In Situ Gel Containing Lippia sidoides Cham. Essential Oil for Microbial Control in the Oral Cavity
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Lippia Sidoides Cham. Essential Oil Extraction
2.3. Gas Chromatography Coupled with Mass Spectroscopy (GC-MS)
2.4. Preparation of In Situ Gels
2.5. Characterization of the Gels
2.6. Microbiological Tests
2.7. Minimum Inhibitory Concentration (MIC)
3. Results and Discussion
3.1. Characterization of Lippia Sidoides Cham. Essential Oil (LSEO)
3.2. Characterization of the Gels In Situ
3.3. Antimicrobial Activity of the In Situ Gels
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amora-Silva, B.F.; Ribeiro, S.C.; Vieira, C.L.; Mendes, F.R.; Vieira-Neto, A.E.; Abdon, A.P.V.; Costa, F.N.; Campos, A.R. Clinical Efficacy of New α-Bisabolol Mouthwashes in Postoperative Complications of Maxillofacial Surgeries: A Randomized, Controlled, Triple-Blind Clinical Trial. Clin. Oral Investig. 2019, 23, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Chye, R.M.L.; Perrotti, V.; Piattelli, A.; Iaculli, F.; Quaranta, A. Effectiveness of Different Commercial Chlorhexidine-Based Mouthwashes after Periodontal and Implant Surgery: A Systematic Review. Implant. Dent. 2019, 28, 74–85. [Google Scholar] [CrossRef] [PubMed]
- Cooney, C.M. PERSONAL CARE PRODUCTS: Triclosan Comes under Scrutiny. Environ. Health Perspect. 2010, 118, A242. [Google Scholar] [CrossRef] [PubMed]
- Ni, Z.-J.; Wang, X.; Shen, Y.; Thakur, K.; Han, J.; Zhang, J.-G.; Hu, F.; Wei, Z.-J. Recent Updates on the Chemistry, Bioactivities, Mode of Action, and Industrial Applications of Plant Essential Oils. Trends Food Sci. Technol. 2021, 110, 78–89. [Google Scholar] [CrossRef]
- Radu, C.-M.; Radu, C.C.; Bochiș, S.-A.; Arbănași, E.M.; Lucan, A.I.; Murvai, V.R.; Zaha, D.C. Revisiting the Therapeutic Effects of Essential Oils on the Oral Microbiome. Pharmacy 2023, 11, 33. [Google Scholar] [CrossRef]
- Yudaev, P.A.; Chistyakov, E.M. Progress in Dental Materials: Application of Natural Ingredients. Russ. Chem. Rev. 2024, 93, RCR5108. [Google Scholar] [CrossRef]
- Vasconcelos, T.; Prezotti, F.; Araújo, F.; Lopes, C.; Loureiro, A.; Marques, S.; Sarmento, B. Third-Generation Solid Dispersion Combining Soluplus and Poloxamer 407 Enhances the Oral Bioavailability of Resveratrol. Int. J. Pharm. 2021, 595, 120245. [Google Scholar] [CrossRef]
- Hsieh, H.-Y.; Lin, W.-Y.; Lee, A.L.; Li, Y.-C.; Chen, Y.; Chen, K.-C.; Young, T.-H. Hyaluronic Acid on the Urokinase Sustained Release with a Hydrogel System Composed of Poloxamer 407: HA/P407 Hydrogel System for Drug Delivery. PLoS ONE 2020, 15, e0227784. [Google Scholar] [CrossRef]
- Saraiva, A.G.Q.; Saraiva, G.D.; Albuquerque, R.L.; Nogueira, C.E.S.; Teixeira, A.M.R.; Lima, L.B.; Cruz, B.G.; de Sousa, F.F. Chemical Analysis and Vibrational Spectroscopy Study of Essential Oils from Lippia Sidoides and of Its Major Constituent. Vib. Spectrosc. 2020, 110, 103111. [Google Scholar] [CrossRef]
- Chaudhary, B.; Verma, S. Preparation and Evaluation of Novel In Situ Gels Containing Acyclovir for the Treatment of Oral Herpes Simplex Virus Infections. Sci. World J. 2014, 2014, 280928. [Google Scholar] [CrossRef]
- Ranch, K.M.; Maulvi, F.A.; Koli, A.R.; Desai, D.T.; Parikh, R.K.; Shah, D.O. Tailored Doxycycline Hyclate Loaded In Situ Gel for the Treatment of Periodontitis: Optimization, In Vitro Characterization, and Antimicrobial Studies. AAPS PharmSciTech 2021, 22, 77. [Google Scholar] [CrossRef]
- Almeida, M.; Magalhães, M.; Veiga, F.; Figueiras, A. Poloxamers, Poloxamines and Polymeric Micelles: Definition, Structure and Therapeutic Applications in Cancer. J. Polym. Res. 2018, 25, 31. [Google Scholar] [CrossRef]
- Bodratti, A.; Alexandridis, P. Formulation of Poloxamers for Drug Delivery. J. Funct. Biomater. 2018, 9, 11. [Google Scholar] [CrossRef]
- Mansuri, S.; Kesharwani, P.; Jain, K.; Tekade, R.K.; Jain, N.K. Mucoadhesion: A Promising Approach in Drug Delivery System. React. Funct. Polym. 2016, 100, 151–172. [Google Scholar] [CrossRef]
- Nakhil, U.; Seftian, M.; Adhyatmika, A.; Martien, R. Optimizing Ocular Therapy: A Synergistic Approach with Thermosensitive Poloxamer 407 and Chitosan in In Situ Gel Formulation. Res. J. Pharm. Technol. 2024, 17, 5349–5355. [Google Scholar] [CrossRef]
- Ullah, K.H.; Rasheed, F.; Naz, I.; Ul Haq, N.; Fatima, H.; Kanwal, N.; Ur-Rehman, T. Chitosan Nanoparticles Loaded Poloxamer 407 Gel for Transungual Delivery of Terbinafine HCl. Pharmaceutics 2022, 14, 2353. [Google Scholar] [CrossRef]
- Liu, X.; Ding, Q.; Liu, W.; Zhang, S.; Wang, N.; Chai, G.; Wang, Y.; Sun, S.; Zheng, R.; Zhao, Y.; et al. A Poloxamer 407/Chitosan-Based Thermosensitive Hydrogel Dressing for Diabetic Wound Healing via Oxygen Production and Dihydromyricetin Release. Int. J. Biol. Macromol. 2024, 263, 130256. [Google Scholar] [CrossRef]
- de CCoelho Junior, É.; Maciel, P.P.; de A. F. Muniz, I.; Silva, H.Y.; de Sousa, S.A.; Valença, A.M.; Dias, R.T.; Batista, A.U.; Figueiredo, L.R.; de Medeiros, E.S.; et al. Poloxamer 407/Chitosan Micelles Can Improve α-Tocopherol Effect on Oral Keratinocytes Proliferation. J. Mater. Res. 2021, 36, 1447–1455. [Google Scholar] [CrossRef]
- de Lima, C.S.A.; Varca, J.P.R.O.; Alves, V.M.; Nogueira, K.M.; Cruz, C.P.C.; Rial-Hermida, M.I.; Kadłubowski, S.S.; Varca, G.H.C.; Lugão, A.B. Mucoadhesive Polymers and Their Applications in Drug Delivery Systems for the Treatment of Bladder Cancer. Gels 2022, 8, 587. [Google Scholar] [CrossRef]
- CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard—Ninth Edition; CLSI Document M07-A9; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012. [Google Scholar]
- CLSI. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard—Third Edition; CLSI Document M27-A3; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008. [Google Scholar]
- Gusmão, I.C.C.P.; Pithon, M.M.; dos Santos, A.E.; Silva, T.S.; Sampaio, F.C. Antibacterial Activity of Lippia Sidoides Cham against Periodontopathogens: An in Vitro Study. Res. Soc. Dev. 2022, 11, e3311727141. [Google Scholar] [CrossRef]
- Araújo Marco, C.; Teixeira, E.; Simplício, A.; Oliveira, C.; Costa, J.; Feitosa, J. Chemical Composition and Allelopathyc Activity of Essential Oil of Lippia Sidoides Cham. Chil. J. Agric. Res. 2012, 72, 157–160. [Google Scholar] [CrossRef]
- Pontremoli, C.; Boffito, M.; Fiorilli, S.; Laurano, R.; Torchio, A.; Bari, A.; Tonda-Turo, C.; Ciardelli, G.; Vitale-Brovarone, C. Hybrid Injectable Platforms for the in Situ Delivery of Therapeutic Ions from Mesoporous Glasses. Chem. Eng. J. 2018, 340, 103–113. [Google Scholar] [CrossRef]
- Pardeshi, S.R.; More, M.P.; Patil, P.B.; Mujumdar, A.; Naik, J.B. Statistical Optimization of Voriconazole Nanoparticles Loaded Carboxymethyl Chitosan-Poloxamer Based in Situ Gel for Ocular Delivery: In Vitro, Ex Vivo, and Toxicity Assessment. Drug Deliv. Transl. Res. 2022, 12, 3063–3082. [Google Scholar] [CrossRef] [PubMed]
- Schulz, H.; Özkan, G.; Baranska, M.; Krüger, H.; Özcan, M. Characterisation of Essential Oil Plants from Turkey by IR and Raman Spectroscopy. Vib. Spectrosc. 2005, 39, 249–256. [Google Scholar] [CrossRef]
- Fontenelle, R.O.S.; Morais, S.M.; Brito, E.H.S.; Kerntopf, M.R.; Brilhante, R.S.N.; Cordeiro, R.A.; Tomé, A.R.; Queiroz, M.G.R.; Nascimento, N.R.F.; Sidrim, J.J.C.; et al. Chemical Composition, Toxicological Aspects and Antifungal Activity of Essential Oil from Lippia Sidoides Cham. J. Antimicrob. Chemother. 2007, 59, 934–940. [Google Scholar] [CrossRef] [PubMed]
- Branca, C.; D’Angelo, G.; Crupi, C.; Khouzami, K.; Rifici, S.; Ruello, G.; Wanderlingh, U. Role of the OH and NH Vibrational Groups in Polysaccharide-Nanocomposite Interactions: A FTIR-ATR Study on Chitosan and Chitosan/Clay Films. Polymer 2016, 99, 614–622. [Google Scholar] [CrossRef]
- Kim, I.-Y.; Yoo, M.-K.; Kim, B.-C.; Kim, S.-K.; Lee, H.-C.; Cho, C.-S. Preparation of Semi-Interpenetrating Polymer Networks Composed of Chitosan and Poloxamer. Int. J. Biol. Macromol. 2006, 38, 51–58. [Google Scholar] [CrossRef]
- de Souza, M.P.C.; Sábio, R.M.; Ribeiro, T.d.C.; dos Santos, A.M.; Meneguin, A.B.; Chorilli, M. Highlighting the Impact of Chitosan on the Development of Gastroretentive Drug Delivery Systems. Int. J. Biol. Macromol. 2020, 159, 804–822. [Google Scholar] [CrossRef]
- Furtado, G.T.F.d.S.; Fideles, T.B.; Cruz, R.d.C.A.L.; Souza, J.W.d.L.; Rodriguez Barbero, M.A.; Fook, M.V.L. Chitosan/NaF Particles Prepared Via Ionotropic Gelation: Evaluation of Particles Size and Morphology. Mater. Res. 2018, 21, e20180101. [Google Scholar] [CrossRef]
- Tiyaboonchai, W. Chitosan Nanoparticles: A Promising System for Drug Delivery. Naresuan Univ. J. Sci. Technol. 2003, 11, 51–66. [Google Scholar]
- Shelke, S.; Shahi, S.; Jalalpure, S.; Dhamecha, D.; Shengule, S. Formulation and Evaluation of Thermoreversible Mucoadhesive In-Situ Gel for Intranasal Delivery of Naratriptan Hydrochloride. J. Drug Deliv. Sci. Technol. 2015, 29, 238–244. [Google Scholar] [CrossRef]
- Baldim, I.; Rosa, D.M.; Souza, C.R.F.; Da Ana, R.; Durazzo, A.; Lucarini, M.; Santini, A.; Souto, E.B.; Oliveira, W.P. Factors Affecting the Retention Efficiency and Physicochemical Properties of Spray Dried Lipid Nanoparticles Loaded with Lippia Sidoides Essential Oil. Biomolecules 2020, 10, 693. [Google Scholar] [CrossRef]
- Panomsuk, S.; Keawsri, K.; Limsatjapanit, C.; Asaneesantiwong, N.; Chomto, P.; Satiraphan, M. Development of Clove Oil In Situ Gels for Buccal Mucoadhesive. Key Eng. Mater. 2020, 859, 57–61. [Google Scholar] [CrossRef]
- Ferreira, S.B.D.S.; Dias Moço, T.; Borghi-Pangoni, F.B.; Junqueira, M.V.; Bruschi, M.L. Rheological, mucoadhesive and textural properties of thermoresponsive polymer blends for biomedical application. J. Mech. Behav. Biomed. Mater. 2016, 55, 164–178. [Google Scholar] [CrossRef]
- Furlan, G.; da Silva, J.B.; Bruschi, M.L. Improvement of the Mechanical, Rheological and Bioadhesive Properties of Environmentally Responsive Systems Containing Different Cellulose Derivatives for Quercetin Topical Application. Mater. Today Commun. 2025, 42, 111420. [Google Scholar] [CrossRef]
- Liao, Y.; Sun, Y.; Wang, Z.; Zhong, M.; Li, R.; Yan, S.; Qi, B.; Li, Y. Structure, Rheology, and Functionality of Emulsion-Filled Gels: Effect of Various Oil Body Concentrations and Interfacial Compositions. Food Chem. X 2022, 16, 100509. [Google Scholar] [CrossRef] [PubMed]
- Russo, E.; Villa, C. Poloxamer Hydrogels for Biomedical Applications. Pharmaceutics 2019, 11, 671. [Google Scholar] [CrossRef] [PubMed]
- Schmolka, I.R. Physical Basis for Poloxamer Interactions. Ann. N. Y. Acad. Sci. 1994, 720, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Soriano-Ruiz, J.L.; Calpena-Campmany, A.C.; Silva-Abreu, M.; Halbout-Bellowa, L.; Bozal-de Febrer, N.; Rodríguez-Lagunas, M.J.; Clares-Naveros, B. Design and Evaluation of a Multifunctional Thermosensitive Poloxamer-Chitosan-Hyaluronic Acid Gel for the Treatment of Skin Burns. Int. J. Biol. Macromol. 2020, 142, 412–422. [Google Scholar] [CrossRef]
- ISO 16408:2015; Dentistry—Oral Care Products—General Requirements for Oral Rinses. European Committee for Standardization (CEN): Brussels, Belgium, 2015.
- van Swaaij, B.W.M.; Slot, D.E.; Van der Weijden, G.A.; Timmerman, M.F.; Ruben, J. Fluoride, PH Value, and Titratable Acidity of Commercially Available Mouthwashes. Int. Dent. J. 2024, 74, 260–267. [Google Scholar] [CrossRef]
- Silva, G.C.; Veras, B.O.; Assis, C.R.D.; Navarro, D.M.d.A.F.; Diniz, D.L.V.; Brayner dos Santos, F.A.; Aguiar, J.C.R.d.O.F.; Silva, M.V.; Santos Correia, M.T. Chemical Composition, Antimicrobial Activity and Synergistic Effects with Conventional Antibiotics under Clinical Isolates by Essential Oil of Hymenaea rubriflora Ducke (FABACEAE). Nat. Prod. Res. 2021, 35, 4828–4832. [Google Scholar] [CrossRef] [PubMed]
- Veras, H.N.H.; Rodrigues, F.F.G.; Botelho, M.A.; Menezes, I.R.A.; Coutinho, H.D.M.; Costa, J.G.M. Enhancement of Aminoglycosides and β-Lactams Antibiotic Activity by Essential Oil of Lippia Sidoides Cham. and the Thymol. Arab. J. Chem. 2017, 10, S2790–S2795. [Google Scholar] [CrossRef]
- Brito, D.; Morais-Braga, M.; Cunha, F.; Albuquerque, R.; Carneiro, J.; Lima, M.; Leite, N.; Souza, C.; Andrade, J.; Alencar, L.; et al. Análise Fitoquímica e Atividade Antifúngica Do Óleo Essencial de Folhas de Lippia Sidoides Cham. e Do Timol Contra Cepas de Candida Spp. Rev. Bras. Plantas Med. 2015, 17, 836–844. [Google Scholar] [CrossRef]
- Pérez Zamora, C.; Torres, C.; Nuñez, M. Antimicrobial Activity and Chemical Composition of Essential Oils from Verbenaceae Species Growing in South America. Molecules 2018, 23, 544. [Google Scholar] [CrossRef]
- Baldim, I.; Tonani, L.; von Zeska Kress, M.R.; Pereira Oliveira, W. Lippia Sidoides Essential Oil Encapsulated in Lipid Nanosystem as an Anti-Candida Agent. Ind. Crops Prod. 2019, 127, 73–81. [Google Scholar] [CrossRef]
- Zanotto, A.W.; Kanemaru, M.Y.S.; de Souza, F.G.; Duarte, M.C.T.; de Andrade, C.J.; Pastore, G.M. Enhanced Antimicrobial and Antioxidant Capacity of Thymus Vulgaris, Lippia Sidoides, and Cymbopogon Citratus Emulsions When Combined with Mannosylerythritol a Lipid Biosurfactant. Food Res. Int. 2023, 163, 112213. [Google Scholar] [CrossRef]
- Arana-Sánchez, A.; Estarrón-Espinosa, M.; Obledo-Vázquez, E.N.; Padilla-Camberos, E.; Silva-Vázquez, R.; Lugo-Cervantes, E. Antimicrobial and Antioxidant Activities of Mexican Oregano Essential Oils (Lippia graveolens H. B. K.) with Different Composition When Microencapsulated Inβ-Cyclodextrin. Lett. Appl. Microbiol. 2010, 50, 585–590. [Google Scholar] [CrossRef]
- Bakry, A.M.; Abbas, S.; Ali, B.; Majeed, H.; Abouelwafa, M.Y.; Mousa, A.; Liang, L. Microencapsulation of Oils: A Comprehensive Review of Benefits, Techniques, and Applications. Compr. Rev. Food Sci. Food Saf. 2016, 15, 143–182. [Google Scholar] [CrossRef]




| Groups | P407 (%) | TPP (%) | Q (%) | OELS (%) |
|---|---|---|---|---|
| P | 20 | 0.03 | - | - |
| PLS1 | 20 | 0.03 | - | 1 |
| PLS0.5 | 20 | 0.03 | - | 0.5 |
| PLS0.2 | 20 | 0.03 | - | 0.25 |
| PC | 20 | 0.03 | 0.024 | - |
| PCLS1 | 20 | 0.03 | 0.024 | 1 |
| PCLS0.5 | 20 | 0.03 | 0.024 | 0.5 |
| PCLS0.2 | 20 | 0.03 | 0.024 | 0.25 |
| Compounds | Retention Time (min) | Concentration (%) | RI |
|---|---|---|---|
| α-Pinene | 6.030 | 0.40 | 935 |
| 1-Octen-3-ol | 6.877 | 0.37 | 982 |
| β-Myrcene | 7.070 | 1.77 | 993 |
| 4-Carene | 7.535 | 0.66 | 1023 |
| Isopropyl p-Cymene | 7.678 | 10.22 | 1033 |
| Limonene (l-isomer) | 7.753 | 0.54 | 1038 |
| Eucalyptol | 7.805 | 0.34 | 1042 |
| Isomeric geraniol | 8.911 | 0.46 | 1119 |
| Ipsdienol | 9.501 | 0.50 | 1160 |
| Terpinen-4-ol | 9.913 | 1.31 | 1188 |
| Methoxycymene | 10.493 | 0.76 | 1314 |
| Thymol | 11.063 | 71.04 | 1472 |
| Carvacrol | 11.150 | 0.43 | 1496 |
| β-Caryophyllene (E-caryophyllene) | 12.218 | 6.32 | 1677 |
| α-Bergamotene (trans) | 12.270 | 0.41 | 1673 |
| Guaiene derivative | 12.368 | 0.90 | 1666 |
| cis-α-Bergamotene | 12.479 | 0.37 | 1658 |
| Methyl eugenol | 12.594 | 0.61 | 1650 |
| β-Bisabolene | 12.783 | 1.31 | 1637 |
| Caryophyllene oxide | 13.427 | 1.28 | 1615 |
| Groups | Temperature (Tsol–Gel) (°C) | Time (Tsol–Gel) 37 °C (s) |
|---|---|---|
| P | 28 ± 1 | 39.31 ± 6.53 |
| PLS0.2 | 26 ± 1 | 43.13 ± 3.72 |
| PLS0.5 | 24 ± 1 | 26.52 ± 5.05 |
| PLS1 | 20 ± 1 | 23.32 ± 3.63 |
| PC | 28 ± 1 | 46.46 ± 8.89 |
| PCLS0.2 | 26 ± 1 | 38.62 ± 8.64 |
| PCLS0.5 | 24 ± 1 | 27.48 ± 7.97 |
| PCLS1 | 20 ± 1 | 18.76 ± 1.24 |
| Groups | Initial pH ± SD | pH Value After 30 Days (% of Variation *) | ||
|---|---|---|---|---|
| 4 ± 2 °C | 25 ± 2 °C | 45 ± 2 °C | ||
| P | 6.75 ± 0.03 | 6.87 (1.68) | 7.11 (5.23) | 7.15 (5.86) |
| PLS1 | 6.96 ± 0.03 | 6.96 (0.05) | 6.97 (0.10) | 7.12 (2.35) |
| PLS0.5 | 6.84 ± 0.01 | 6.93 (1.27) | 6.80 (0.54) | 7.05 (3.07) |
| PLS0.2 | 6.8 ± 0.01 | 6.89 (1.22) | 7.07 (3.82) | 7.2 (5.73) |
| PC | 5.82 ± 0.03 | 5.85 (0.34) | 5.67 (2.63) | 5.98 (2.69) |
| PCLS1 | 5.74 ± 0.01 | 5.78 (0.75) | 5.64 (3.54) | 5.88 (2.38) |
| PCLS0.5 | 5.83 ± 0.02 | 5.85 (0.29) | 5.95 (1.94) | 5.95 (1.94) |
| PCLS0.2 | 5.88 ± 0.01 | 5.87 (0.23) | 5.89 (0.23) | 6.01 (2.15) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dantas, M.V.O.; da Silva, Q.P.; Júnior, A.A.; Queiroz, J.V.S.A.; Rodrigues, J.F.B.; Rosendo, R.A.; Fook, M.V.L.; Bonan, P.R.F.; Júnior, F.H.X.; Sampaio, F.C. In Situ Gel Containing Lippia sidoides Cham. Essential Oil for Microbial Control in the Oral Cavity. Microorganisms 2025, 13, 2585. https://doi.org/10.3390/microorganisms13112585
Dantas MVO, da Silva QP, Júnior AA, Queiroz JVSA, Rodrigues JFB, Rosendo RA, Fook MVL, Bonan PRF, Júnior FHX, Sampaio FC. In Situ Gel Containing Lippia sidoides Cham. Essential Oil for Microbial Control in the Oral Cavity. Microorganisms. 2025; 13(11):2585. https://doi.org/10.3390/microorganisms13112585
Chicago/Turabian StyleDantas, Maria Vitoria Oliveira, Quemuel Pereira da Silva, Alexandre Almeida Júnior, João Vitor Souto Araújo Queiroz, José Filipe Bacalhau Rodrigues, Rosana Araújo Rosendo, Marcus Vinicius Lia Fook, Paulo Rogério Ferreti Bonan, Francisco Humberto Xavier Júnior, and Fábio Correia Sampaio. 2025. "In Situ Gel Containing Lippia sidoides Cham. Essential Oil for Microbial Control in the Oral Cavity" Microorganisms 13, no. 11: 2585. https://doi.org/10.3390/microorganisms13112585
APA StyleDantas, M. V. O., da Silva, Q. P., Júnior, A. A., Queiroz, J. V. S. A., Rodrigues, J. F. B., Rosendo, R. A., Fook, M. V. L., Bonan, P. R. F., Júnior, F. H. X., & Sampaio, F. C. (2025). In Situ Gel Containing Lippia sidoides Cham. Essential Oil for Microbial Control in the Oral Cavity. Microorganisms, 13(11), 2585. https://doi.org/10.3390/microorganisms13112585

