | Stimulation | |||||
| 5 | Vermiculite | Naphthalene, Anthracene | Stimulation | Protects from toxicity | Microbial community | [149] |
| 6 | Montmorillonite | Crude oil | Stimulation | Adsorbent | Microbial community | [150] |
| 7 | Montmorillonite | Saturated hydrocarbons in crude oil | Stimulation | High specific surface area | Microbial community | [151] |
| Palygorskite | Stimulation | High specific surface area | ||||
| Saponite | Neutral | / | ||||
| Kaolinite | Inhibition | No local bridging effect, low specific surface area | ||||
| 8 | Saponite | Crude oil | Stimulation | High specific surface area and cation exchange capacity | Microbial community | [152] |
| 9 | Kaolinite | Crude oil | Inhibition | Low specific surface area and cation exchange capacity | Microbial community | [153] |
| Palygorskite | Stimulation | High specific surface area and cation exchange capacity | ||||
| Saponite | Neutral | / | ||||
| Montmorillonite | Stimulation | High specific surface area and cation exchange capacity | ||||
| 10 | Montmorillonite | Crude oil | Stimulation | / | Microbial community | [154] |
| 11 | Montmorillonite | Phenanthrene and dibenzothiophene compounds | Stimulation | / | Microbial community | [155] |
| 12 | Calcium bentonite | Crude oil in the environment | Stimulation | High specific surface area | Microbial community | [156] |
| Fuller soil | Stimulation | |||||
| Kaolinite | Stimulation | |||||
| 13 | Palygorskite | Phenanthrene(C14) | Stimulation | Stimulate biofilm formation and accommodate extracellular enzymes | Burkholderia sartisoli | [157] |
| 14 | Montmorillonite | Phenanthrene(C14) | Stimulation | High specific surface area and cation exchange capacity | Burkholderia sartisoli + Microbial community | [158] |
| Palygorskite | ||||||
| 15 | Montmorillonite | Crude oil | Stimulation | Stimulates contact with nutrients | Microbial community | [159] |
| Saponite | Stimulation | Increases nutrients utilization | ||||
| 16 | Montmorillonite | Aromatic hydrocarbons in crude oil | Stimulation | High specific surface area and cation exchange capacity | Microbial community | [160] |
| Saponite | Stimulation | |||||
| Palygorskite | Stimulation | Channel structure | ||||
| Kaolinite | Inhibition | Influence of impurities | ||||
| 17 | Kaolinite | Phenanthrene | Stimulation | Silicon/oxygen atoms stimulate biological effects | Sphingomonas sp. GY2B | [161] |
| Quartz | Stimulation | |||||
| 18 | Nontronite | Crude oil | Stimulation | Stimulates ion exchange and nutrient absorption | Alcanivorax borkumensis | [144] |
| 19 | Bentonite | Aromatic hydrocarbons and cadmium contaminated soil | Stimulation | Adsorption of heavy metals | Microbial community | [162] |
| 20 | Palygorskite | Crude oil contaminated soil | Neutral | / | Microbial community | [163] |
| 21 | Illite | Heavy oil | Inhibition for all saturated hydrocarbons and 50 aromatic hydrocarbons, stimulation for 45 aromatic hydrocarbons | Adsorption and cation-π | Pseudomonas stutzeri | [142] |
8. Promising Mineral-Targeting Microbes for MEOR
| No. | Microorganism | Function | Ref. |
|---|---|---|---|
| 1 | Acidithiobacillus ferrooxidans | Microbial leaching of copper | [164] |
| 2 | Acidithiobacillus thiooxidans | Microbial leaching of chalcopyrite | [165] |
| 3 | Arthrobacter sp. | Accelerating the release of Fe from hornblende | [166] |
| 4 | Bacillus cereus | Dissolution of manganese | [167] |
| 5 | Cupriavidus metallidurans | Microbial leaching of copper | [168] |
| 6 | Delftia acidovorans | Formation of gold nanoparticles | [169] |
| 7 | Ferroplasma acidarmanus | Microbial leaching of pyrite, marcasite, and arsenopyrite | [170] |
| 8 | Gallionella ferruginea | Its organic molecules retard mineral growth | [171] |
| 9 | Geobacter sulfurreducens | Formation of Cr(III) crystals | [172] |
| 10 | Leptospirillum ferrooxidans | Microbial leaching of copper | [173] |
| 11 | Leptothrix discophora | Formation of ferromanganese nodules | [174] |
| 12 | Mariprofundus ferrooxydans | Co-precipitation with iron | [175] |
| 13 | Methanocaldococcus jannaschii | Metal ion binding-mediated silicification | [176] |
| 14 | Nitrobacter winogradskyi | Microbial weathering of serpentinized ultrabasites | [177] |
| 15 | Pseudomonas fluorescens | Microbial leaching of Fe, Ni, and Co | [178] |
| 16 | Pseudomonas putida | Dissolution of aluminum from metakaolin | [179] |
| 17 | Rhodococcus spp. | Microbial leaching of sulfur, iron, and silica | [180] |
| 18 | Shewanella piezotolerans | Reduction and biomineralization of iron | [181] |
| 19 | Sporosarcina pasteurii | Induced calcium carbonate mineralization | [182] |
| 20 | Sulfolobus metallicus | Copper leaching | [183] |
9. Concluding Remarks
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| MEOR | Microbial Enhanced Oil Recovery |
| FMM | Fluid–Microbe–Mineral |
| DIRB | Dissimilatory Iron-Reducing Bacteria |
| MICP | Microbially Induced Carbonate Precipitation |
| SARA | Saturated hydrocarbons, Aromatic hydrocarbons, Resins, and Asphaltenes |
References
- Brown, L.R. Microbial enhanced oil recovery (MEOR). Curr. Opin. Microbiol. 2010, 13, 316–320. [Google Scholar] [CrossRef]
- Al-Marzouqi, A.H.; Zekri, A.Y.; Azzam, A.A.; Dowaidar, A. Hydrocarbon recovery from porous media using supercritical fluid extraction. J. Porous Media. 2009, 12, 489–500. [Google Scholar] [CrossRef]
- Sen, R. Biotechnology in petroleum recovery: The microbial EOR. Prog. Energy Combust. Sci. 2008, 34, 714–724. [Google Scholar] [CrossRef]
- Suthar, H.; Hingurao, K.; Desai, A.; Nerurkar, A. Evaluation of bioemulsifier mediated Microbial Enhanced Oil Recovery using sand pack column. J. Microbiol. Methods 2008, 75, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Youssef, N.; Simpson, D.R.; Duncan, K.E.; McInerney, M.J.; Folmsbee, M.; Fincher, T.; Knapp, R.M. In situ biosurfactant production by Bacillus strains injected into a limestone petroleum reservoir. Appl. Environ. Microbiol. 2007, 73, 1239–1247. [Google Scholar] [CrossRef]
- Belyaev, S.S.; Borzenkov, I.A.; Nazina, T.N.; Rozanova, E.P.; Glumov, I.F.; Ibatullin, R.R.; Ivanov, M.V. Use of microorganisms in the biotechnology for the enhancement of oil recovery. Microbiology 2004, 73, 590–598. [Google Scholar] [CrossRef]
- Mu, B.; Nazina, T.N. Recent advances in petroleum microbiology. Microorganisms 2022, 10, 1706. [Google Scholar] [CrossRef] [PubMed]
- Agi, A.; Junin, R.; Chong, A.S. Intermittent ultrasonic wave to improve oil recovery. J. Petrol. Sci. Eng. 2018, 166, 577–591. [Google Scholar] [CrossRef]
- Lim, M.W.; Von Lau, E.; Poh, P.E. A comprehensive guide of remediation technologies for oil contaminated soil-present works and future directions. Mar. Pollut. Bull. 2016, 109, 14–45. [Google Scholar] [CrossRef]
- Saravanan, A.; Kumar, P.S.; Vardhan, K.H.; Jeevanantham, S.; Karishma, S.B.; Yaashikaa, P.R.; Vellaichamy, P. A review on systematic approach for microbial enhanced oil recovery technologies: Opportunities and challenges. J. Clean. Prod. 2020, 258, 120777. [Google Scholar] [CrossRef]
- Huang, S.; Chen, X.; Liu, H.; Jiang, J.; Cao, M.; Xia, Y. Experimental and numerical study of solvent optimization during horizontal-well solvent-enhanced steam flooding in thin heavy-oil reservoirs. Fuel 2018, 228, 379–389. [Google Scholar] [CrossRef]
- Cheng, L.; Liu, H.; Huang, S.; Wu, K.; Chen, X.; Wang, D.; Xiong, H. Environmental and economic benefits of Solvent-Assisted Steam-Gravity Drainage for bitumen through horizontal well: A comprehensive modeling analysis. Energy 2018, 164, 418–431. [Google Scholar] [CrossRef]
- Han, B.; Cheng, W.; Nian, Y. Experimental study on effect of temperature field on recovery of reservoir using hot water flooding. Energy Procedia 2017, 142, 3759–3765. [Google Scholar] [CrossRef]
- Guo, K.; Li, H.; Yu, Z. In-situ heavy and extra-heavy oil recovery: A review. Fuel 2016, 185, 886–902. [Google Scholar] [CrossRef]
- Kim, M.; Abedini, A.; Lele, P.; Guerrero, A.; Sinton, D. Microfluidic pore-scale comparison of alcohol- and alkaline-based SAGD processes. J. Petrol. Sci. Eng. 2017, 154, 139–149. [Google Scholar] [CrossRef]
- Saboorian-Jooybari, H.; Dejam, M.; Chen, Z. Heavy oil polymer flooding from laboratory core floods to pilot tests and field applications: Half-century studies. J. Petrol. Sci. Eng. 2016, 142, 85–100. [Google Scholar] [CrossRef]
- Ahmadi, M.A.; Shadizadeh, S.R. Experimental investigation of a natural surfactant adsorption on shale-sandstone reservoir rocks: Static and dynamic conditions. Fuel 2015, 159, 15–26. [Google Scholar] [CrossRef]
- Sheng, J.J. A comprehensive review of alkaline–surfactant–polymer (ASP) flooding. Asia-Pac. J. Chem. Eng. 2014, 9, 471–489. [Google Scholar] [CrossRef]
- Khlaifat, A.L.; Dakhlallah, D.; Sufyan, F. A critical review of alkaline flooding: Mechanism, hybrid flooding methods, laboratory work, pilot projects, and field applications. Energies 2022, 15, 3820. [Google Scholar] [CrossRef]
- Dang, F.; Li, S.; Feng, S. Greening strategy for heavy oil thermal recovery assisted by environmental-friendly solvent dimethyl ether. Geoen. Sci. Eng. 2025, 251, 213889. [Google Scholar] [CrossRef]
- Esene, C.; Rezaei, N.; Aborig, A.; Zendehboudi, S. Comprehensive review of carbonated water injection for enhanced oil recovery. Fuel 2019, 237, 1086–1107. [Google Scholar] [CrossRef]
- Jia, H.; Sheng, J.J. Discussion of the feasibility of air injection for enhanced oil recovery in shale oil reservoirs. Petroleum 2017, 3, 249–257. [Google Scholar] [CrossRef]
- Maleki, M.; Kazemzadeh, Y.; Dehghan Monfared, A.; Hasan-Zadeh, A.; Abbasi, S. Bio-enhanced oil recovery (BEOR) methods: All-important review of the occasions and challenges. Can. J. Chem. Eng. 2024, 102, 2364–2390. [Google Scholar] [CrossRef]
- Zhu, W.; Zhao, J.; Han, H.; Sun, G.; Song, Z. High-pressure microscopic investigation on the oil recovery mechanism by in situ biogases in petroleum reservoirs. Energy Fuels 2015, 29, 7866–7874. [Google Scholar] [CrossRef]
- Banat, I.M. Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation: A review. Bioresour. Technol. 1995, 51, 1–12. [Google Scholar] [CrossRef]
- Lourdes, R.S.; Cheng, S.Y.; Chew, K.W.; Ma, Z.; Show, P.L. Prospects of microbial enhanced oil recovery: Mechanisms and environmental sustainability. Sustain. Energy Technol. Assess 2022, 53, 102527. [Google Scholar] [CrossRef]
- Patel, J.; Borgohain, S.; Kumar, M.; Rangarajan, V.; Somasundaran, P.; Sen, R. Recent developments in microbial enhanced oil recovery. Renew. Sustain. Energy Rev. 2015, 52, 1539–1558. [Google Scholar] [CrossRef]
- Almeida, P.E.; Moreira, R.S.; Almeida, R.; Guimaraes, A.K.; Carvalho, A.S.; Quintella, C.; Esperidia, M.; Taft, C. Selection and application of microorganisms to improve oil recovery. Eng. Life Sci. 2004, 4, 319–325. [Google Scholar] [CrossRef]
- Aurepatipan, N.; Champreda, V.; Kanokratana, P.; Chitov, T.; Bovonsombut, S. Assessment of bacterial communities and activities of thermotolerant enzymes produced by bacteria indigenous to oil-bearing sandstone cores for potential application in Enhanced Oil Recovery. J. Petrol. Sci. Eng. 2018, 163, 295–302. [Google Scholar] [CrossRef]
- Zheng, C.; Yu, L.; Huang, L.; Xiu, J.; Huang, Z. Investigation of a hydrocarbon-degrading strain, Rhodococcus ruber Z25, for the potential of microbial enhanced oil recovery. J. Petrol. Sci. Eng. 2012, 81, 49–56. [Google Scholar] [CrossRef]
- Astuti, D.I.; Purwasena, I.A.; Priharto, N.; Ariadji, T.; Afifah, L.N.; Saputro, R.B.; Aditiawati, P.; Persada, G.P.; Ananggadipa, A.A.; Abqory, M.H.; et al. Bacterial community dynamics during MEOR biostimulation of an oil reservoir in sumatera Indonesia. J. Petrol. Sci. Eng. 2022, 208, 109558. [Google Scholar] [CrossRef]
- Quraishi, M.; Bhatia, S.K.; Pandit, S.; Gupta, P.K.; Rangarajan, V.; Lahiri, D.; Varjani, S.; Mehariya, S.; Yang, Y.H. Exploiting microbes in the petroleum field: Analyzing the credibility of microbial enhanced oil recovery (MEOR). Energies 2021, 14, 4684. [Google Scholar] [CrossRef]
- Cui, K.; Sun, S.; Xiao, M.; Liu, T.; Xu, Q.; Dong, H.; Wang, D.; Gong, Y.; Sha, T.; Hou, J.; et al. Microbial mineralization of montmorillonite in low-permeability oil reservoirs for microbial enhanced oil recovery. Appl. Environ. Microbiol. 2018, 84, e118–e176. [Google Scholar] [CrossRef]
- Dong, H.; Yu, L.; Xu, T.; Liu, Y.; Fu, J.; He, Y.; Gao, J.; Wang, J.; Sun, S.; She, Y.; et al. Cultivation and biogeochemical analyses reveal insights into biomineralization caused by piezotolerant iron-reducing bacteria from petroleum reservoirs and their application in MEOR. Sci. Total Environ. 2023, 903, 166465. [Google Scholar] [CrossRef]
- Huang, M.; Zheng, X.; He, X.; Lin, X.; Ye, J. Paenibacillus mucilaginosus-induced CO2 fixation into amorphous and crystalline carbonate minerals. Process Biochem. 2025, 157, 242–255. [Google Scholar] [CrossRef]
- Zhu, H.; Carlson, H.K.; Coates, J.D. Applicability of anaerobic nitrate-dependent Fe(II) oxidation to microbial enhanced oil recovery (MEOR). Environ. Sci. Technol. 2013, 47, 8970–8977. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhang, C.; Su, P.; Mu, H. Lab-scale experimental study of microbial enhanced oil recovery on low-permeability cores using the silicate bacterium Paenibacillus mucilaginosus. Microorganisms 2025, 13, 738. [Google Scholar] [CrossRef] [PubMed]
- Khajepour, H.; Mahmoodi, M.; Biria, D.; Ayatollahi, S. Investigation of wettability alteration through relative permeability measurement during MEOR process: A micromodel study. J. Petrol. Sci. Eng. 2014, 120, 10–17. [Google Scholar] [CrossRef]
- Park, T.; Jeon, M.; Yoon, S.; Lee, K.S.; Kwon, T. Modification of interfacial tension and wettability in oil-brine-quartz system by in situ bacterial biosurfactant production at reservoir conditions: Implications for microbial enhanced oil recovery. Energy Fuels 2019, 33, 4909–4920. [Google Scholar] [CrossRef]
- Soleimani, Y.; Mohammadi, M.; Schaffie, M.; Zabihi, R.; Ranjbar, M. An experimental study of the effects of bacteria on asphaltene adsorption and wettability alteration of dolomite and quartz. Sci. Rep. 2023, 13, 21497. [Google Scholar] [CrossRef]
- Sarafzadeh, P.; Hezave, A.Z.; Ravanbakhsh, M.; Niazi, A.; Ayatollahi, S. Enterobacter cloacae as biosurfactant producing bacterium: Differentiating its effects on interfacial tension and wettability alteration Mechanisms for oil recovery during MEOR process. Colloid Surf. B-Biointerfaces 2013, 105, 223–229. [Google Scholar] [CrossRef]
- Najafi-Marghmaleki, A.; Kord, S.; Hashemi, A.; Motamedi, H. Experimental investigation of efficiency of MEOR process in a carbonate oil reservoir using Alcaligenes faecalis: Impact of interfacial tension reduction and wettability alteration mechanisms. Fuel 2018, 232, 27–35. [Google Scholar] [CrossRef]
- Ng, D.H.P.; Kumar, A.; Cao, B. Microorganisms meet solid minerals: Interactions and biotechnological applications. Appl. Microbiol. Biotechnol. 2016, 100, 6935–6946. [Google Scholar] [CrossRef]
- Li, G.L.; Zhou, C.H.; Fiore, S.; Yu, W.H. Interactions between microorganisms and clay minerals: New insights and broader applications. Appl. Clay Sci. 2019, 177, 91–113. [Google Scholar] [CrossRef]
- Jarwar, M.A.; Dumontet, S.; Pasquale, V.; Chen, C. Microbial induced carbonate precipitation: Environments, applications, and mechanisms. Geomicrobiol. J. 2022, 39, 833–851. [Google Scholar] [CrossRef]
- Fang, Q.; Lu, A.; Hong, H.; Kuzyakov, Y.; Algeo, T.J.J.; Zhao, L.; Olshansky, Y.; Moravec, B.; Barrientes, D.M.M.; Chorover, J. Mineral weathering is linked to microbial priming in the critical zone. Nat. Commun. 2023, 14, 345. [Google Scholar] [CrossRef]
- Kumar, A.; Song, H.; Mishra, S.; Zhang, W.; Zhang, Y.L.; Zhang, Q.; Yu, Z. Application of microbial-induced carbonate precipitation (MICP) techniques to remove heavy metal in the natural environment: A critical review. Chemosphere 2023, 318, 137894. [Google Scholar] [CrossRef]
- Taharia, M.; Dey, D.; Das, K.; Sukul, U.; Chen, J.; Banerjee, P.; Dey, G.; Sharma, R.K.; Lin, P.; Chen, C.Y. Microbial induced carbonate precipitation for remediation of heavy metals, ions and radioactive elements: A comprehensive exploration of prospective applications in water and soil treatment. Ecotoxicol. Environ. Saf. 2024, 271, 115990. [Google Scholar] [CrossRef]
- Hutchins, S.R.; Davidson, M.S.; Brierley, J.A.; Brierley, C.L. Microorganisms in reclamation of metals. Annu. Rev. Microbiol. 1986, 40, 311–336. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, I. Microbial leaching of metals from sulfide minerals. Biotechnol. Adv. 2001, 19, 119–132. [Google Scholar] [CrossRef] [PubMed]
- Falagan, C.; Grail, B.M.; Johnson, D.B. New approaches for extracting and recovering metals from mine tailings. Miner. Eng. 2017, 106, 71–78. [Google Scholar] [CrossRef]
- Beckman, J.W. Action of bacteria on mineral oil. J. Ind. Eng. Chem. 1926, 4, 23–26. [Google Scholar]
- Zobell, C.E. Action of microorganisms on hydrocarbons. Bacteriol. Rev. 1946, 10, 1–49. [Google Scholar] [CrossRef]
- Wu, B.; Xiu, J.; Yu, L.; Huang, L.; Yi, L.; Ma, Y. Research advances of microbial enhanced oil recovery. Heliyon 2022, 8, e11424. [Google Scholar] [CrossRef]
- Lazar, I. Ch. A-1 MEOR Field Trials Carried out over the World During the Last 35 Years. In Developments in Petroleum Science; Donaldson, E.C., Ed.; Elsevier: Amsterdam, The Netherlands, 1991; Volume 31, pp. 485–530. [Google Scholar]
- Gao, C. Experiences of microbial enhanced oil recovery in Chinese oil fields. J. Petrol. Sci. Eng. 2018, 166, 55–62. [Google Scholar] [CrossRef]
- Safdel, M.; Anbaz, M.A.; Daryasafar, A.; Jamialahmadi, M. Microbial enhanced oil recovery, a critical review on worldwide implemented field trials in different countries. Renew. Sust. Energ. Rev. 2017, 74, 159–172. [Google Scholar] [CrossRef]
- Yernazarova, A.; Shaimerdenova, U.; Akimbekov, N.; Kaiyrmanova, G.; Shaken, M.; Izmailova, A. Exploring the use of microbial enhanced oil recovery in Kazakhstan: A review. Front. Microbiol. 2024, 15, 1394838. [Google Scholar] [CrossRef]
- Liu, J.F.; Ma, L.J.; Mu, B.Z.; Liu, R.L.; Ni, F.T.; Zhou, J.X. The field pilot of microbial enhanced oil recovery in a high temperature petroleum reservoir. J. Pet. Sci. Eng. 2005, 48, 265–271. [Google Scholar] [CrossRef]
- She, H.; Kong, D.; Li, Y.; Hu, Z.; Guo, H. Recent advance of microbial enhanced oil recovery (MEOR) in China. Geofluids 2019, 2019, 1871392. [Google Scholar] [CrossRef]
- Niu, J.; Liu, Q.; Lv, J.; Peng, B. Review on microbial enhanced oil recovery: Mechanisms, modeling and field trials. J. Petrol. Sci. Eng. 2020, 192, 107350. [Google Scholar] [CrossRef]
- Hajibagheri, F.; Lashkarbolooki, M.; Ayatollahi, S.; Hashemi, A. The synergic effects of anionic and cationic chemical surfactants, and bacterial solution on wettability alteration of carbonate rock: An experimental investigation. Colloids Surf. A Physicochem. Eng. Asp. 2017, 513, 422–429. [Google Scholar] [CrossRef]
- Zhang, J.; Feng, W.; Xue, Q. Biosurfactant production and oil degradation by Bacillus siamensis and its potential applications in enhanced heavy oil recovery. Int. Biodeterior. Biodegrad. 2022, 169, 105388. [Google Scholar] [CrossRef]
- Qi, Y.; Zheng, C.; Lv, C.; Lun, Z.; Ma, T. Compatibility between weak gel and microorganisms in weak gel-assisted microbial enhanced oil recovery. J. Biosci. Bioeng. 2018, 126, 235–240. [Google Scholar] [CrossRef]
- Rathi, R.; Lavania, M.; Kukreti, V.; Lal, B. Evaluating the potential of indigenous methanogenic consortium for enhanced oil and gas recovery from high temperature depleted oil reservoir. J. Biotechnol. 2018, 283, 43–50. [Google Scholar] [CrossRef]
- Tao, K.; Liu, X.; Chen, X.; Hu, X.; Cao, L.; Yuan, X. Biodegradation of crude oil by a defined co-culture of indigenous bacterial consortium and exogenous Bacillus subtilis. Bioresour. Technol. 2017, 224, 327–332. [Google Scholar] [CrossRef]
- Ashish; Debnath Das, M. Application of biosurfactant produced by an adaptive strain of C-tropicalis MTCC230 in microbial enhanced oil recovery (MEOR) and removal of motor oil from contaminated sand and water. J. Petrol. Sci. Eng. 2018, 170, 40–48. [Google Scholar] [CrossRef]
- Zhao, X.; Liao, Z.; Liu, T.; Cheng, W.; Gao, G.; Yang, M.; Ma, T.; Li, G. Investigation of the transport and metabolic patterns of oil-displacing bacterium FY-07-G in the microcosm model using X-CT technology. J. Appl. Microbiol. 2023, 134, lxad281. [Google Scholar] [CrossRef]
- Lin, X.; Zheng, X.; Liu, R.; Wen, Y.; Huang, M.; Gou, R.; Yan, Y.; Shi, Y.; Tang, J. Extracellular polymeric substances production by ZL-02 for microbial enhanced oil recovery. Ind. Eng. Chem. Res. 2021, 60, 842–850. [Google Scholar] [CrossRef]
- Zhao, F.; Wang, B.H.; Cui, Q.F.; Wu, Y.T. Genetically modified indigenous Pseudomonas aeruginosa drove bacterial community to change positively toward microbial enhanced oil recovery applications. J. Appl. Microbiol. 2024, 135, lxae168. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Zhang, Z.; Luo, Y.; Zhong, W.; Xiao, M.; Yi, W.; Yu, L.; Fu, P. Exopolysaccharide production by a genetically engineered Enterobacter cloacae strain for microbial enhanced oil recovery. Bioresour. Technol. 2011, 102, 6153–6158. [Google Scholar] [CrossRef] [PubMed]
- You, J.; Wu, G.; Ren, F.; Chang, Q.; Yu, B.; Xue, Y.; Mu, B. Microbial community dynamics in Baolige oilfield during MEOR treatment, revealed by Illumina MiSeq sequencing. Appl. Microbiol. Biotechnol. 2016, 100, 1469–1478. [Google Scholar] [CrossRef]
- Zhang, F.; She, Y.H.; Li, H.M.; Zhang, X.T.; Shu, F.C.; Wang, Z.L.; Yu, L.J.; Hou, D.J. Impact of an indigenous microbial enhanced oil recovery field trial on microbial community structure in a high pour-point oil reservoir. Appl. Microbiol. Biotechnol. 2012, 95, 811–821. [Google Scholar] [CrossRef]
- Cheng, W.; Fan, H.; Yun, Y.; Zhao, X.; Su, Z.; Tian, X.; Liu, D.; Ma, T.; Li, G. Effects of nutrient injection on the Xinjiang oil field microbial community studied in a long core flooding simulation device. Front. Microbiol. 2023, 14, 1230274. [Google Scholar] [CrossRef]
- Pang, J.; Wu, T.; Yu, X.; Zhou, C.; Gao, J.; Chen, H. Microbial community distribution in low permeability reservoirs and their positive impact on enhanced oil recovery. Microorganisms 2025, 13, 1230. [Google Scholar] [CrossRef] [PubMed]
- Noorman, H.J.; Heijnen, J.J.; Luyben, K.C.-A.M. Linear relations in microbial reaction systems: A general overview of their origin, form, and use. Biotechnol. Bioeng. 1991, 38, 603–618. [Google Scholar] [CrossRef] [PubMed]
- Golan, O.; Gampp, O.; Eckert, L.; Sauer, U. Overall biomass yield on multiple nutrient sources. NPJ Syst. Biol. Appl. 2025, 11, 17. [Google Scholar] [CrossRef]
- Yuan, Z.; Liao, X.; Zhang, K.; Zhao, X.; Chen, Z. The effect of inorganic salt precipitation on oil recovery during CO2 flooding: A case study of Chang 8 block in Changqing oilfield, NW China. Petrol. Explor. Dev. 2021, 48, 442–449. [Google Scholar] [CrossRef]
- Sharifipour, M.; Nakhaee, A.; Pourafshary, P. Model development of permeability impairment due to clay swelling in porous media using micromodels. J. Petrol. Sci. Eng. 2019, 175, 728–742. [Google Scholar] [CrossRef]
- Phillips, A.J.; Cunningham, A.B.; Gerlach, R.; Hiebert, R.; Hwang, C.C.; Lomans, B.P.; Westrich, J.; Mantilla, C.; Kirksey, J.; Esposito, R.; et al. Fracture sealing with microbially-induced calcium carbonate precipitation: A field study. Environ. Sci. Technol. 2016, 50, 4111–4117. [Google Scholar] [CrossRef] [PubMed]
- Rinanti, A. The potential of indigenous bacteria to increase porosity-permeability of reservoir rock: A preliminary study. Int. J. Geomate. 2017, 12, 71–75. [Google Scholar] [CrossRef]
- Phillips, A.J.; Troyer, E.; Hiebert, R.; Kirkland, C.; Gerlach, R.; Cunningham, A.B.; Spangler, L.; Kirksey, J.; Rowe, W.; Esposito, R. Enhancing wellbore cement integrity with microbially induced calcite precipitation (MICP): A field scale demonstration. J. Petrol. Sci. Eng. 2018, 171, 1141–1148. [Google Scholar] [CrossRef]
- Song, C.P.; Elsworth, D. Microbially induced calcium carbonate plugging for enhanced oil recovery. Geofluids 2020, 2020, 5921789. [Google Scholar] [CrossRef]
- Cui, K.; Wang, C.; Li, L.; Zou, J.; Huang, W.; Zhang, Z.; Wang, H.; Guo, K. Controlling the hydro-swelling of smectite clay minerals by Fe(III) reducing bacteria for enhanced oil recovery from low-permeability reservoirs. Energies 2022, 15, 4393. [Google Scholar] [CrossRef]
- Kelly, D.P.; Wood, A.P. Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov. Int. J. Syst. Evol. Microbiol. 2000, 50, 511–516. [Google Scholar] [CrossRef] [PubMed]
- Aghamohammadi, N.; Schaffie, M.; Ranjbar, M.; Zabihi, R. Investigating the impact of Bacillus subtilis bioproducts on static adsorption of asphaltene on dolomite and calcite. Fuel 2025, 397, 135240. [Google Scholar] [CrossRef]
- Kostka, J.E.; Haefele, E.; Viehweger, R.; Stucki, J.W. Respiration and dissolution of iron(III)-containing clay minerals by bacteria. Environ. Sci. Technol. 1999, 33, 3127–3133. [Google Scholar] [CrossRef]
- Boone, D.R.; Liu, Y.; Zhao, Z.J.; Balkwill, D.L.; Drake, G.R.; Stevens, T.O.; Aldrich, H.C. Bacillus infernus sp. nov., an Fe(III)- and Mn(IV)-reducing anaerobe from the deep terrestrial subsurface. Int. J. Syst. Bacteriol. 1995, 45, 441–448. [Google Scholar] [CrossRef]
- Greene, A.C.; Patel, B.K.; Sheehy, A.J. Deferribacter thermophilus gen. nov., sp. nov., a novel thermophilic manganese- and iron-reducing bacterium isolated from a petroleum reservoir. Int. J. Syst. Bacteriol. 1997, 47, 505–509. [Google Scholar] [CrossRef] [PubMed]
- Greene, A.C.; Patel, B.; Yacob, S. Geoalkalibacter subterraneus sp nov., an anaerobic Fe(III)- and Mn(IV)-reducing bacterium from a petroleum reservoir, and emended descriptions of the family Desulfuromonadaceae and the genus Geoalkalibacter. Int. J. Syst. Evol. Microbiol. 2009, 59, 781–785. [Google Scholar] [CrossRef]
- Kim, J.; Dong, H.L.; Yang, K.; Park, H.; Elliott, W.C.; Spivack, A.; Koo, T.H.; Kim, G.; Morono, Y.; Henkel, S.; et al. Naturally occurring, microbially induced smectite-to-illite reaction. Geology 2019, 47, 535–539. [Google Scholar] [CrossRef]
- Bao, Y.; Guo, C.; Lu, G.; Yi, X.; Wang, H.; Dang, Z. Role of microbial activity in Fe(III) hydroxysulfate mineral transformations in an acid mine drainage-impacted site from the Dabaoshan Mine. Sci. Total Environ. 2018, 616, 647–657. [Google Scholar] [CrossRef]
- Song, C.P.; Elsworth, D.; Zhi, S.; Wang, C.Y. The influence of particle morphology on microbially induced CaCO3 clogging in granular media. Mar. Geores. Geotechnol. 2021, 39, 74–81. [Google Scholar] [CrossRef]
- Song, C.P.; Chen, Y.L.; Wang, J.H. Plugging high-permeability zones of oil reservoirs by microbially mediated calcium carbonate precipitation. ACS Omega 2020, 5, 14376–14383. [Google Scholar] [CrossRef]
- DeJong, J.T.; Mortensen, B.M.; Martinez, B.C.; Nelson, D.C. Bio-mediated soil improvement. Ecol. Eng. 2010, 36, 197–210. [Google Scholar] [CrossRef]
- Rebata-Landa, V.; Santamarina, J.C. Mechanical limits to microbial activity in deep sediments. Geochem. Geophys. Geosyst. 2006, 7, Q11006. [Google Scholar] [CrossRef]
- Zhong, M.; Liu, B.; Chen, J.; Yan, G. Research on plugging characteristics of microorganism induced calcite precipitation in sandstone environment. J. Petrol. Sci. Eng. 2022, 218, 111040. [Google Scholar] [CrossRef]
- Su, F.; Yang, Y.Y. Microbially induced carbonate precipitation via methanogenesis pathway by a microbial consortium enriched from activated anaerobic sludge. J. Appl. Microbiol. 2021, 131, 236–256. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Navarro, C.; Jimenez-Lopez, C.; Rodriguez-Navarro, A.; Gonzalez-Muñoz, M.T.; Rodriguez-Gallego, M. Bacterially mediated mineralization of vaterite. Geochim. Cosmochim. Acta 2007, 71, 1197–1213. [Google Scholar] [CrossRef]
- Vasconcelos, C.; McKenzie, J.A.; Bernasconi, S.; Grujic, D.; Tiens, A.J. Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures. Nature 1995, 377, 220–222. [Google Scholar] [CrossRef]
- Sondi, I.; Juracic, M. Whiting events and the formation of aragonite in Mediterranean Karstic Marine Lakes: New evidence on its biologically induced inorganic origin. Sedimentology 2010, 57, 85–95. [Google Scholar] [CrossRef]
- Nonoyama, T.; Kinoshita, T.; Higuchi, M.; Nagata, K.; Tanaka, M.; Sato, K.; Kato, K. Multistep growth mechanism of calcium phosphate in the earliest stage of morphology-controlled biomineralization. Langmuir 2011, 27, 7077–7083. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.X.; Li, S.Y.; Li, B.F.; Chen, D.Q.; Liu, Z.Y.; Li, Z.M. A review of development methods and EOR technologies for carbonate reservoirs. Petrol. Sci. 2020, 17, 990–1013. [Google Scholar] [CrossRef]
- Capelli, I.A.; Scasso, R.A.; Spangenberg, J.E.; Kietzmann, D.A.; Cravero, F.; Duperron, M.; Adatte, T. Mineralogy and geochemistry of deeply-buried marine sediments of the Vaca Muerta-Quintuco system in the Neuquen Basin (Chacay Melehue section), Argentina: Paleoclimatic and paleoenvironmental implications for the global Tithonian-Valanginian reconstructions. J. S. Am. Earth Sci. 2021, 107, 103103. [Google Scholar]
- Worden, R.H.; Griffiths, J.; Wooldridge, L.J.; Utley, J.; Lawan, A.Y.; Muhammed, D.D.; Simon, N.; Armitage, P.J. Chlorite in sandstones. Earth-Sci. Rev. 2020, 204, 103105. [Google Scholar] [CrossRef]
- Lai, J.; Wang, G.; Ran, Y.; Zhou, Z.; Cui, Y. Impact of diagenesis on the reservoir quality of tight oil sandstones: The case of Upper Triassic Yanchang Formation Chang 7 oil layers in Ordos Basin, China. J. Petrol. Sci. Eng. 2016, 145, 54–65. [Google Scholar] [CrossRef]
- Osman, A.G. Study of some characteristics of silicate bacteria. J. Sci. Technol. 2009, 10, 24–31. [Google Scholar]
- Chiang, Y.W.; Santos, R.M.; Van Audenaerde, A.; Monballiu, A.; Van Gerven, T.; Meesschaert, B. Chemoorganotrophic bioleaching of olivine for nickel recovery. Minerals 2014, 4, 553–564. [Google Scholar] [CrossRef]
- Lv, Y.; Li, J.; Ye, H.; Du, D.; Sun, P.; Ma, M.; Zhang, T.C. Bioleaching of silicon in electrolytic manganese residue (EMR) by Paenibacillus mucilaginosus: Impact of silicate mineral structures. Chemosphere 2020, 256, 127043. [Google Scholar] [CrossRef]
- Lv, Y.; Li, J.; Ye, H.; Du, D.; Gan, C.; Wuri, L.; Sun, P.; Wen, J. Bioleaching of silicon in electrolytic manganese residue using single and mixed silicate bacteria. Bioprocess. Biosyst. Eng. 2019, 42, 1819–1828. [Google Scholar] [CrossRef]
- Shukla, K.; Negi, R.; Kaur, T.; Devi, R.; Kour, D.; Yadav, A.N. First report on rhizospheric silicate mineral weathering bacteria from Indian Himalayas and their roles for plant growth promotion of tomato (Solanum lycopersium L.). Natl. Acad. Sci. Lett.-India. 2023, 46, 435–438. [Google Scholar] [CrossRef]
- Heenan, J.; Porter, A.; Ntarlagiannis, D.; Young, L.Y.; Werkema, D.D.; Slater, L.D. Sensitivity of the spectral induced polarization method to microbial enhanced oil recovery processes. Geophysics 2013, 78, E261–E269. [Google Scholar] [CrossRef]
- Kapse, N.; Dagar, S.S.; Dhakephalkar, P.K. Appropriate characterization of reservoir properties and investigation of their effect on microbial enhanced oil recovery through simulated laboratory studies. Sci. Rep. 2024, 14, 15401. [Google Scholar] [CrossRef]
- Sokolova, D.S.; Babich, T.L.; Semenova, E.M.; Khisametdinov, M.R.; Mardanov, A.V.; Minikh, A.A.; Nazina, T.N. Microbiological characteristics of sapropel and the possibility of its application for enhanced oil recovery from carbonate reservoirs. Microbiology 2024, 93, S15–S20. [Google Scholar] [CrossRef]
- Alkan, H.; Mukherjee, S.; Kögler, F. Reservoir engineering of in-situ MEOR; impact of microbial community. J. Petrol. Sci. Eng. 2020, 195, 107928. [Google Scholar] [CrossRef]
- McMaster, T.J. Atomic Force Microscopy of the fungi-mineral interface: Applications in mineral dissolution, weathering and biogeochemistry. Curr. Opin. Biotechnol. 2012, 23, 562–569. [Google Scholar] [CrossRef]
- Valix, M.; Usai, F.; Malik, R. Fungal bio-leaching of low grade laterite ores. Miner. Eng. 2001, 14, 197–203. [Google Scholar] [CrossRef]
- Brown, D.J.; Helmke, P.A.; Clayton, M.K. Robust geochemical indices for redox and weathering on a granitic laterite landscape in central Uganda. Geochim. Cosmochim. Acta 2003, 67, 2711–2723. [Google Scholar] [CrossRef]
- Shelobolina, E.; Xu, H.F.; Konishi, H.; Kukkadapu, R.; Wu, T.; Blöthe, M.; Roden, E. Microbial lithotrophic oxidation of structural Fe(II) in biotite. Appl. Environ. Microbiol. 2012, 78, 5746–5752. [Google Scholar] [CrossRef]
- Koretsky, C. The significance of surface complexation reactions in hydrologic systems: A geochemist’s perspective. J. Hydrol. 2000, 230, 127–171. [Google Scholar] [CrossRef]
- Lian, B.; Chen, Y.; Zhao, J.; Teng, H.H.; Zhu, L.; Yuan, S. Microbial flocculation by Bacillus mucilaginosus: Applications and mechanisms. Bioresour. Technol. 2008, 99, 4825–4831. [Google Scholar] [CrossRef]
- Bonneville, S.; Morgan, D.J.; Schmalenberger, A.; Bray, A.; Brown, A.; Banwart, S.A.; Benning, L.G. Tree-mycorrhiza symbiosis accelerate mineral weathering: Evidences from nanometer-scale elemental fluxes at the hypha-mineral interface. Geochim. Cosmochim. Acta 2011, 75, 6988–7005. [Google Scholar] [CrossRef]
- Adamo, P.; Violante, P. Weathering of rocks and neogenesis of minerals associated with lichen activity. Appl. Clay Sci. 2000, 16, 229–256. [Google Scholar] [CrossRef]
- Lian, B.; Wang, B.; Pan, M.; Liu, C.; Teng, H.H. Microbial release of potassium from K-bearing minerals by thermophilic fungus Aspergillus fumigatus. Geochim. Cosmochim. Acta 2008, 72, 87–98. [Google Scholar] [CrossRef]
- Liu, W.X.; Xu, X.S.; Wu, X.H.; Yang, Q.Y.; Luo, Y.M.; Christie, P. Decomposition of silicate minerals by Bacillus mucilaginosus in liquid culture. Environ. Geochem. Health 2006, 28, 133–140. [Google Scholar] [CrossRef]
- Newman, D.K. Microbiology-How bacteria respire minerals. Science 2001, 292, 1312–1313. [Google Scholar] [CrossRef]
- Uroz, S.; Calvaruso, C.; Turpault, M.P.; Frey-Klett, P. Mineral weathering by bacteria: Ecology, actors and mechanisms. Trends Microbiol. 2009, 17, 378–387. [Google Scholar] [CrossRef]
- Newman, D.K.; Kolter, R. A role for excreted quinones in extracellular electron transfer. Nature 2000, 405, 94–97. [Google Scholar] [CrossRef]
- Hernandez, M.E.; Kappler, A.; Newman, D.K. Phenazines and other redox-active antibiotics promote microbial mineral reduction. Appl. Environ. Microbiol. 2004, 70, 921–928. [Google Scholar] [CrossRef]
- Amott, E. Observations relating to the wettability of porous rock. Trans. AIME 1959, 216, 156–162. [Google Scholar] [CrossRef]
- Esfandyari, H.; Hoseini, A.H.; Shadizadeh, S.R.; Davarpanah, A. Simultaneous evaluation of capillary pressure and wettability alteration based on the USBM and imbibition tests on carbonate minerals. J. Petrol. Sci. Eng. 2021, 200, 108285. [Google Scholar] [CrossRef]
- Davarpanah, A.; Mirshekari, B. Numerical simulation and laboratory evaluation of alkali-surfactant-polymer and foam flooding. Int. J. Environ. Sci. Technol. 2020, 17, 1123–1136. [Google Scholar] [CrossRef]
- Jadhunandan, P.P.; Morrow, N.R. Effect of wettability on waterflood recovery for crude-oil/brine/rock systems. SPE Reserv. Eng. 1995, 10, 40–46. [Google Scholar] [CrossRef]
- Pan, F.; Zhang, Z.; Zhang, X.; Davarpanah, A. Impact of anionic and cationic surfactants interfacial tension on the oil recovery enhancement. Powder Technol. 2020, 373, 93–98. [Google Scholar] [CrossRef]
- Fenibo, E.O.; Ijoma, G.N.; Selvarajan, R.; Chikere, C.B. Microbial surfactants: The next generation multifunctional biomolecules for applications in the petroleum industry and its associated environmental remediation. Microorganisms 2019, 7, 581. [Google Scholar] [CrossRef] [PubMed]
- Bachmann, R.T.; Johnson, A.C.; Edyvean, R. Biotechnology in the petroleum industry: An overview. Int. Biodeterior. Biodegrad. 2014, 86, 225–237. [Google Scholar] [CrossRef]
- Nikolova, C.; Gutierrez, T. Biosurfactants and their applications in the oil and gas industry: Current state of knowledge and future perspectives. Front. Bioeng. Biotechnol. 2021, 9, 626639. [Google Scholar] [CrossRef] [PubMed]
- Karimi, M.; Mahmoodi, M.; Niazi, A.; Al-Wahaibi, Y.; Ayatollahi, S. Investigating wettability alteration during MEOR process, a micro/macro scale analysis. Colloid Surf. B-Biointerfaces 2012, 95, 129–136. [Google Scholar] [CrossRef]
- Seewald, J.S. Aqueous geochemistry of low molecular weight hydrocarbons at elevated temperatures and pressures: Constraints from mineral buffered laboratory experiments. Geochim. Cosmochim. Acta 2001, 65, 1641–1664. [Google Scholar] [CrossRef]
- van Berk, W.; Schulz, H.M.; Fu, Y.J. Controls on CO2 fate and behavior in the Gullfaks oil field (Norway): How hydrogeochemical modeling can help decipher organic-inorganic interactions. AAPG Bull 2013, 97, 2233–2255. [Google Scholar] [CrossRef]
- Chen, X.; Han, T.; Miao, X.; Zhang, X.; Zhao, L.; Sun, Y.; Ye, H.; Li, X.; Li, Y. Ferrihydrite enhanced the electrogenic hydrocarbon degradation in soil microbial electrochemical remediation. Chem. Eng. J. 2022, 446, 136901. [Google Scholar] [CrossRef]
- Li, L.; Wan, Y.Y.; Mu, H.M.; Shi, S.B.; Chen, J.F. Interaction between illite and a Pseudomonas stutzeri-heavy oil biodegradation complex. Microorganisms 2023, 11, 330. [Google Scholar] [CrossRef]
- Biswas, B.; Sarkar, B.; Faustorilla, M.V.; Naidu, R. Effect of surface-tailored biocompatible organoclay on the bioavailability and mineralization of polycyclic aromatic hydrocarbons in long-term contaminated soil. Environ. Technol. Innov. 2018, 10, 152–161. [Google Scholar] [CrossRef]
- Warr, L.N.; Schlüter, M.; Schauer, F.; Olson, G.M.; Basirico, L.M.; Portier, R.J. Nontronite-enhanced biodegradation of Deepwater Horizon crude oil by Alcanivorax borkumensis. Appl. Clay Sci. 2018, 158, 11–20. [Google Scholar] [CrossRef]
- Weise, A.M.; Lee, K. The effect of clay-oil flocculation on natural oil degradation. Int. Oil Spill Conf. Proc. 1997, 1997, 955–956. [Google Scholar] [CrossRef]
- Chaerun, S.K.; Tazaki, K. How kaolinite plays an essential role in remediating oil-polluted seawater. Clay Miner. 2005, 40, 481–491. [Google Scholar] [CrossRef]
- Chaerun, S.K.; Tazaki, K.; Asada, R.; Kogure, K. Interaction between clay minerals and hydrocarbon-utilizing indigenous microorganisms in high concentrations of heavy oil: Implications for bioremediation. Clay Miner. 2005, 40, 105–114. [Google Scholar] [CrossRef]
- Warr, L.N.; Perdrial, J.N.; Lett, M.; Heinrich-Salmeron, A.; Khodja, M. Clay mineral-enhanced bioremediation of marine oil pollution. Appl. Clay Sci. 2009, 46, 337–345. [Google Scholar] [CrossRef]
- Froehner, S.; Luz, E.; Maceno, M. Enhanced biodegradation of naphthalene and anthracene by modified vermiculite mixed with soil. Water Air Soil Pollut. 2009, 202, 169–177. [Google Scholar] [CrossRef]
- Ugochukwu, U.C.; Head, I.M.; Manning, D.A.C. Effect of modified montmorillonites on the biodegradation and adsorption of biomarkers such as hopanes, steranes and diasteranes. Environ. Sci. Pollut. Res. 2013, 20, 8881–8889. [Google Scholar] [CrossRef]
- Ugochukwu, U.C.; Jones, M.D.; Head, I.M.; Manning, D.A.C.; Fialips, C.I. Biodegradation of crude oil saturated fraction supported on clays. Biodegradation 2014, 25, 153–165. [Google Scholar] [CrossRef]
- Ugochukwu, U.C.; Manning, D.A.C.; Fialips, C.I. Microbial degradation of crude oil hydrocarbons on organoclay minerals. J. Environ. Manag. 2014, 144, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Ugochukwu, U.C.; Jones, M.D.; Head, I.M.; Manning, D.A.C.; Fialips, C.I. Effect of acid activated clay minerals on biodegradation of crude oil hydrocarbons. Int. Biodeterior. Biodegrad. 2014, 88, 185–191. [Google Scholar] [CrossRef]
- Ugochukwu, U.C.; Jones, M.D.; Head, I.M.; Manning, D.A.C.; Fialips, C.I. Biodegradation and adsorption of crude oil hydrocarbons supported on homoionic montmorillonite clay minerals. Appl. Clay Sci. 2014, 87, 81–86. [Google Scholar] [CrossRef]
- Ugochukwu, U.C.; Head, I.M.; Manning, D.A.C. Biodegradation and adsorption of C1- and C2-phenanthrenes and C1- and C2-dibenzothiophenes in the presence of clay minerals: Effect on forensic diagnostic ratios. Biodegradation 2014, 25, 515–527. [Google Scholar] [CrossRef] [PubMed]
- Warr, L.N.; Friese, A.; Schwarz, F.; Schauer, F.; Portier, R.J.; Basirico, L.M.; Olson, G.M. Experimental study of clay-hydrocarbon interactions relevant to the biodegradation of the Deepwater Horizon oil from the Gulf of Mexico. Chemosphere 2016, 162, 208–221. [Google Scholar] [CrossRef]
- Biswas, B.; Sarkar, B.; Naidu, R. Bacterial mineralization of phenanthrene on thermally activated palygorskite: A 14C radiotracer study. Sci. Total Environ. 2017, 579, 709–717. [Google Scholar] [CrossRef]
- Biswas, B.; Sarkar, B.; Rusmin, R.; Naidu, R. Mild acid and alkali treated clay minerals enhance bioremediation of polycyclic aromatic hydrocarbons in long-term contaminated soil: A 14C-tracer study. Environ. Pollut. 2017, 223, 255–265. [Google Scholar] [CrossRef]
- Ugochukwu, U.C.; Fialips, C.I. Removal of crude oil polycyclic aromatic hydrocarbons via organoclay-microbe-oil interactions. Chemosphere 2017, 174, 28–38. [Google Scholar] [CrossRef]
- Ugochukwu, U.C.; Fialips, C.I. Crude oil polycyclic aromatic hydrocarbons removal via clay-microbe-oil interactions: Effect of acid activated clay minerals. Chemosphere 2017, 178, 65–72. [Google Scholar] [CrossRef]
- Gong, B.; Wu, P.; Ruan, B.; Zhang, Y.; Lai, X.; Yu, L.; Li, Y.; Dang, Z. Differential regulation of phenanthrene biodegradation process by kaolinite and quartz and the underlying mechanism. J. Hazard. Mater. 2018, 349, 51–59. [Google Scholar] [CrossRef]
- Biswas, B.; Sarkar, B.; Mandal, A.; Naidu, R. Heavy metal-immobilizing organoclay facilitates polycyclic aromatic hydrocarbon biodegradation in mixed-contaminated soil. J. Hazard. Mater. 2015, 298, 129–137. [Google Scholar] [CrossRef]
- Tolpeshta, I.I.; Erkenova, M.I. Effect of palygorskite clay, fertilizers, and lime on the degradation of oil products in oligotrophic peat soil under laboratory experimental conditions. Eurasian Soil Sci. 2018, 51, 229–240. [Google Scholar] [CrossRef]
- Wang, J.; Bai, J.; Xu, J.; Liang, B. Bioleaching of metals from printed wire boards by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans and their mixture. J. Hazard. Mater. 2009, 172, 1100–1105. [Google Scholar] [CrossRef] [PubMed]
- Qiu, M.Q.; Xiong, S.Y.; Zhang, W.M.; Wang, G.X. A comparison of bioleaching of chalcopyrite using pure culture or a mixed culture. Miner. Eng. 2005, 18, 987–990. [Google Scholar] [CrossRef]
- Kalinowski, B.E.; Liermann, L.J.; Brantley, S.L.; Barnes, A.; Pantano, C.G. X-ray photoelectron evidence for bacteria-enhanced dissolution of hornblende. Geochim. Cosmochim. Acta 2000, 64, 1331–1343. [Google Scholar] [CrossRef]
- Sanket, A.S.; Ghosh, S.; Sahoo, R.; Nayak, S.; Das, A.P. Molecular identification of acidophilic manganese (Mn)-solubilizing bacteria from mining effluents and their application in mineral beneficiation. Geomicrobiol. J. 2017, 34, 71–80. [Google Scholar] [CrossRef]
- Byloos, B.; Coninx, I.; Van Hoey, O.; Cockell, C.; Nicholson, N.; Ilyin, V.; Van Houdt, R.; Boon, N.; Leys, N. The impact of space flight on survival and interaction of Cupriavidus metallidurans CH34 with basalt, a volcanic moon analog rock. Front. Microbiol. 2017, 8, 671. [Google Scholar] [CrossRef]
- Wyatt, M.A.; Johnston, C.W.; Magarvey, N.A. Gold nanoparticle formation via microbial metallophore chemistries. J. Nanopart. Res. 2014, 16, 2212. [Google Scholar] [CrossRef]
- Edwards, K.J.; Hu, B.; Hamers, R.J.; Banfield, J.F. A new look at microbial leaching patterns on sulfide minerals. FEMS Microbiol. Ecol. 2001, 34, 197–206. [Google Scholar] [CrossRef]
- Chan, C.S.; Fakra, S.C.; Emerson, D.; Fleming, E.J.; Edwards, K.J. Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: Implications for biosignature formation. ISME J. 2011, 5, 717–727. [Google Scholar] [CrossRef]
- Dou, X.; Su, H.; Xu, D.; Liu, C.; Meng, H.; Li, H.; Zhang, J.; Dang, Y.; Feng, L.; Zhang, L.; et al. Enhancement effects of dissolved organic matter leached from sewage sludge on microbial reduction and immobilization of Cr(VI) by Geobacter sulfurreducens. Sci. Total Environ. 2022, 835, 155301. [Google Scholar] [CrossRef]
- Zhang, Y.S.; Qin, W.Q.; Wang, J.; Zhen, S.J.; Yang, C.R.; Zhang, J.W.; Nai, S.S.; Qiu, G.Z. Bioleaching of chalcopyrite by pure and mixed culture. Trans. Nonferrous Met. Soc. China 2008, 18, 1491–1496. [Google Scholar] [CrossRef]
- Ali, D.; Koner, S.; Hussain, A.; Hsu, B.M. Molecular mechanisms and biomineralization processes of ferromanganese nodule formation: Insights its effect on nutrient imbalance and heavy metal immobilization in native soil profiles. Earth-Sci. Rev. 2025, 261, 105029. [Google Scholar] [CrossRef]
- Bennett, S.A.; Toner, B.M.; Barco, R.; Edwards, K.J. Carbon adsorption onto Fe oxyhydroxide stalks produced by a lithotrophic iron-oxidizing bacteria. Geobiology 2014, 12, 146–156. [Google Scholar] [CrossRef]
- Orange, F.; Disnar, J.R.; Westall, F.; Prieur, D.; Baillif, P. Metal cation binding by the hyperthermophilic microorganism, Archaea Methanocaldococcus jannaschii, and its effects on silicification. Palaeontology 2011, 54, 953–964. [Google Scholar] [CrossRef]
- Lebedeva, E.V.; Lialikova, N.N.; Bugel’skii, I.I. Participation of nitrifying bacteria in weathering of serpentinized ultrabasites. Mikrobiologiya 1978, 47, 1101–1107. [Google Scholar]
- Edberg, F.; Kalinowski, B.E.; Holmström, S.; Holm, K. Mobilization of metals from uranium mine waste: The role of pyoverdines produced by Pseudomonas fluorescens. Geobiology 2010, 8, 278–292. [Google Scholar] [CrossRef]
- Saleh, D.K.; Abdollahi, H.; Noaparast, M.; Nosratabad, A.F.; Tuovinen, O.H. Dissolution of Al from metakaolin with carboxylic acids produced by Aspergillus niger, Penicillium bilaji, Pseudomonas putida, and Pseudomonas koreensis. Hydrometallurgy 2019, 186, 235–243. [Google Scholar] [CrossRef]
- Etemadifar, Z.; Etemadzadeh, S.S.; Emtiazi, G. A novel approach for bioleaching of sulfur, iron, and silica impurities from coal by growing and resting cells of Rhodococcus spp. Geomicrobiol. J. 2019, 36, 123–129. [Google Scholar] [CrossRef]
- Wu, W.F.; Wang, F.P.; Li, J.H.; Yang, X.W.; Xiao, X.; Pan, Y.X. Iron reduction and mineralization of deep-sea iron reducing bacterium Shewanella piezotolerans WP3 at elevated hydrostatic pressures. Geobiology 2013, 11, 593–601. [Google Scholar] [CrossRef]
- Pei, D.; Liu, Z.M.; Hu, B.R.; Wu, W.J. Progress on mineralization mechanism and application research of Sporosarcina pasteurii. Prog. Biochem. Biophys. 2020, 47, 467–482. [Google Scholar]
- Liang, Y.; Zhu, S.; Wang, J.; Ai, C.; Qin, W. Adsorption and leaching of chalcopyrite by Sulfolobus metallicus YN24 cultured in the distinct energy sources. Int. J. Miner. Metall. Mater. 2015, 22, 549–552. [Google Scholar] [CrossRef]
- Wang, J.; Qiu, G.Z.; Qin, W.Q.; Zhang, Y.S. Microbial leaching of mannatite by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. Trans. Nonferrous Met. Soc. China 2006, 16, 937–942. [Google Scholar] [CrossRef]
- Kim, S.; Bae, J.; Park, H.; Cha, D. Bioleaching of cadmium and nickel from synthetic sediments by Acidithiobacillus ferrooxidans. Environ. Geochem. Health 2005, 27, 229–235. [Google Scholar] [CrossRef]
- Bredberg, K.; Karlsson, H.T.; Holst, O. Reduction of vanadium(V) with Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. Bioresour. Technol. 2004, 92, 93–96. [Google Scholar] [CrossRef]
- Abhilash; Pandey, B.D. Microbial processing of apatite rich low grade Indian uranium ore in bioreactor. Bioresour. Technol. 2013, 128, 619–623. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, Q.; Gu, W.; Bai, J. Ultrasound enhances the recycling process and mechanism of lithium from spent LiFePO4 batteries by Acidithiobacillus ferrooxidans. Sci. Rep. 2025, 15, 24490. [Google Scholar] [CrossRef] [PubMed]
- Bhatti, T.M.; Yawar, W. Bacterial solubilization of phosphorus from phosphate rock containing sulfur-mud. Hydrometallurgy 2010, 103, 54–59. [Google Scholar] [CrossRef]
- Bhaskar, S.; Manu, B.; Sreenivasa, M.Y. Bioleaching of iron from fly ash using a novel isolated Acidithiobacillus ferrooxidans strain and evaluation of catalytic role of leached iron in the Fenton’s oxidation of Cephelaxin. J. Indian Chem. Soc. 2020, 97, 360–367. [Google Scholar]
- Marrero, J.; Coto, O.; Goldmann, S.; Graupner, T.; Schippers, A. Recovery of nickel and cobalt from laterite tailings by reductive dissolution under aerobic conditions using Acidithiobacillus species. Environ. Sci. Technol. 2015, 49, 6674–6682. [Google Scholar] [CrossRef]
- Vyas, S.; Ting, Y.P. Sequential biological process for molybdenum extraction from hydrodesulphurization spent catalyst. Chemosphere 2016, 160, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Whitworth, A.J.; Vaughan, J.; Southam, G.; Van der Ent, A.; Nkrumah, P.N.; Ma, X.D.; Parbhakar-Fox, A. Review on metal extraction technologies suitable for critical metal recovery from mining and processing wastes. Miner. Eng. 2022, 182, 107537. [Google Scholar] [CrossRef]
- Wang, H.; Wu, A.; Xiong, Y.; Hu, K.; Huang, M. Effect of bioleaching on alkaline copper oxide ores with ammonia producing strain. J. Pure Appl. Microbiol. 2013, 7, 255–261. [Google Scholar]
- Kaplan, D.L.; Kaplan, A.M. 2,4,6-Trinitrotoluene-surfactant complexes: Decomposition, mutagenicity and soil leaching studies. Environ. Sci. Technol. 1982, 16, 566–571. [Google Scholar] [CrossRef]
- Lan, Z.; Hu, Y.; Qin, W. Effect of surfactant OPD on the bioleaching of marmatite. Miner. Eng. 2009, 22, 10–13. [Google Scholar] [CrossRef]
- Abdollahi, H.; Noaparast, M.; Shafaei, S.Z.; Manafi, Z.; Muñoz, J.A.; Tuovinen, O.H. Silver-catalyzed bioleaching of copper, molybdenum from a chalcopyrite-molybdenite concentrate. Int. Biodeterior. Biodegrad. 2015, 104, 194–200. [Google Scholar] [CrossRef]
- Pathak, A.; Morrison, L.; Healy, M.G. Catalytic potential of selected metal ions for bioleaching, and potential techno-economic and environmental issues: A critical review. Bioresour. Technol. 2017, 229, 211–221. [Google Scholar] [CrossRef]


Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Zhang, C.; Su, P. Mineral-Targeted Microbial Enhanced Oil Recovery. Microorganisms 2025, 13, 2706. https://doi.org/10.3390/microorganisms13122706
Li L, Zhang C, Su P. Mineral-Targeted Microbial Enhanced Oil Recovery. Microorganisms. 2025; 13(12):2706. https://doi.org/10.3390/microorganisms13122706
Chicago/Turabian StyleLi, Lei, Chunhui Zhang, and Peidong Su. 2025. "Mineral-Targeted Microbial Enhanced Oil Recovery" Microorganisms 13, no. 12: 2706. https://doi.org/10.3390/microorganisms13122706
APA StyleLi, L., Zhang, C., & Su, P. (2025). Mineral-Targeted Microbial Enhanced Oil Recovery. Microorganisms, 13(12), 2706. https://doi.org/10.3390/microorganisms13122706

