Genomic and Functional Analysis of Carbohydrate Esterases in the Maize Pathogen Exserohilum rostratum
Abstract
1. Introduction
2. Materials and Methods
2.1. Identification and Analysis of ErCE Genes
2.2. Multiple Sequence Alignment and Phylogenetic Analysis
2.3. Gene Structure and Protein Domain Analysis
2.4. Promoter Region Analysis and Gene Ontology (Go) Annotation
2.5. Analysis of ErCE Expression Patterns
2.6. RT-qPCR
3. Results
3.1. Identification and Physicochemical Property Analysis of Carbohydrate Esterase Genes
3.2. Phylogenetic Analysis
3.3. Structural Analysis of ErCEs
3.4. Analysis of Promoter Regulatory Elements of ErCEs
3.5. GO Enrichment Analysis of ErCE Genes
3.6. Expression Pattern Analysis of ErCE Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kiely, L.J.; Hickey, R.M. Characterization and analysis of food-sourced carbohydrates. Methods Mol. Biol. 2022, 2370, 67–95. [Google Scholar]
- Cantarel, B.L.; Coutinho, P.M.; Rancurel, C.; Bernard, T.; Lombard, V.; Henrissat, B. The carbohydrate-active enzymes database (CAZy): An expert resource for glycogenomics. Nucleic Acids Res. 2009, 37, D233–D238. [Google Scholar] [CrossRef] [PubMed]
- Sista Kameshwar, A.K.; Qin, W. Understanding the structural and functional properties of carbohydrate esterases with a special focus on hemicellulose deacetylating acetyl xylan esterases. Mycology 2018, 9, 273–295. [Google Scholar] [CrossRef] [PubMed]
- Sista Kameshwar, A.K.; Qin, W. Structural and functional properties of pectin and lignin–carbohydrate complexes de-esterases: A review. Bioresour. Bioprocess. 2018, 5, 43–58. [Google Scholar] [CrossRef]
- Liu, Y.; Li, T.; Zhu, H.; Cao, L.; Liang, L.; Liu, D.; Shen, Q. Methionine inducing carbohydrate esterase secretion of Trichoderma harzianum enhances the accessibility of substrate glycosidic bonds. Microb. Cell Fact. 2024, 23, 120–136. [Google Scholar] [CrossRef] [PubMed]
- Caffall, K.H.; Mohnen, D. The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr. Res. 2009, 344, 1879–1900. [Google Scholar] [CrossRef]
- Sandhu, A.P.S.; Randhawa, G.S.; Dhugga, K.S. Plant cell wall matrix polysaccharide biosynthesis. Mol. Plant 2009, 2, 840–850. [Google Scholar] [CrossRef]
- Ahmad, S.I.; Ahmad, R.; Khan, M.S.; Kant, R.; Shahid, S.; Gautam, L.; Hasan, G.M.; Hassan, M.I. Chitin and its derivatives: Structural properties and biomedical applications. Int. J. Biol. Macromol. 2020, 164, 526–539. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.; He, M.; Hou, Q.; Zou, L.; Yang, Y.; Wei, Y.; Chen, X. Cell wall associated immunity in plants. Stress Biol. 2021, 1, 3–17. [Google Scholar] [CrossRef]
- Municio-Diaz, C.; Muller, E.; Drevensek, S.; Fruleux, A.; Lorenzetti, E.; Boudaoud, A.; Minc, N. Mechanobiology of the cell wall—Insights from tip-growing plant and fungal cells. J. Cell Sci. 2022, 135, jcs259208–jcs259221. [Google Scholar] [CrossRef]
- Vorwerk, S.; Somerville, S.; Somerville, C. The role of plant cell wall polysaccharide composition in disease resistance. Trends Plant Sci. 2004, 9, 203–209. [Google Scholar] [CrossRef]
- Swaminathan, S.; Lionetti, V.; Zabotina, O.A. Plant cell wall integrity perturbations and priming for defense. Plants 2022, 11, 3539. [Google Scholar] [CrossRef]
- Fries, M.; Ihrig, J.; Brocklehurst, K.; Shevchik, V.E.; Pickersgill, R.W. Molecular basis of the activity of the phytopathogen pectin methylesterase. EMBO J. 2007, 26, 3879–3887. [Google Scholar] [CrossRef]
- Shiferaw, B.; Prasanna, B.M.; Hellin, J.; Bänziger, M. Crops that feed the world 6. past successes and future challenges to the role played by maize in global food security. Food Secur. 2011, 3, 307–327. [Google Scholar] [CrossRef]
- Rouf Shah, T.; Prasad, K.; Kumar, P. Maize—A potential source of human nutrition and health: A review. Cogent Food Agric. 2016, 2, 1166995. [Google Scholar] [CrossRef]
- Cheng, A.; Mayes, S.; Dalle, G.; Demissew, S.; Massawe, F. Diversifying crops for food and nutrition security—A case of teff. Biol. Rev. 2017, 92, 188–198. [Google Scholar] [CrossRef] [PubMed]
- Mueller, D.S.; Wise, K.A.; Sisson, A.J.; Allen, T.W.; Bergstrom, G.C.; Bissonnette, K.M.; Bradley, C.A.; Byamukama, E.; Chilvers, M.I.; Collins, A.A.; et al. Corn yield loss estimates due to diseases in the United States and Ontario, Canada, from 2016 to 2019. Plant Health Prog. 2020, 21, 238–247. [Google Scholar] [CrossRef]
- Aman, M. Genetic Variability, Heritability and association of quantitative traits in maize (Zea mays L.) genotypes: Review paper. EAS J. Biotechnol. Genet. 2021, 3, 38–46. [Google Scholar] [CrossRef]
- Peng, Q.; Shen, R.; Li, X.; Ye, T.; Dong, J.; Fu, Y.; Yuan, W. A twenty-year dataset of high-resolution maize distribution in China. Sci. Data 2023, 10, 658–675. [Google Scholar] [CrossRef]
- Li, Q.; Li, M.; Jiang, Y.; Wang, S.; Xu, K.; Liang, X.; Niu, J.; Wang, C. Assessing genetic resistance in wheat to black point caused by six fungal species in the yellow and huai wheat area of China. Plant Dis. 2020, 104, 3131–3134. [Google Scholar] [CrossRef]
- Onwunali, M.R.O.; Mabagala, R.B. First report of leaf blight of maize (Zea mays L.) caused by Exserohilum rostratum in Tanzania. Eur. J. Appl. Physiol. 2022, 10, 476–481. [Google Scholar]
- Katragkou, A.; Pana, Z.D.; Perlin, D.S.; Kontoyiannis, D.P.; Walsh, T.J.; Roilides, E. Exserohilum infections: Review of 48 cases before the 2012 United States outbreak. Med. Mycol. 2014, 52, 376–386. [Google Scholar] [CrossRef]
- Saint-Jean, M.; St-Germain, G.; Laferrière, C.; Tapiero, B. Hospital-acquired phaeohyphomycosis due to Exserohilum rostratum in a child with leukemia. Can. J. Infect. Dis. Med. Microbiol. 2007, 18, 200–202. [Google Scholar] [CrossRef]
- Conti Díaz, I.A.; Vargas, R.; Apolo, A.; Moraña, J.A.; Pedrana, G.; Cardozo, E.; Almeida, E. Mycotic bovine nasal granuloma. Rev. Inst. Med. Trop. Sao Paulo 2003, 45, 163–166. [Google Scholar] [CrossRef] [PubMed]
- Lahlali, R.; Ezrari, S.; Radouane, N.; Kenfaoui, J.; Esmaeel, Q.; El Hamss, H.; Belabess, Z.; Barka, E.A. Biological control of plant pathogens: A global perspective. Microorganisms 2022, 10, 596. [Google Scholar] [CrossRef]
- Liu, C.; Kogel, K.-H.; Ladera-Carmona, M. Harnessing RNA interference for the control of Fusarium species: A critical review. Mol. Plant Pathol. 2024, 25, e70011–e70017. [Google Scholar] [CrossRef] [PubMed]
- Imran, M.; Feng, X.; Sun, Z.; Al Omari, H.; Zhang, G.; Zhu, J.; Aldayel, M.F.; Li, C. Nanotechnology-driven gene silencing: Advancements in SIGS–dsRNA technology for sustainable disease management. Chem. Biol. Technol. Agric. 2025, 12, 31–53. [Google Scholar] [CrossRef]
- Zhu, W.; Wang, L.; Li, H.; Shi, Y.; Chang, J.; Wang, S.; Liu, X.; Ma, P.; Zhao, J.; Liu, Y.; et al. Whole-Genome Identification and Analysis of Carbohydrate Esterase Gene Family in Colletotrichum graminicola. Agriculture 2025, 15, 781. [Google Scholar] [CrossRef]
- Wilkins, M.R.; Gasteiger, E.; Bairoch, A.; Sanchez, J.C.; Williams, K.L.; Appel, R.D.; Hochstrasser, D.F. Protein identification and analysis tools in the ExPASy server. Methods Mol. Biol. 1999, 112, 531–552. [Google Scholar] [PubMed]
- Katoh, K.; Rozewicki, J.; Yamada, K.D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 2019, 20, 1160–1166. [Google Scholar] [CrossRef]
- Xiang, C.Y.; Gao, F.; Jakovlić, I.; Lei, H.P.; Hu, Y.; Zhang, H.; Zou, H.; Wang, G.T.; Zhang, D. Using PhyloSuite for molecular phylogeny and tree-based analyses. Imeta 2023, 2, e87–e128. [Google Scholar] [CrossRef]
- Subramanian, B.; Gao, S.; Lercher, M.J.; Hu, S.; Chen, W.H. Evolview v3: A webserver for visualization, annotation, and management of phylogenetic trees. Nucleic Acids Res. 2019, 47, W270–W275. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Jin, J.; Guo, A.-Y.; Zhang, H.; Luo, J.; Gao, G. GSDS 2.0: An upgraded gene feature visualization server. Bioinformatics 2015, 31, 1296–1297. [Google Scholar] [CrossRef] [PubMed]
- Bailey, T.L.; Boden, M.; Buske, F.A.; Frith, M.; Grant, C.E.; Clementi, L.; Ren, J.; Li, W.W.; Noble, W.S. MEME suite: Tools for motif discovery and searching. Nucleic Acids Res. 2009, 37, W202–W208. [Google Scholar] [CrossRef]
- Marchler-Bauer, A.; Bo, Y.; Han, L.; He, J.; Lanczycki, C.J.; Lu, S.; Chitsaz, F.; Derbyshire, M.K.; Geer, R.C.; Gonzales, N.R.; et al. CDD/SPARCLE: Functional classification of proteins via subfamily domain architectures. Nucleic Acids Res. 2017, 45, D200–D203. [Google Scholar] [CrossRef]
- Chen, C.; Wu, Y.; Li, J.; Wang, X.; Zeng, Z.; Xu, J.; Liu, Y.; Feng, J.; Chen, H.; He, Y.; et al. TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Mol. Plant 2023, 16, 1733–1742. [Google Scholar] [CrossRef] [PubMed]
- Lescot, M.; Déhais, P.; Thijs, G.; Marchal, K.; Moreau, Y.; Van de Peer, Y.; Rouzé, P.; Rombauts, S. PlantCARE, a database of plant cis–acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002, 30, 325–327. [Google Scholar] [CrossRef] [PubMed]
- Mu, H.; Chen, J.; Huang, W.; Huang, G.; Deng, M.; Hong, S.; Ai, P.; Gao, C.; Zhou, H. OmicShare tools: A zero-code interactive online platform for biological data analysis and visualization. Imeta 2024, 3, e228. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, J.; Fan, J.; Jia, W.; Lv, Y.; Pan, H.; Zhang, X. Infection-specific transcriptional patterns of the maize pathogen Cochliobolus heterostrophus unravel genes involved in asexual development and virulence. Mol. Plant Pathol. 2024, 25, e13413. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Roy, S.W.; Penny, D. Patterns of intron loss and gain in plants: Intron loss–dominated evolution and genome-wide comparison of O. sativa and A. thaliana. Mol. Biol. Evol. 2007, 24, 171–181. [Google Scholar] [CrossRef]
- Aviña-Padilla, K.; Ramírez-Rafael, J.A.; Herrera-Oropeza, G.E.; Muley, V.Y.; Valdivia, D.I.; Díaz-Valenzuela, E.; García-García, A.; Varela-Echavarría, A.; Hernández-Rosales, M. Evolutionary perspective and expression analysis of intronless genes highlight the conservation of their regulatory role. Front. Genet. 2021, 12, 654256–654273. [Google Scholar] [CrossRef] [PubMed]
- De Vries, S.; De Vries, J. A global survey of carbohydrate esterase families 1 and 10 in Oomycetes. Front. Genet. 2020, 11, 756–771. [Google Scholar] [CrossRef] [PubMed]
- Novy, V.; Carneiro, L.V.; Shin, J.H.; Larsbrink, J.; Olsson, L. Phylogenetic analysis and in-depth characterization of functionally and structurally diverse CE5 cutinases. J. Biol. Chem. 2021, 297, 101302–101314. [Google Scholar] [CrossRef]
- Sandor, S.; Zhang, Y.; Xu, J. Fungal mitochondrial genomes and genetic polymorphisms. Appl. Microbiol. Biotechnol. 2018, 102, 9433–9448. [Google Scholar] [CrossRef]
- Li, H.; Liu, Y.; Wang, D.; Wang, Y.-H.; Sheng, R.-C.; Kong, Z.-Q.; Klosterman, S.-J.; Chen, J.-Y.; Subbarao, K.-V.; Chen, F.-M.; et al. The 24-kDa subunit of mitochondrial complex i regulates growth, microsclerotia development, stress tolerance, and virulence in Verticillium dahliae. BMC Biol. 2024, 22, 289–308. [Google Scholar] [CrossRef]
- Hu, Q.-L.; Zhong, H.; Wang, X.-R.; Han, L.; Ma, S.-S.; Li, L.; Wang, Y. Mitochondrial phosphate carrier plays an important role in virulence of Candida albicans. Mycology 2025, 16, 369–381. [Google Scholar] [CrossRef]
- Ni, Y.; Gao, X. Uncovering the role of mitochondrial genome in pathogenicity and drug resistance in pathogenic fungi. Front. Cell. Infect. Microbiol. 2025, 15, 1576485–1576496. [Google Scholar] [CrossRef] [PubMed]
- William Roy, S.; Gilbert, W. The evolution of spliceosomal introns: Patterns, puzzles and progress. Nat. Rev. Genet. 2006, 7, 211–221. [Google Scholar] [CrossRef]
- Calia, G.; Porracciolo, P.; Chen, Y.; Kozlowski, D.; Schuler, H.; Cestaro, A.; Quentin, M.; Favery, B.; Danchin, E.G.J.; Bottini, S. Identification and characterization of specific motifs in effector proteins of plant parasites using MOnSTER. Commun. Biol. 2024, 7, 850–863. [Google Scholar] [CrossRef]
- Dong, B.Z.; Zhu, X.Q.; Fan, J.; Guo, L.Y. The cutinase bdo_10846 play an important role in the virulence of Botryosphaeria dothidea and in inducing the wart symptom on apple plant. Int. J. Mol. Sci. 2021, 22, 1910. [Google Scholar] [CrossRef]
- Hernandez-Garcia, C.M.; Finer, J.J. Identification and validation of promoters and cis-acting regulatory elements. Plant Sci. 2014, 217–218, 109–119. [Google Scholar] [CrossRef]
- Xuan, C.; Feng, M.; Li, X.; Hou, Y.; Wei, C.; Zhang, X. Genome-wide identification and expression analysis of chitinase genes in watermelon under abiotic stimuli and Fusarium oxysporum Infection. Int. J. Mol. Sci. 2024, 25, 638. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Y.; Fu, X.; Zhang, T.; Ma, J.; Zhang, L.; Qian, H.; Tang, K.; Li, S.; Zhao, J. Molecular cloning, characterization, and promoter analysis of the isochorismate synthase (aaics1) gene from Artemisia annua. J. Zhejiang Univ. Sci. B 2017, 18, 662–673. [Google Scholar] [CrossRef]
- Pu, J.; Li, M.; Mao, P.; Zhou, Q.; Liu, W.; Liu, Z. Genome-wide identification of the Q-Type C2H2 transcription factor family in Alfalfa (Medicago sativa) and expression analysis under different abiotic stresses. Genes 2021, 12, 1906. [Google Scholar] [CrossRef]
- Li, L.; Tang, J.; Wu, A.; Fan, C.; Li, H. Genome-wide identification and functional analysis of the GUX gene family in Eucalyptus grandis. Int. J. Mol. Sci. 2024, 25, 8199. [Google Scholar] [CrossRef]
- Pérez-Lara, G.; Olivares-Yañez, C.; van Bakel, H.; Larrondo, L.F.; Canessa, P. Genome-wide characterization of light-regulated gene expression in Botrytis cinerea reveals underlying complex photobiology. Int. J. Mol. Sci. 2023, 24, 8705. [Google Scholar] [CrossRef] [PubMed]
- Patkar, R.N.; Naqvi, N.I. Fungal manipulation of hormone-regulated plant defense. PLoS Pathog. 2017, 13, e1006334. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.Q.; Xu, Y.; Lu, Y.; Yu, H.X.; Gu, M.H.; Liu, Q.Q. The WRKY transcription factor OsWRKY78 regulates stem elongation and seed development in rice. Planta 2011, 234, 541–554. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wang, H.; Yu, D. Arabidopsis WRKY transcription factors WRKY12 and WRKY13 oppositely regulate flowering under short-day conditions. Mol. Plant 2016, 9, 1492–1503. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, Z.; Wang, L.; Kim, S.; Seo, P.J.; Qiao, M.; Wang, N.; Li, S.; Cao, X.; Park, C.; et al. WRKY 71 accelerates flowering via the direct activation of FLOWERING LOCUS T and LEAFY in Arabidopsis thaliana. Plant J. 2016, 85, 96–106. [Google Scholar] [CrossRef] [PubMed]







| Proposed Gene Name | Gene ID | Superfamily | CDS Length (bp) | Protein Length (aa) | Mw (KDa) | pI | GRAVY | Predicted Subcellular Localization |
|---|---|---|---|---|---|---|---|---|
| ErCE1 | gene00052 | CE10 | 1197 | 398 | 44.23 | 7.31 | 0.01 | plasma membrane |
| ErCE2 | gene00100 | CE1 | 2067 | 688 | 76.11 | 9.37 | −0.30 | plasma membrane |
| ErCE3 | gene00197 | CE10 | 1038 | 345 | 38.26 | 5.50 | −0.33 | cytosolskeleton |
| ErCE4 | gene00211 | CE12 | 765 | 254 | 27.41 | 8.62 | −0.32 | extracellular |
| ErCE5 | gene00511 | CE10 | 1725 | 574 | 64.41 | 6.05 | −0.40 | cytosolskeleton |
| ErCE6 | gene00722 | CE1 | 1071 | 356 | 39.54 | 5.69 | −0.35 | mitochondrion |
| ErCE7 | gene00901 | CE1 | 879 | 292 | 31.01 | 8.68 | −0.20 | extracellular |
| ErCE8 | gene01208 | CE5 | 954 | 317 | 34.57 | 6.31 | −0.29 | extracellular |
| ErCE9 | gene01233 | CE3 | 765 | 254 | 27.02 | 9.17 | 0.01 | extracellular |
| ErCE10 | gene01648 | CE10 | 2166 | 721 | 79.59 | 4.99 | −0.37 | extracellular |
| ErCE11 | gene01724 | CE8 | 1155 | 384 | 42.31 | 8.01 | −0.32 | extracellular |
| ErCE12 | gene01752 | CE10 | 2262 | 753 | 83.23 | 5.05 | −0.34 | extracellular |
| ErCE13 | gene01791 | CE10 | 1845 | 614 | 66.73 | 6.44 | −0.14 | cytosol |
| ErCE14 | gene01953 | CE1 | 927 | 308 | 33.47 | 8.20 | −0.23 | extracellular |
| ErCE15 | gene02162 | CE7 | 888 | 295 | 33.13 | 8.36 | −0.10 | extracellular |
| ErCE16 | gene02348 | CE5 | 621 | 206 | 20.48 | 7.66 | 0.32 | cytosol |
| ErCE17 | gene02387 | CE1 | 933 | 310 | 32.38 | 8.94 | −0.19 | extracellular |
| ErCE18 | gene02405 | CE10 | 2901 | 966 | 105.54 | 6.94 | −0.59 | mitochondrion |
| ErCE19 | gene02443 | CE5 | 1086 | 361 | 37.34 | 5.57 | −0.17 | extracellular |
| ErCE20 | gene02507 | CE10 | 1368 | 455 | 50.48 | 6.12 | −0.18 | extracellular |
| ErCE21 | gene02529 | CE1 | 945 | 314 | 34.06 | 7.62 | −0.22 | extracellular |
| ErCE22 | gene02630 | CE10 | 1134 | 377 | 41.56 | 8.62 | −0.07 | extracellular |
| ErCE23 | gene02697 | CE5 | 717 | 238 | 24.85 | 8.08 | −0.08 | extracellular |
| ErCE24 | gene02783 | CE1 | 732 | 243 | 26.12 | 5.21 | −0.04 | cytosol |
| ErCE25 | gene02822 | CE10 | 2352 | 783 | 85.80 | 6.07 | 0.26 | plasma membrane |
| ErCE26 | gene02976 | CE16 | 1026 | 341 | 38.37 | 5.36 | −0.31 | extracellular |
| ErCE27 | gene03003 | CE10 | 1014 | 337 | 37.03 | 7.18 | −0.35 | cytosol |
| ErCE28 | gene03150 | CE5 | 702 | 233 | 23.71 | 9.06 | 0.16 | extracellular |
| ErCE29 | gene03193 | CE8 | 1011 | 336 | 36.19 | 9.04 | −0.23 | extracellular |
| ErCE30 | gene03285 | CE16 | 1830 | 609 | 68.84 | 5.19 | −0.43 | cytosol |
| ErCE31 | gene03372 | CE5 | 690 | 229 | 24.05 | 4.95 | 0.09 | extracellular |
| ErCE32 | gene03377 | CE5 | 1119 | 372 | 34.81 | 8.90 | 0.11 | extracellular |
| ErCE33 | gene03537 | CE1 | 867 | 288 | 30.35 | 8.64 | −0.23 | extracellular |
| ErCE34 | gene03792 | CE10 | 1533 | 510 | 57.07 | 7.01 | −0.49 | mitochondrion |
| ErCE35 | gene03826 | CE10 | 1665 | 554 | 61.35 | 5.24 | −0.39 | extracellular |
| ErCE36 | gene04203 | CE5 | 738 | 245 | 26.11 | 6.16 | 0.08 | extracellular |
| ErCE37 | gene04204 | CE5 | 693 | 230 | 24.54 | 8.18 | 0.09 | extracellular |
| ErCE38 | gene04569 | CE4 | 843 | 280 | 30.13 | 9.13 | −0.15 | extracellular |
| ErCE39 | gene04584 | CE3 | 1446 | 481 | 53.40 | 5.59 | −0.31 | extracellular |
| ErCE40 | gene04761 | CE16 | 978 | 325 | 35.88 | 8.82 | −0.27 | extracellular |
| ErCE41 | gene04762 | CE16 | 1086 | 361 | 39.22 | 4.20 | −0.35 | extracellular |
| ErCE42 | gene04782 | CE4 | 942 | 313 | 35.82 | 5.60 | −0.52 | cytosol |
| ErCE43 | gene05167 | CE10 | 1629 | 542 | 60.74 | 6.85 | −0.41 | cytosol |
| ErCE44 | gene05188 | CE1 | 1107 | 368 | 40.38 | 5.98 | −0.06 | extracellular |
| ErCE45 | gene05239 | CE10 | 984 | 327 | 36.05 | 5.34 | −0.36 | cytosol |
| ErCE46 | gene05385 | CE12 | 783 | 260 | 27.97 | 6.52 | −0.02 | extracellular |
| ErCE47 | gene05859 | CE1 | 711 | 236 | 26.13 | 5.97 | −0.31 | mitochondrion |
| ErCE48 | gene05861 | CE1 | 813 | 270 | 29.52 | 8.99 | −0.22 | extracellular |
| ErCE49 | gene05866 | CE10 | 4200 | 1399 | 155.35 | 9.34 | −0.50 | mitochondrion |
| ErCE50 | gene05910 | CE9 | 1242 | 413 | 44.05 | 5.56 | −0.16 | cytosol |
| ErCE51 | gene05917 | CE5 | 1173 | 390 | 41.37 | 8.70 | 0.31 | mitochondrion |
| ErCE52 | gene05929 | CE1 | 897 | 298 | 32.14 | 9.20 | −0.17 | extracellular |
| ErCE53 | gene05956 | CE5 | 690 | 229 | 23.36 | 8.01 | −0.02 | extracellular |
| ErCE54 | gene06354 | CE5 | 1116 | 371 | 36.95 | 5.69 | 0.10 | extracellular |
| ErCE55 | gene06398 | CE1 | 1164 | 387 | 43.52 | 6.05 | −0.27 | peroxisome |
| ErCE56 | gene06400 | CE1 | 1365 | 454 | 51.41 | 5.95 | −0.33 | peroxisome |
| ErCE57 | gene06456 | CE10 | 1179 | 392 | 44.68 | 8.75 | 0.05 | extracellular |
| ErCE58 | gene06479 | CE1 | 999 | 332 | 38.01 | 5.52 | −0.45 | mitochondrion |
| ErCE59 | gene06713 | CE4 | 891 | 296 | 33.63 | 6.15 | −0.39 | nucleus |
| ErCE60 | gene06800 | CE12 | 813 | 270 | 30.04 | 5.36 | −0.19 | cytosol |
| ErCE61 | gene06868 | CE9 | 1305 | 434 | 45.88 | 5.36 | 0.02 | cytosol |
| ErCE62 | gene07048 | CE12 | 834 | 277 | 28.88 | 9.21 | −0.11 | extracellular |
| ErCE63 | gene07146 | CE10 | 1968 | 655 | 72.87 | 4.94 | −0.63 | nucleus |
| ErCE64 | gene07337 | CE4 | 753 | 250 | 28.19 | 9.51 | −0.15 | plasma membrane |
| ErCE65 | gene07427 | CE8 | 1002 | 333 | 37.06 | 8.81 | −0.44 | extracellular |
| ErCE66 | gene07614 | CE1 | 840 | 279 | 30.51 | 5.96 | 0.01 | mitochondrion |
| ErCE67 | gene07904 | CE14 | 840 | 279 | 31.23 | 9.41 | 0.00 | mitochondrion |
| ErCE68 | gene07941 | CE10 | 1167 | 388 | 42.10 | 6.97 | −0.17 | mitochondrion |
| ErCE69 | gene08303 | CE5 | 1188 | 395 | 41.70 | 6.38 | −0.07 | extracellular |
| ErCE70 | gene08331 | CE10 | 942 | 313 | 34.80 | 5.27 | −0.20 | mitochondrion |
| ErCE71 | gene08347 | CE7 | 1107 | 368 | 39.72 | 5.11 | 0.08 | extracellular |
| ErCE72 | gene08673 | CE5 | 1200 | 399 | 41.44 | 4.96 | −0.20 | extracellular |
| ErCE73 | gene08701 | CE1 | 1821 | 606 | 65.90 | 5.78 | −0.11 | cytosol |
| ErCE74 | gene09040 | CE10 | 1635 | 544 | 59.22 | 5.47 | −0.19 | cytosol |
| ErCE75 | gene09060 | CE4 | 984 | 327 | 37.67 | 5.38 | −0.60 | cytosol |
| ErCE76 | gene09462 | CE10 | 1536 | 511 | 56.98 | 7.17 | −0.40 | mitochondrion |
| ErCE77 | gene09655 | CE10 | 1071 | 356 | 39.10 | 6.01 | −0.19 | cytosol |
| ErCE78 | gene09870 | CE10 | 1710 | 569 | 63.47 | 5.93 | −0.28 | mitochondrion |
| ErCE79 | gene09871 | CE1 | 2058 | 685 | 75.60 | 6.07 | −0.37 | extracellular |
| ErCE80 | gene10109 | CE1 | 1683 | 560 | 62.87 | 6.28 | −0.49 | mitochondrion |
| ErCE81 | gene10227 | CE5 | 984 | 327 | 34.00 | 5.94 | −0.02 | extracellular |
| ErCE82 | gene10334 | CE1 | 1704 | 567 | 61.96 | 7.03 | −0.30 | extracellular |
| ErCE83 | gene10579 | CE10 | 1356 | 451 | 50.72 | 7.66 | −0.38 | mitochondrion |
| ErCE84 | gene10840 | CE15 | 1173 | 390 | 40.94 | 8.65 | −0.16 | extracellular |
| ErCE85 | gene10927 | CE1 | 714 | 237 | 25.51 | 8.42 | −0.28 | cytosol |
| ErCE86 | gene10964 | CE1 | 981 | 326 | 35.77 | 5.77 | −0.46 | extracellular |
| ErCE87 | gene10979 | CE10 | 1104 | 367 | 40.71 | 5.89 | −0.25 | cytosol |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.-M.; Wang, Z.-Q.; Yuan, H.-X.; Liu, M.-J.; Chen, C.; Kang, J.-G.; Li, H.-L.; Wang, Y.-F. Genomic and Functional Analysis of Carbohydrate Esterases in the Maize Pathogen Exserohilum rostratum. Microorganisms 2025, 13, 2588. https://doi.org/10.3390/microorganisms13112588
Wang Z-M, Wang Z-Q, Yuan H-X, Liu M-J, Chen C, Kang J-G, Li H-L, Wang Y-F. Genomic and Functional Analysis of Carbohydrate Esterases in the Maize Pathogen Exserohilum rostratum. Microorganisms. 2025; 13(11):2588. https://doi.org/10.3390/microorganisms13112588
Chicago/Turabian StyleWang, Zi-Ming, Zi-Qi Wang, Hong-Xia Yuan, Meng-Jin Liu, Cong Chen, Jian-Gang Kang, Hong-Lian Li, and Ya-Fei Wang. 2025. "Genomic and Functional Analysis of Carbohydrate Esterases in the Maize Pathogen Exserohilum rostratum" Microorganisms 13, no. 11: 2588. https://doi.org/10.3390/microorganisms13112588
APA StyleWang, Z.-M., Wang, Z.-Q., Yuan, H.-X., Liu, M.-J., Chen, C., Kang, J.-G., Li, H.-L., & Wang, Y.-F. (2025). Genomic and Functional Analysis of Carbohydrate Esterases in the Maize Pathogen Exserohilum rostratum. Microorganisms, 13(11), 2588. https://doi.org/10.3390/microorganisms13112588

