Modification and Validation of a Reference Real-Time RT-PCR Method for the Detection of a New African Horse Sickness Virus Variant
Abstract
1. Introduction
2. Materials and Methods
2.1. Nucleic Acid Extraction
2.2. Primer and Probe Design
2.3. Design of the Synthetic AHSV RNAs
2.4. Serogroup-Specific rRT-PCR
2.5. Viral Strains and Clinical Samples
2.6. rRT-PCR Validation Parameters Evaluated
2.7. Statistical Analysis
3. Results
3.1. In Silico Analysis of the Novel South African AHSV Strain Sequence
3.2. Validation of the Modified-Agüero rRT-PCR
3.3. Comparative Assessment to Detect the New AHSV Variant from the RSA
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| A | Adenine |
| AHS | African horse sickness |
| AHSV | African horse sickness virus |
| AHSV-1 | African horse sickness virus serotype 1 |
| AHSV-4 | African horse sickness virus serotype 4 |
| AHSV-sRNA-C+ | RNA mimicking the target sequence of the reference AHSV strain |
| AHSV-sRNA-RSA | Synthetic RNA mimicking the target sequence of the new RSA AHSV variant |
| ANOVA | Analysis of variance |
| ARC-OVI | Agricultural Research Council—Onderstepoort Veterinary Institute |
| ATCC | American Type Culture Collection |
| BHK-21 | Baby hamster kidney fibroblast cell line |
| BTV | Bluetongue virus |
| C | Cytosine |
| Ct | Cycle threshold |
| DNA | Deoxyribonucleic acid |
| EDTA | Ethylenediaminetetraacetic acid |
| EEV | Equine encephalosis virus |
| EHDV | Epizootic haemorrhagic disease virus |
| EU | European Union |
| EU-NRL | European Union National Reference Laboratory |
| EURL | European Union Reference Laboratory |
| G | Guanine |
| KC | Culicoides sonorensis cell line |
| LCV | Laboratorio Central de Veterinaria |
| LSD | Least significant difference |
| Mol/µl | Molecules per microlitre |
| R | Replicate |
| RNA | Ribonucleic acid |
| rRT-PCR | Real-time reverse transcriptase polymerase chain reaction |
| RSA | Republic of South Africa |
| T | Thymine |
| TCID50 | Tissue culture infectious dose 50% |
| UK | United Kingdom |
| USD | United States dollars |
| WOAH | World Organisation for Animal Health |
References
- Zientara, S.; Weyer, C.T.; Lecollinet, S. African horse sickness. Rev. Sci. Tech. 2015, 34, 315–327. [Google Scholar] [CrossRef] [PubMed]
- Assefa, A.; Tibebu, A.; Bihon, A.; Dagnachew, A.; Muktar, Y. Ecological niche modeling predicting the potential distribution of African horse sickness virus from 2020 to 2060. Sci. Rep. 2022, 12, 1748. [Google Scholar] [CrossRef] [PubMed]
- Mellor, P.S.; Hamblin, C. African horse sickness. Vet. Res. 2004, 35, 445–466. [Google Scholar] [CrossRef] [PubMed]
- Coetzer, J.A.W.; Tustin, R.C. Infectious Diseases of Livestock; Oxford University Press: Oxford, UK, 2004; Available online: https://books.google.es/books?id=bVByQgAACAAJ (accessed on 13 March 2025).
- King, S.; Rajko-Nenow, P.; Ashby, M.; Frost, L.; Carpenter, S.; Batten, C. Outbreak of African horse sickness in Thailand, 2020. Transbound. Emerg. Dis. 2020, 67, 1764–1767. [Google Scholar] [CrossRef]
- Lu, G.; Pan, J.; Ou, J.; Shao, R.; Hu, X.; Wang, C.; Li, S. African horse sickness: Its emergence in Thailand and potential threat to other Asian countries. In Transboundary and Emerging Diseases; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2020; pp. 1751–1753. [Google Scholar] [CrossRef]
- World Organisation for Animal Health. The Official #2020-2. May 2020. Available online: https://bulletin.woah.org/?officiel=11-1-1-2020-2_mys-ahs-suspension (accessed on 13 March 2025).
- L84.31.3.2016; Regulation (UE) 2016/429 of the European Parliament and of the Council of 9 March 2016 on Transmissible Animal Diseases and Amending and Repealing Certain Acts in the Area of Animal Health (“Animal Health Law”). Official Journal of the European Union; European Union: Europe, 1 November 2016; pp. 1–208. Available online: http://data.europa.eu/eli/reg/2016/429/oj (accessed on 21 January 2024).
- World Organisation for Animal Health. WOAH Animal Diseases. 2025. Available online: https://www.woah.org/en/what-we-do/animal-health-and-welfare/animal-diseases/ (accessed on 13 March 2025).
- Redmond, E.F.; Jones, D.; Rushton, J. Economic assessment of African horse sickness vaccine impact. Equine Vet. J. 2022, 54, 368–378. [Google Scholar] [CrossRef]
- Mellor, P.S. African horse sickness: Transmission and epidemiology. Vet. Res. 1993, 24, 199–212. [Google Scholar]
- Dennis, S.J.; Meyers, A.E.; Hitzeroth, I.I.; Rybicki, E.P. African Horse Sickness: A Review of Current Understanding and Vaccine Development. Viruses 2019, 11, 844. [Google Scholar] [CrossRef]
- Castillo-Olivares, J. African horse sickness in Thailand: Challenges of controlling an outbreak by vaccination. Equine Vet. J. 2021, 53, 9–14. [Google Scholar] [CrossRef]
- World Organisation for Animal Health. WHOA Official Disease Status. June 2024. Available online: https://www.woah.org/en/what-we-do/animal-health-and-welfare/official-disease-status/ (accessed on 13 March 2025).
- Agüero, M.; Gómez-Tejedor, C.; Cubillo, M.Á.; Rubio, C.; Romero, E.; Angel Jiménez-Clavero, M. Real-time fluorogenic reverse transcription polymerase chain reaction assay for detection of African horse sickness virus. J. Vet. Diagn. Investig. 2008, 20, 325–328. [Google Scholar] [CrossRef]
- Fernández-Pinero, J.; Fernández-Pacheco, P.; Rodríguez, B.; Sotelo, E.; Robles, A.; Arias, M.; Sánchez-Vizcaíno, J.M. Rapid and sensitive detection of African horse sickness virus by real-time PCR. Res. Vet. Sci. 2009, 86, 353–358. [Google Scholar] [CrossRef]
- Rodriguez-Sanchez, B.; Fernandez-Pinero, J.; Sailleau, C.; Zientara, S.; Belak, S.; Arias, M.; Sanchez-Vizcaino, J.M. Novel gel-based and real-time PCR assays for the improved detection of African horse sickness virus. J. Virol. Methods 2008, 151, 87–94. [Google Scholar] [CrossRef]
- Monaco, F.; Polci, A.; Lelli, R.; Pinoni, C.; Di Mattia, T.; Mbulu, R.S.; Scacchia, M.; Savini, G. A new duplex real-time RT-PCR assay for sensitive and specific detection of African horse sickness virus. Mol. Cell. Probes 2011, 25, 87–93. [Google Scholar] [CrossRef]
- Guthrie, A.J.; MacLachlan, N.J.; Joone, C.; Lourens, C.W.; Weyer, C.T.; Quan, M.; Monyai, M.S.; Gardner, I.A. Diagnostic accuracy of a duplex real-time reverse transcription quantitative PCR assay for detection of African horse sickness virus. J. Virol. Methods 2013, 189, 30–35. [Google Scholar] [CrossRef]
- Bachanek-Bankowska, K.; Maan, S.; Castillo-Olivares, J.; Manning, N.M.; Maan, N.S.; Potgieter, A.C.; Di Nardo, A.; Sutton, G.; Batten, C.; Mertens, P.P.C. Real Time RT-PCR Assays for Detection and Typing of African Horse Sickness Virus. PLoS ONE 2014, 9, e93758, Erratum in PLoS ONE 2014, 9, e104665. https://doi.org/10.1371/journal.pone.0104665. [Google Scholar] [CrossRef] [PubMed]
- Koekemoer, J.J.O. Serotype-specific detection of African horsesickness virus by real-time PCR and the influence of genetic variations. J. Virol. Methods 2008, 154, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Weyer, C.T.; Joone, C.; Lourens, C.W.; Monyai, M.S.; Koekemoer, O.; Grewar, J.D.; van Schalkwyk, A.; Majiwa, P.O.A.; MacLachlan, N.J.; Guthrie, A.J. Development of three triplex real-time reverse transcription PCR assays for the qualitative molecular typing of the nine serotypes of African horse sickness virus. J. Virol. Methods 2015, 223, 69–74. [Google Scholar] [CrossRef]
- Villalba, R.; Tena-Tomás, C.; Ruano, M.J.; Valero-Lorenzo, M.; López-Herranz, A.; Cano-Gómez, C.; Agüero, M. Development and Validation of Three Triplex Real-Time RT-PCR Assays for Typing African Horse Sickness Virus: Utility for Disease Control and Other Laboratory Applications. Viruses 2024, 16, 470. [Google Scholar] [CrossRef]
- Quan, M.; Lourens, C.W.; MacLachlan, N.J.; Gardner, I.A.; Guthrie, A.J. Development and optimisation of a duplex real-time reverse transcription quantitative PCR assay targeting the VP7 and NS2 genes of African horse sickness virus. J. Virol. Methods 2010, 167, 45–52. [Google Scholar] [CrossRef]
- World Organisation for Animal Health. Infection with African Horse Sickness Virus. In Terrestrial Animal Health Code; Chapter 12.1; World Organisation for Animal Health: Paris, France, 2025; Available online: https://www.woah.org/en/what-we-do/standards/codes-and-manuals/terrestrial-code-online-access/?id=169&L=1&htmfile=chapitre_ahs.htm (accessed on 13 March 2025).
- Bremer, C.W.; Viljoen, G.J. Detection of African horsesickness virus and discrimination between two equine orbivirus serogroups by reverse transcription polymerase chain reaction. Onderstepoort J. Vet. Res. 1998, 65, 1–8. [Google Scholar]
- van Schalkwyk, A.; Ferreira, M.L.; Romito, M. Using a new serotype-specific Polymerase Chain Reaction (PCR) and sequencing to differentiate between field and vaccine-derived African Horse Sickness viruses submitted in 2016/2017. J. Virol. Methods 2019, 266, 89–94. [Google Scholar] [CrossRef]
- Larkin, M.A.; Blackshields, G.; Brown, N.P.; Chenna, R.; McGettigan, P.A.; McWilliam, H.; Valentin, F.; Wallace, I.M.; Wilm, A.; Lopez, R.; et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23, 2947–2948. [Google Scholar] [CrossRef]
- Durán-Ferrer, M.; Villalba, R.; Fernández-Pacheco, P.; Tena-Tomás, C.; Jiménez-Clavero, M.-Á.; Bouzada, J.-A.; Ruano, M.-J.; Fernández-Pinero, J.; Arias, M.; Castillo-Olivares, J.; et al. Clinical, Virological and Immunological Responses after Experimental Infection with African Horse Sickness Virus Serotype 9 in Immunologically Naïve and Vaccinated Horses. Viruses 2022, 14, 1545. [Google Scholar] [CrossRef]
- Wechsler, S.J.; McHolland, L.E. Susceptibilities of 14 cell lines to bluetongue virus infection. J. Clin. Microbiol. 1988, 26, 2324–2327. [Google Scholar] [CrossRef] [PubMed]
- Lumivero (Addinsoft). XLSTAT: Statistical Software for Excel (Version 2025.1.3). 2025. Available online: https://www.xlstat.com (accessed on 13 March 2025).
- Campos, M.J.; Quesada, A. Strategies to Improve Efficiency and Specificity of Degenerate Primers in PCR. In PCR: Methods in Molecular Biology; Domingues, L., Ed.; Springer: New York, NY, USA, 2017; Volume 1620, pp. 75–85. [Google Scholar] [CrossRef]
- Jiang, L.; Schlesinger, F.; Davis, C.A.; Zhang, Y.; Li, R.; Salit, M.; Gingeras, T.R.; Oliver, B. Synthetic spike-in standards for RNA-seq experiments. Genome Res. 2011, 21, 1543–1551. [Google Scholar] [CrossRef] [PubMed]
- Süss, B.; Flekna, G.; Wagner, M.; Hein, I. Studying the effect of single mismatches in primer and probe binding regions on amplification curves and quantification in real-time PCR. J. Microbiol. Methods 2009, 76, 316–319. [Google Scholar] [CrossRef] [PubMed]
- Holland, P.M.; Abramson, R.D.; Watson, R.; Gelfand, D.H. Detection of specific polymerase chain reaction product by utilizing the 5′–3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc. Natl. Acad. Sci. USA 1991, 88, 7276–7280. [Google Scholar] [CrossRef]
- Kubista, M.; Andrade, J.M.; Bengtsson, M.; Forootan, A.; Jonák, J.; Lind, K.; Sindelka, R.; Sjöback, R.; Sjögreen, B.; Strömbom, L.; et al. The real-time polymerase chain reaction. Mol. Asp. Med. 2006, 27, 95–125. [Google Scholar] [CrossRef]
- Mertens Peter, P.C.M.; Attoui, H. ReoID. Phylogenetic Sequence Analysis and Improved Diagnostic Assay Systems for Viruses of the Family Reoviridae. Available online: https://www.reoviridae.org/dsRNA_virus_proteins/ReoID/AHSV-isolates.htm#SEN1998/01 (accessed on 21 January 2024).
- Aklilu, N.; Batten, C.; Gelaye, E.; Jenberie, S.; Ayelet, G.; Wilson, A.; Belay, A.; Asfaw, Y.; Oura, C.; Maan, S.; et al. African horse sickness outbreaks caused by multiple virus types in Ethiopia. Transbound. Emerg. Dis. 2014, 61, 185–192. [Google Scholar] [CrossRef]
- Roy, P.; Mertens, P.P.; Casal, I. African horse sickness virus structure. Comp. Immunol. Microbiol. Infect. Dis. 1994, 17, 243–273. [Google Scholar] [CrossRef]

| Pattern | Number of Sequences | GenBank Accession Number (AN) | Description of Mismatches with the Agüero 2008 Primers and Probe Nucleotide Position Change from 5′ | ||
| Forward | Probe | Reverse | |||
| A1 | 17 | KT715637.1 KT715607.1 KT030586.1 KT030616.1 KF860002.1 HM035402.1 HM035399.1 HM035396.1 KP939763.1 KY471520.1 KY471519.1 KP939655.1 KP939759.1 KP939758.1 KP939760.1 KP939761.1 KP939459.1 | 3-A>G | ||
| A2 | 1 | KT030396.1 | 11-A>G | ||
| A3 | 2 | HM035370.1 HM035365.1 | 12-G>A | ||
| A4 | 20 | KT030666.1 KF860042.1 KP009697.1 HM035403.1 HM035376.1 KP940201.1 HM035373.1 KP940190.1 KP940079.1 KP940078.1 KP940076.1 KP940075.1 KP940074.1 KP940073.1 KP940072.1 KP940071.1 KP939886.1 KP939879.1 KP939402.1 U90337.1 | 15-C>T | ||
| A5 | 20 | MT586218.1 KT030526.1 KT007174.1 KT187063.1 KT187033.1 KT030476.1 KT030466.1 KP009727.1 KP009687.1 KP009627.1 HM035392.1 HM035382.1 HM035378.1 HM035374.1 HM035364.1 HM035361.1 MT711964.1 KP939647.1 KP939537.1 KP939534.1 | 18-C>T | ||
| A6 | 1 | KP940080.1 | 15-C>T 6-A>T | ||
| A7 | 14 | KT030416.1 KT030556.1 KT030536.1 HM035389.1 HM035388.1 HM035383.1 HM035381.1 HM035377.1 HM035371.1 HM035363.1 KP940196.1 KP939976.1 KP939971.1 HM035393.1 | 18-C>T 3-A>G | ||
| A8 | 18 | HM035397.1 HM035390.1 HM035386.1 HM035385.1 HM035384.1 HM035380.1 HM035379.1 HM035368.1 HM035367.1 KP939975.1 KP939970.1 KP939762.1 KP939878.1 KP939882.1 KP939973.1 KP939888.1 KP939887.1 KP939884.1 | 9-C>T | ||
| A9 | 1 | KP939454.1 | 9-C>T | 8-A>G | |
| A10 | 1 | KP939655.1 | 3-A>G | 10-C>T * | |
| A11 | 9 | KP940199.1 KP940193.1 KP939657.1 KP939652.1 KP939650.1 KP939648.1 KP939536.1 KP939535.1 KP939456.1 | 10-C>T * | ||
| A12 | 2 | KP939767.1 KP939454.1 | 8-A>G | ||
| A13 | 3 | KT715617.1 KT030636.1 KP939881.1 | 4-A>G | ||
| A14 | 1 | KT030546.1 | 15-G>A | ||
| Pattern | Number of Sequences | GenBank Accession Number (AN) | Description of Mismatches with the Guthrie Method Primers and Probes Nucleotide Position Change from 5′ | ||
| Forward | Probe | Reverse | |||
| G1 | 10 | KP939650.1 KP939648.1 KP939456.1 KP939535.1 KP939536.1 KP939652.1 KP939657.1 KP 939655.1 KP940193.1 KP940199.1 | 21-C>T | ||
| G2 | 2 | KT715617.1 KP939881.1 | 18-A>G | ||
| G3 | 1 | KT939762.1 | 5-C>T | ||
| Log10 Dilution (TCID50/mL) | Agüero 2008 (Ct) | Modified-Agüero (Ct) | Log10 Dilution (TCID50/mL) | Agüero 2008 (Ct) | Modified-Agüero (Ct) |
|---|---|---|---|---|---|
| AHSV Serotype 1 | AHSV Serotype 2 | ||||
| −2 (104.6) | 23.13/22.75 | 20.17/19.06 | −2 (104.5) | 22.73/23.65 | 20.43/21.41 |
| −3 (103.6) | 26.53/26.91 | 23.13/23.73 | −3 (103.5) | 26.81/26.36 | 25.17/25.36 |
| −4 (102.6) | 29.96/30.06 | 28.48/29.30 | −4 (102.5) | 30.50/30.58 | 27.97/28.91 |
| −5 (101.6) | 34.53/34.12 | 34.77/31.12 | −5 (101.5) | 33.40/34.95 | 32.17/32.98 |
| −6 (100.6) | 35.53/neg | 37.62/37.74 | −6 (100.5) | neg/37.02 | 35.82/36.93 |
| −7 (100.06) | neg/neg | 37.10/neg | −7(100.05) | neg/neg | 36.92/neg |
| −8 (100.006) | neg/neg | neg/neg | −8(100.005) | neg/neg | neg/neg |
| AHSV Serotype 3 | AHSV Serotype 4 | ||||
| −2 (103.6) | 24.49/23.97 23.97 | 22.86/21.96 21.96 | −2 (105.2) | 24.10/23.44 | 22.21/21.64 |
| −3 (102.6) | 27.81/26.82 | 26.17/26.19 | −3 (104.2) | 26.80/26.86 | 25.51/25.15 |
| −4 (101.6) | 30.59/30.48 | 30.10/30.02 | −4 (103.2) | 30.85/30.51 | 29.74/28.61 |
| −5 (100.6) | 34.64/32.25 | 32.89/33.14 | −5 (102.2) | 33.84/34.11 | 32.38/32.97 |
| −6 (100.06) | neg/neg | 37.53/36.32 | −6 (101.2) | 36.22/neg | 36.38/36.95 |
| −7 (100.006) | neg/neg | neg/neg | −7 (100.2) | neg/neg | neg/neg |
| −8(100.0006) | neg/neg | neg/neg | −8 (100.02) | neg/neg | neg/neg |
| AHSV Serotype 5 | AHSV Serotype 6 | ||||
| −2 (103.9) | 23.03/23.46 | 18.49/20.94 | −2 (105.1) | 23.69/23.38 | 21.43/20.59 |
| −3 (102.9) | 25.80/26.10 | 27.61/24.09 | −3 (104.1) | 26.46/26.57 | 25.52/24.50 |
| −4 (101.9) | 30.73/29.33 | 28.07/28.04 | −4 (103.1) | 30.18/30.62 | 30.13/29.43 |
| −5 (100.9) | 34.10/35.19 | 32.56/32.93 | −5 (102.1) | 34.01/34.21 | 33.13/33.40 |
| −6 (100.09) | neg/37.46 | 37.32/37.02 | −6 (101.1) | 37.26/35.97 | 36.95/36.25 |
| −7 (100.009) | neg/neg | neg/neg | −7 (100.1) | 37.41/neg | neg/neg |
| −8 (100.0009) | neg/neg | neg/neg | −8 (100.01) | neg/neg | neg/neg |
| AHSV Serotype 7 | AHSV Serotype 8 | ||||
| −2 (105.1) | 24.80/25.39 25.39 | 26.07/24.79 24.79 | −2 (104.6) | 25.04/24.86 | 23.90/23.75 |
| −3 (104.1) | 28.25/28.23 | 28.16/28.09 | −3 (103.6) | 28.30/27.87 | 27.38/27.02 |
| −4 (103.1) | 31.14/31.84 | 31.72/30.79 | −4 (102.6) | 33.56/32.74 | 32.18/31.92 |
| −5 (102.1) | 36.89/36.39 | 36.48/35.09 | −5 (101.6) | 35.54/36.13 | 34.01/35.27 |
| −6 (101.1) | neg/neg | neg/38.62 | −6 (100.6) | neg/neg | 38.32/neg |
| −7 (100.1) | neg/neg | neg/neg | −7 (100.06) | neg/neg | neg/neg |
| −8 (100.01) | neg/neg | neg/neg | −8 (100.006) | neg/neg | neg/neg |
| AHSV Serotype 9 | |||||
| −2 (105.1) | 24.95/24.87 | 22.51/23.51 | |||
| −3 (104.1) | 28.03/27.06 | 26.35/25.67 | |||
| −4 (103.1) | 30.72/31.68 | 29.77/31.30 | |||
| −5 (102.1) | 34.58/35.77 | 32.07/34.89 | |||
| −6 (101.1) | neg/neg | 38.47/37.78 | |||
| −7 (100.1) | neg/neg | neg/neg | |||
| −8(100.01) | neg/neg | neg/neg | |||
| Virus Strain | Agüero 2008 | Modified-Agüero | Guthrie 2013 | |||
|---|---|---|---|---|---|---|
| Mismatches * | Ct | Mismatches * | Ct | Mismatches * | Ct | |
| ETH 2010/18 | Pattern A1 | 22.54 | Pattern A1 | 22.45 | No mismatches | Nd |
| SEN 1998/01 | Pattern A3 plus R 7 (A>G) | 35.33 | Pattern A3 plus R 7 (A>G) | 35.05 | R 21 (A>G) | 31.86 |
| ETH 2010/08 | Pattern A4 plus R 4 (A>G) | 27.20 | Pattern A4 plus R 4 (A>G) | 27.07 | Pattern G2 | 22.49 |
| THA 2020/01 | Pattern A5 | 24.86 | Pattern A5 | 25.11 | No mismatches | Nd |
| ETH 2010/13 | Pattern A11 | 31.19 | No mismatches | 30.24 | Pattern G1 | 28.53 |
| ETH 2019/02 | Pattern A11 plus R 14 (T>C) | 25.21 | No mismatches | 24.24 | Pattern G1 plus P 10 (A>G) | 23.47 |
| ETH 2019/03 | 24.89 | 23.71 | 22.88 | |||
| ETH 2019/07 | 27.84 | 26.71 | 25.80 | |||
| ETH 2019/01 | No mismatches | Nd | No mismatches | 23.35 | Pattern G3 | 20.61 |
| ETH 2019/04 | Nd | 23.81 | 21.00 | |||
| ETH 2019/05 | Nd | 23.79 | 21.17 | |||
| ETH 2019/06 | Nd | 24.97 | 22.30 | |||
| Reference RNA (AHSV-sRNA-C+) | Agüero 2008 (Ct Value) | Mod-Agüero (Ct Value) | Guthrie 2013 (Ct Value) | Mean Ct Value Absolute Difference | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Log10 Dilution | Mol/μL | R.1 | R.2 | R.3 | R.1 | R.2 | R.3 | R.1 | R.2 | R.3 | Agüero 2008 vs. Guthrie | Agüero 2008 vs. Mod-Agüero | Mod-Agüero vs. Guthrie |
| 10−1 | 6.023 × 108 | 14.58 | 14.68 | 15.21 | 12.17 | 12.38 | 13.3 | 7.96 | 8.29 | 8.34 | 6.63 | 2.21 | 4.42 |
| 10−2 | 6.023 × 107 | 17.97 | 18.05 | 17.92 | 15.87 | 15.43 | 15.99 | 11.78 | 11.07 | 11.98 | 6.37 | 2.22 | 4.15 |
| 10−3 | 6.023 × 106 | 21.7 | 21.03 | 21.23 | 18.16 | 19.4 | 18.9 | 15.47 | 17.38 | 15.07 | 5.35 | 2.5 | 2.85 |
| 10−4 | 6.023 × 105 | 24.95 | 24.95 | 24.85 | 22.56 | 22.49 | 22.57 | 18.49 | 18.16 | 18.34 | 6.59 | 2.38 | 4.21 |
| 10−5 | 6.023 × 104 | 29.36 | 30.04 | 26.52 | 26.6 | 23.17 | 25.7 | 23.5 | 22.8 | 22.5 | 5.71 | 3.48 | 2.22 |
| 10−6 | 6.023 × 103 | 33.37 | 33.17 | 34.72 | 31.54 | 32.45 | 30.63 | 28.88 | 29.67 | 29.02 | 4.56 | 2.21 | 2.35 |
| Mean Ct value difference (all dilutions) ± SD | 5.87 * ± 0.82 | 2.50 ± 0.50 | 3.37 ± 1.01 | ||||||||||
| RSA Undetected Strain (AHSV-sRNA-RSA) | Agüero 2008 Ct Value | Modified-Agüero Ct Value | Guthrie 2013 Ct Value | Ct Absolute Difference Mod-Agüero vs. Guthrie | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Log10 Dilution | Mol/μL | R.1 | R.2 | R.3 | R.1 | R.2 | R.3 | R.1 | R.2 | R.3 | |
| 10−1 | 6.023 × 108 | - | - | - | 10.29 | 10.59 | 10.30 | 13.85 | 14.18 | 14.11 | 3.65 |
| 10−2 | 6.023 × 107 | - | - | - | 13.80 | 13.44 | 13.78 | 17.83 | 17.88 | 17.72 | 4.14 |
| 10−3 | 6.023 × 106 | - | - | - | 17.16 | 16.84 | 16.69 | 20.68 | 20.65 | 21.34 | 3.99 |
| 10−4 | 6.023 × 105 | - | - | - | 21.47 | 20.44 | 21.61 | 24.07 | 25.34 | 23.53 | 3.14 |
| 10−5 | 6.023 × 104 | - | - | - | 22.03 | 24.54 | 23.73 | 28.73 | 27.49 | 28.34 | 4.75 |
| 10−6 | 6.023 × 103 | - | - | - | 29.40 | 28.53 | 28.99 | 30.57 | 33.77 | 32.38 | 3.27 |
| Mean Ct value difference (all dilutions) ± SD | 3.83 ± 0.6 | ||||||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morales, J.; Ruano, M.J.; Tena-Tomás, C.; van Schalkwyk, A.; Loundras, E.-A.; Valero-Lorenzo, M.; López-Herranz, A.; Romito, M.; Batten, C.; Villalba, R.; et al. Modification and Validation of a Reference Real-Time RT-PCR Method for the Detection of a New African Horse Sickness Virus Variant. Microorganisms 2025, 13, 2684. https://doi.org/10.3390/microorganisms13122684
Morales J, Ruano MJ, Tena-Tomás C, van Schalkwyk A, Loundras E-A, Valero-Lorenzo M, López-Herranz A, Romito M, Batten C, Villalba R, et al. Modification and Validation of a Reference Real-Time RT-PCR Method for the Detection of a New African Horse Sickness Virus Variant. Microorganisms. 2025; 13(12):2684. https://doi.org/10.3390/microorganisms13122684
Chicago/Turabian StyleMorales, Jorge, María José Ruano, Cristina Tena-Tomás, Antoinette van Schalkwyk, Eleni-Anna Loundras, Marta Valero-Lorenzo, Ana López-Herranz, Marco Romito, Carrie Batten, Rubén Villalba, and et al. 2025. "Modification and Validation of a Reference Real-Time RT-PCR Method for the Detection of a New African Horse Sickness Virus Variant" Microorganisms 13, no. 12: 2684. https://doi.org/10.3390/microorganisms13122684
APA StyleMorales, J., Ruano, M. J., Tena-Tomás, C., van Schalkwyk, A., Loundras, E.-A., Valero-Lorenzo, M., López-Herranz, A., Romito, M., Batten, C., Villalba, R., & Agüero, M. (2025). Modification and Validation of a Reference Real-Time RT-PCR Method for the Detection of a New African Horse Sickness Virus Variant. Microorganisms, 13(12), 2684. https://doi.org/10.3390/microorganisms13122684

