Synergistic Interactions Between Natural Phenolic Compounds and Antibiotics Against Multidrug-Resistant K. pneumoniae: A Pooled Analysis of 216 In Vitro Tests
Abstract
1. Introduction
2. Materials and Methods
- Use of non-standardized crude extracts or essential oils.
- Lack of reported FICI values or MIC data for both single agents and their combinations.
- Use of K. pneumoniae isolates susceptible to polymyxins, carbapenems, quinolones, or cephalosporins.
- Duplicate data or overlapping isolate collections.
- Antibiotic name and mechanistic class;
- Natural phenolic compound;
- MIC values for each agent alone and in combination;
- FICI values.
- Robust: median FICI ≤ 0.5 and range ≤ 0.5;
- Inconsistent: median FICI ≤ 1.0 and range > 2.0;
- Moderate: not meeting the above thresholds;
- Inconclusive: fewer than three replicate observations (n < 3).
3. Results
3.1. Synergistic Activity of Natural Phenolic Compounds with Conventional Antibiotics
3.2. Comparative In Vitro Synergistic Effects of Natural Phenolic Compounds with Key Antibiotics Against MDR K. pneumoniae
3.3. Synergistic Potency vs. FICI Variability
3.4. SAR Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, P.; Mao, Y.; Chen, Q.; Luo, X.; Lin, R.; Zheng, C. Clinical Characteristics and Independent Risk Factors for Multidrug-Resistant Klebsiella Pneumoniae Bloodstream Infections: A Retrospective Analysis from China. Infect. Drug Resist. 2025, 18, 3993–4006. [Google Scholar] [CrossRef]
- Santella, B.; Boccella, M.; Folliero, V.; Iervolino, D.; Pagliano, P.; Fortino, L.; Serio, B.; Vozzella, E.A.; Schiavo, L.; Galdiero, M.; et al. Antimicrobial Susceptibility Profiles of Klebsiella Pneumoniae Strains Collected from Clinical Samples in a Hospital in Southern Italy. Can. J. Infect. Dis. Med. Microbiol. = J. Can. Mal. Infect. Microbiol. Méd. 2024, 2024, 5548434. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Kumar, S.; Zhang, L.; Wu, H.; Wu, H. Characteristics of Antibiotic Resistance Mechanisms and Genes of Klebsiella Pneumoniae. Open Med. 2023, 18, 20230707. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Xu, C.; Zhu, Z.; Zhang, C.; Qin, C.; Liu, J.; Kong, X.; Zhu, Z.; Xu, W.; Zhu, M. Multidrug-Resistant Klebsiella Pneumoniae Coinfection with Multiple Microbes: A Retrospective Study on Its Risk Factors and Clinical Outcomes. mSystems 2025, 10, e01757-24. [Google Scholar] [CrossRef] [PubMed]
- Willy, C.; Bröcker, F. Health Economic Significance of Antimicrobial Resistance. Bundesgesundheitsbl.-Gesundheitsforsch.-Gesundheitsschutz 2025, 68, 584–592. [Google Scholar] [CrossRef]
- Yi, H.; Yuan, G.; Li, S.; Xu, X.; Guan, Y.; Zhang, L.; Yan, Y. Drug Combinations to Prevent Antimicrobial Resistance: Various Correlations and Laws, and Their Verifications, Thus Proposing Some Principles and a Preliminary Scheme. Antibiotics 2022, 11, 1279. [Google Scholar] [CrossRef]
- Jacobs, D.M.; Safir, M.C.; Huang, D.; Minhaj, F.; Parker, A.; Rao, G.G. Triple Combination Antibiotic Therapy for Carbapenemase-Producing Klebsiella Pneumoniae: A Systematic Review. Ann. Clin. Microbiol. Antimicrob. 2017, 16, 76. [Google Scholar] [CrossRef]
- Marino, A.; Maraolo, A.E.; Mazzitelli, M.; Oliva, A.; Geremia, N.; De Vito, A.; Gullotta, C.; Scaglione, V.; Vania, E.; Lo Menzo, S.; et al. Head-to-Head: Meropenem/Vaborbactam versus Ceftazidime/Avibactam in ICUs Patients with KPC-Producing K. Pneumoniae Infections–Results from a Retrospective Multicentre Study. Infection 2025. [Google Scholar] [CrossRef]
- Mott, M.P.; Moreira, N.K.; Collar, G.; Scalco, S.; Martins, J.B.; Vieira, P.; Pereira, D.; de Oliveira, G.S.; Martins, A.F.; Barth, A.; et al. First Report of Ceftazidime-Avibactam Resistance in Non-Mutated BlaKPC-3 K. Pneumoniae Recovered from Patients with No Prior Treatment, in Latin America. Diagn. Microbiol. Infect. Dis. 2025, 113, 116965. [Google Scholar] [CrossRef]
- Tang, B.; Meng, T.; Tian, L.; Zhong, M.; Dai, Y.; Tian, R.; Pan, T.; Sun, J.; Tan, R.; Wang, X.; et al. Within-Host Resistance Evolution of ST15 Klebsiella Pneumoniae in an ICU Immunosuppressed Patient under Antibiotic Pressure of Polymyxins, Ceftazidime-Avibactam, and Meropenem. Int. J. Antimicrob. Agents 2025, 66, 107554. [Google Scholar] [CrossRef]
- Gaibani, P.; Lombardo, D.; Bussini, L.; Bovo, F.; Munari, B.; Giannella, M.; Bartoletti, M.; Viale, P.; Lazzarotto, T.; Ambretti, S. Epidemiology of Meropenem/Vaborbactam Resistance in KPC-Producing Klebsiella Pneumoniae Causing Bloodstream Infections in Northern Italy, 2018. Antibiotics 2021, 10, 536. [Google Scholar] [CrossRef]
- Halder, G.; Chaudhuri, B.N.; Veeraraghavan, B.; Denny, P.; Dutta, P.; Chakraborty, M.; Khan, U.R.; Ganguly, S.S.; Mandal, S.; Upadhyaya, Y.P.; et al. Antimicrobial Resistance and Phylogenetic Lineages of KPC-2-Producing Blood-Borne Klebsiella Pneumoniae Subsp. Pneumoniae from Kolkata, India during 2015–2024: Emergence of Klebsiella Pneumoniae Subsp. Pneumoniae with BlaKPC-2, BlaNDM, and BlaOXA-48-like Triple Carbapenemases. Microbiol. Spectr. 2025, 13, e00126-25. [Google Scholar] [CrossRef]
- Brüssow, H. The Antibiotic Resistance Crisis and the Development of New Antibiotics. Microb. Biotechnol. 2024, 17, e14510. [Google Scholar] [CrossRef]
- Dhanda, G.; Acharya, Y.; Haldar, J. Antibiotic Adjuvants: A Versatile Approach to Combat Antibiotic Resistance. ACS Omega 2023, 8, 10757. [Google Scholar] [CrossRef] [PubMed]
- D’andrea, M.M.; Fraziano, M.; Thaller, M.C.; Rossolini, G.M. The Urgent Need for Novel Antimicrobial Agents and Strategies to Fight Antibiotic Resistance. Antibiotics 2019, 8, 254. [Google Scholar] [CrossRef] [PubMed]
- Worthington, R.J.; Melander, C. Combination Approaches to Combat Multi-Drug Resistant Bacteria. Trends Biotechnol. 2013, 31, 177. [Google Scholar] [CrossRef] [PubMed]
- Duda-Madej, A.; Viscardi, S.; Niezgódka, P.; Szewczyk, W.; Wińska, K. The Impact of Plant-Derived Polyphenols on Combating Efflux-Mediated Antibiotic Resistance. Int. J. Mol. Sci. 2025, 26, 4030. [Google Scholar] [CrossRef]
- Mandal, S.M.; Dias, R.O.; Franco, O.L. Phenolic Compounds in Antimicrobial Therapy. J. Med. Food 2017, 20, 1031–1038. [Google Scholar] [CrossRef]
- Saifi, S.; Ashraf, A.; Hasan, G.M.; Shamsi, A.; Hassan, M.I. Insights into the Preventive Actions of Natural Compounds against Klebsiella Pneumoniae Infections and Drug Resistance. Fitoterapia 2024, 173, 105811. [Google Scholar] [CrossRef]
- Luna-Pineda, V.M.; Rodríguez-Martínez, G.; Salazar-García, M.; Romo-Castillo, M. Plant-Origin Components: New Players to Combat Antibiotic Resistance in Klebsiella Pneumoniae. Int. J. Mol. Sci. 2024, 25, 2134. [Google Scholar] [CrossRef]
- Santos, C.A.; Lima, E.M.F.; de Franco, B.D.G.M.; Pinto, U.M. Exploring Phenolic Compounds as Quorum Sensing Inhibitors in Foodborne Bacteria. Front. Microbiol. 2021, 12, 735931. [Google Scholar] [CrossRef] [PubMed]
- Lima, E.M.F.; Winans, S.C.; Pinto, U.M. Quorum Sensing Interference by Phenolic Compounds—A Matter of Bacterial Misunderstanding. Heliyon 2023, 9, e17657. [Google Scholar] [CrossRef] [PubMed]
- Farhadi, K.; Rajabi, E.; Varpaei, H.A.; Iranzadasl, M.; Khodaparast, S.; Salehi, M. Thymol and Carvacrol against Klebsiella: Anti-Bacterial, Anti-Biofilm, and Synergistic Activities—A Systematic Review. Front. Pharmacol. 2024, 15, 1487083. [Google Scholar] [CrossRef] [PubMed]
- Karasu, E.; Nilsson, B.; Köhl, J.; Lambris, J.D.; Huber-Lang, M. Targeting Complement Pathways in Polytrauma- and Sepsis-Induced Multiple-Organ Dysfunction. Front. Immunol. 2019, 10, 543, Erratum in Front. Immunol. 2019, 10, 994. [Google Scholar] [CrossRef]
- Zhou, Z.; Duan, Y.; Li, Y.; Zhang, P.; Li, Q.; Yu, L.; Han, C.; Huo, J.; Chen, W.; Xiao, Y. CYP98A Monooxygenases: A Key Enzyme Family in Plant Phenolic Compound Biosynthesis. Hortic. Res. 2025, 12, uhaf074. [Google Scholar] [CrossRef]
- Guo, P.; Li, Z.; Cai, T.; Guo, D.; Yang, B.; Zhang, C.; Shan, Z.; Wang, X.; Peng, X.; Liu, G.; et al. Inhibitory Effect and Mechanism of Oregano Essential Oil on Listeria Monocytogenes Cells, Toxins and Biofilms. Microb. Pathog. 2024, 194, 106801. [Google Scholar] [CrossRef]
- Shih, Y.H.; Tsai, P.J.; Chen, Y.L.; Pranata, R.; Chen, R.J. Assessment of the Antibacterial Mechanism of Pterostilbene against Bacillus Cereus through Apoptosis-like Cell Death and Evaluation of Its Beneficial Effects on the Gut Microbiota. J. Agric. Food Chem. 2021, 69, 12219–12229. [Google Scholar] [CrossRef]
- Oktyabrsky, O.N.; Bezmaternykh, K.V.; Smirnova, G.V.; Tyulenev, A.V. Effect of Resveratrol and Quercetin on the Susceptibility of Escherichia Coli to Antibiotics. World J. Microbiol. Biotechnol. 2020, 36, 167. [Google Scholar] [CrossRef]
- Surendran Nair, M.; Ma, F.; Lau, P.; Upadhyaya, I.; Venkitanarayanan, K. Inactivation of Escherichia Coli O157:H7 in Apple Cider by Resveratrol and Naringenin. Food Microbiol. 2020, 86, 103327. [Google Scholar] [CrossRef]
- Goswami, S.; Ghosh, M.; Roy, S.; Basak, S.; Bhattacharjee, S. Quercetin Combined with Ciprofloxacin and Gentamicin Inhibits Biofilm Formation and Virulence in Staphylococcus Aureus. Microb. Pathog. 2025, 200, 107297. [Google Scholar] [CrossRef]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An Overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Chen, Y.; Li, B.; Zhang, Z.; Qin, G.; Chen, T.; Tian, S. Molecular Mechanisms Underlying Multi-Level Defense Responses of Horticultural Crops to Fungal Pathogens. Hortic. Res. 2022, 9, uhac066. [Google Scholar] [CrossRef] [PubMed]
- Surjadinata, B.B.; Jacobo-Velázquez, D.A.; Cisneros-Zevallos, L. UVA, UVB and UVC Light Enhances the Biosynthesis of Phenolic Antioxidants in Fresh-Cut Carrot through a Synergistic Effect with Wounding. Molecules 2017, 22, 668. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Xiao, M.; Zhao, J.; Li, Z.; Xing, B.; Li, X.; Kong, M.; Li, L.; Zhang, Q.; Liu, Y.; et al. An Overview of Plant Phenolic Compounds and Their Importance in Human Nutrition and Management of Type 2 Diabetes. Molecules 2016, 21, 1374. [Google Scholar] [CrossRef]
- Safe, S.; Jayaraman, A.; Chapkin, R.S.; Howard, M.; Mohankumar, K.; Shrestha, R. Flavonoids: Structure–Function and Mechanisms of Action and Opportunities for Drug Development. Toxicol. Res. 2021, 37, 147. [Google Scholar] [CrossRef]
- Botten, D.; Fugallo, G.; Fraternali, F.; Molteni, C. Structural Properties of Green Tea Catechins. J. Phys. Chem. B 2015, 119, 12860–12867. [Google Scholar] [CrossRef]
- Varga, K.; Paszternák, A.; Kovács, V.; Guczogi, A.; Sikur, N.; Patakfalvi, D.; Bagaméry, F.; Szökő, É.; Tábi, T. Differential Cytoprotective Effect of Resveratrol and Its Derivatives: Focus on Antioxidant and Autophagy-Inducing Effects. Int. J. Mol. Sci. 2024, 25, 11274. [Google Scholar] [CrossRef]
- Kashi, M.; Farahani, A.; Ahmadi, A.; Shariati, A.; Akbari, M. Antibacterial and Antibiofilm Efficacy of Eugenol, Carvacrol, and Cinnamaldehyde against Colistin-Resistant Klebsiella Pneumoniae. Mol. Biol. Rep. 2025, 52, 480. [Google Scholar] [CrossRef]
- Rochin-Medina, J.J.; Mendoza-Lopez, I.A.; Castro-Del Campo, N.; Bastidas-Bastidas, P.J.; Ramirez, K. Activity of Plant Essential Oils against Clinically and Environmentally Isolated Salmonella Enterica Serotypes: In Vitro Assays and Molecular Docking. Lett. Appl. Microbiol. 2023, 76, ovad045. [Google Scholar] [CrossRef]
- Moreno-Gámez, S.; Hochberg, M.E.; van Doorn, G.S. Quorum Sensing as a Mechanism to Harness the Wisdom of the Crowds. Nat. Commun. 2023, 14, 3415. [Google Scholar] [CrossRef]
- Haque, S.; Yadav, D.K.; Bisht, S.C.; Yadav, N.; Singh, V.; Dubey, K.K.; Jawed, A.; Wahid, M.; Dar, S.A. Quorum Sensing Pathways in Gram-Positive and -Negative Bacteria: Potential of Their Interruption in Abating Drug Resistance. J. Chemother. 2019, 31, 161–187. [Google Scholar] [CrossRef]
- Datta, S.; Singh, V.; Nag, S.; Roy, D.N. Carvacrol, a Monoterpenoid, Binds Quorum Sensing Proteins (LasI and LasR) and Swarming Motility Protein BswR of Pseudomonas Aeruginosa, Resulting in Loss of Pathogenicity: An in Silico Approach. Can. J. Microbiol. 2025, 71, 1–15. [Google Scholar] [CrossRef]
- Gao, X.; Gao, X.; Hua, Z.; Alhomrani, M.; Shi, C.; Lin, L.; Zhu, Y. Exploring Inhibition of Listeria Monocytogenes Biofilm by Carvacrol Based on Action to Quorum Sensing. Food Biosci. 2025, 63, 105790. [Google Scholar] [CrossRef]
- Salim, S.A.; Mohan, M.S.; Ranganathan, S.; Parasuraman, P.; Lee, J.K.; Ramatchandirane, M.; Suchiang, K.; Busi, S. Derrisisoflavone-B Interferes with AHL-Mediated Quorum Sensing of Pseudomonas Aeruginosa and Decreased Pathogenicity in Caenorhabditis Elegans Infection Model. Microb. Pathog. 2025, 206, 107738. [Google Scholar] [CrossRef] [PubMed]
- Frikha, F.; Jardak, M.; Aifa, S.; Mnif, S. A Novel Perspective on Eugenol as a Natural Anti-Quorum Sensing Molecule against Serratia sp. Microb. Pathog. 2024, 189, 106576. [Google Scholar] [CrossRef]
- Allahyari, H.; Shamsini, L.; Zamani, H. Dual Encapsulation of Curcumin and Ciprofloxacin in Chitosan Nanoparticles Attenuates Pseudomonas Aeruginosa Virulence, Elastinolytic Potential and Quorum Sensing Genes. Microb. Pathog. 2025, 202, 107438. [Google Scholar] [CrossRef]
- Deng, J.; Yuan, Y.; Wu, Y.; Wen, F.; Yang, X.; Gou, S.; Chu, Y.; Zhao, K. Isovanillin Decreases the Virulence Regulated by the Quorum Sensing System of Pseudomonas Aeruginosa. Microb. Pathog. 2024, 196, 107010. [Google Scholar] [CrossRef]
- Pandey, P.; Rao, L.; Shekhar, B.R.; Das, D.K.; Vavilala, S.L. Molecular Insights into Flavone-Mediated Quorum Sensing Interference: A Novel Strategy against Serratia Marcescens Biofilm-Induced Antibiotic Resistance. Chem. Biol. Interact. 2024, 396, 111027. [Google Scholar] [CrossRef]
- Dey, P.; De, R.; Parai, D.; Hossain, S.T.; Mukherjee, S.K. Enhanced Antimicrobial Activity of Naringin-Ciprofloxacin Combination against Pseudomonas Aeruginosa PAO1: Unveiling Quorum-Sensing Mediated Molecular Mechanisms in Biofilm Formation and Virulence. Microbe 2024, 5, 100171. [Google Scholar] [CrossRef]
- Wijesundara, N.M.; Lee, S.F.; Rupasinghe, H.P.V. Carvacrol Inhibits Streptococcus Pyogenes Biofilms by Suppressing the Expression of Genes Associated with Quorum-Sensing and Reducing Cell Surface Hydrophobicity. Microb. Pathog. 2022, 169, 105684. [Google Scholar] [CrossRef]
- Leitão, M.M.; Gonçalves, A.S.C.; Sousa, S.F.; Borges, F.; Simões, M.; Borges, A. Two Cinnamic Acid Derivatives as Inhibitors of Pseudomonas Aeruginosa Las and Pqs Quorum-Sensing Systems: Impact on Biofilm Formation and Virulence Factors. Biomed. Pharmacother. 2025, 187, 118090. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; He, B.; Li, Z.P.; Zhong, Q.; Liu, Y.C.; Zhang, H.Y.; Li, Y.; Yan, H.L.; Hu, Y.L.; Zheng, Z.J.; et al. Rutin Synergizes with Colistin to Eradicate Salmonellosis in Mice by Enhancing the Efficacy and Reducing the Toxicity. J. Agric. Food Chem. 2025, 73, 438–449. [Google Scholar] [CrossRef] [PubMed]
- Elshimy, R.; El-Shiekh, R.A.; Okba, M.M.; Ashour, R.M.S.; Ibrahim, M.A.; Hassanen, E.I.; Aboul-Ella, H.; Ali, M.E. Unveiling the Antimicrobial, Antivirulence, and Wound-Healing Accelerating Potentials of Resveratrol against Carbapenem-Resistant Pseudomonas Aeruginosa (CRPA)-Septic Wound in a Murine Model. Inflammopharmacology 2024, 33, 401. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Zhu, X.; Gao, X.J.; Yang, H.; Li, H.; Du, Y.; Gao, J.; Chen, Z.; Dong, H.; Wang, B.; et al. Kaempferol Mitigates Sepsis-Induced Acute Lung Injury by Modulating the SphK1/S1P/S1PR1/MLC2 Signaling Pathway to Restore the Integrity of the Pulmonary Endothelial Cell Barrier. Chem. Biol. Interact. 2024, 398, 111085. [Google Scholar] [CrossRef]
- Li, Z.; Yu, Y.; Bu, Y.; Liu, C.; Liu, E.; Jin, J.; Chen, G.; Li, C.; Wang, H.; Li, H.; et al. Targeting Macrophagic RasGRP1 with Catechin Hydrate Ameliorates Sepsis-Induced Multiorgan Dysfunction. Phytomedicine 2024, 130, 155733. [Google Scholar] [CrossRef]
- Wei, H.; Xia, D.; Li, L.; Liang, L.; Ning, L.; Gan, C.; Wu, Y. Baicalin Modulates Glycolysis via the PKC/Raf/MEK/ERK and PI3K/AKT Signaling Pathways to Attenuate IFN-I-Induced Neutrophil NETosis. Mediat. Inflamm. 2025, 2025, 8822728. [Google Scholar] [CrossRef]
- Nayak, S.P.R.R.; Boopathi, S.; Priya, P.S.; Pasupuleti, M.; Pachaiappan, R.; Almutairi, B.O.; Arokiyaraj, S.; Arockiaraj, J. Luteolin, a Promising Quorum Quencher Mitigates Virulence Factors Production in Pseudomonas Aeruginosa-In Vitro and In Vivoapproach. Microb. Pathog. 2023, 180, 106123. [Google Scholar] [CrossRef]
- Gu, M.; Pang, Z. Luteolin Inhibits Inflammation and M1 Macrophage Polarization in the Treatment of Pseudomonas Aeruginosa-Induced Acute Pneumonia through Suppressing EGFR/PI3K/AKT/NF-ΚB and EGFR/ERK/AP-1 Signaling Pathways. Phytomedicine 2025, 141, 156663. [Google Scholar] [CrossRef]
- Lu, Y.; Yu, T.; Liu, J.; Gu, L. Vitexin Attenuates Lipopolysaccharide-Induced Acute Lung Injury by Controlling the Nrf2 Pathway. PLoS ONE 2018, 13, e0196405. [Google Scholar] [CrossRef]
- Cai, W.; Fu, Y.; Zhang, W.; Chen, X.; Zhao, J.; Song, W.; Li, Y.; Huang, Y.; Wu, Z.; Sun, R.; et al. Synergistic Effects of Baicalein with Cefotaxime against Klebsiella Pneumoniae through Inhibiting CTX-M-1 Gene Expression. BMC Microbiol. 2016, 16, 181. [Google Scholar] [CrossRef]
- Dhara, L.; Tripathi, A. Cinnamaldehyde: A Compound with Antimicrobial and Synergistic Activity against ESBL-Producing Quinolone-Resistant Pathogenic Enterobacteriaceae. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 65–73. [Google Scholar] [CrossRef]
- Köse, E.O. In Vitro Activity of Carvacrol in Combination with Meropenem against Carbapenem-Resistant Klebsiella Pneumoniae. Folia Microbiol. 2022, 67, 143–156. [Google Scholar] [CrossRef]
- Gülen, D.; Şafak, B.; Erdal, B.; Günaydın, B. Curcumin-Meropenem Synergy in Carbapenem Resistant Klebsiella Pneumoniae Curcumin-Meropenem Synergy. Iran. J. Microbiol. 2021, 13, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Yu, J.; Shen, X.; Cao, X.; Zhan, Q.; Guo, Y.; Yu, F. Resveratrol Enhances the Antimicrobial Effect of Polymyxin B on Klebsiella Pneumoniae and Escherichia Coli Isolates with Polymyxin B Resistance. BMC Microbiol. 2020, 20, 306. [Google Scholar] [CrossRef] [PubMed]
- Buchmann, D.; Schultze, N.; Borchardt, J.; Böttcher, I.; Schaufler, K.; Guenther, S. Synergistic Antimicrobial Activities of Epigallocatechin Gallate, Myricetin, Daidzein, Gallic Acid, Epicatechin, 3-hydroxy-6-methoxyflavone and Genistein Combined with Antibiotics against ESKAPE Pathogens. J. Appl. Microbiol. 2022, 132, 949–963. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, M.; Behera, D.U.; Sahoo, R.K.; Sahoo, S.; Dey, S.; Subudhi, E. Synergistic Action of 6-Gingerol as an Adjuvant to Colistin for Susceptibility Enhancement in Multidrug-Resistant Klebsiella Pneumoniae Isolates. RSC Adv. 2024, 14, 7779–7785. [Google Scholar] [CrossRef]
- Kong, J.; Wang, Y.; Yao, Z.; Lin, Y.; Zhang, Y.; Han, Y.; Zhou, T.; Ye, J.; Cao, J. Eugenol Works Synergistically with Colistin against Colistin-Resistant Pseudomonas Aeruginosa and Klebsiella Pneumoniae Isolates by Enhancing Membrane Permeability. Microbiol. Spectr. 2023, 11, e03666-22. [Google Scholar] [CrossRef]
- Zhou, H.; Xu, M.; Guo, W.; Yao, Z.; Du, X.; Chen, L.; Sun, Y.; Shi, S.; Cao, J.; Zhou, T. The Antibacterial Activity of Kaempferol Combined with Colistin against Colistin-Resistant Gram-Negative Bacteria. Microbiol. Spectr. 2022, 10, e02265-22. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, A.; Chen, Q.; Hu, Z. Synergistic Antibacterial Activity of EGCGcombined with Imipenem against Planktonic Carbapenem-Resistant Klebsiella Pneumoniae and the Evaluation of Independent Antibiofilm Activity of EGCG. Res. Sq. 2023. [Google Scholar] [CrossRef]
- Tan, S.; Gao, J.; Li, Q.; Guo, T.; Dong, X.; Bai, X.; Yang, J.; Hao, S.; He, F. Synergistic Effect of Chlorogenic Acid and Levofloxacin against Klebsiella Pneumonia Infection in Vitro and in Vivo. Sci. Rep. 2020, 10, 20013, Erratum in Sci. Rep. 2025, 15, 7824. [Google Scholar] [CrossRef]
- Aydemir, Ö.; Ormanoğlu, G.; Ayhancı, T.; Zengin, M.; Köroğlu, M. Investigation of in Vitro Efficacy of Quercetin-Meropenem Combination in Carbapenemase-Producing Klebsiella Pneumoniae Isolates. J. Infect. Dev. Ctries. 2023, 17, 1325–1329. [Google Scholar] [CrossRef]
- Qin, X.; Wu, Y.; Zhao, Y.; Qin, S.; Ji, Q.; Jia, J.; Huo, M.; Zhao, X.; Ma, Q.; Wang, X.; et al. Revealing Active Constituents within Traditional Chinese Medicine Used for Treating Bacterial Pneumonia, with Emphasis on the Mechanism of Baicalein against Multi-Drug Resistant Klebsiella Pneumoniae. J. Ethnopharmacol. 2024, 321, 117488. [Google Scholar] [CrossRef]
- Odds, F.C. Synergy, Antagonism, and What the Chequerboard Puts between Them. J. Antimicrob. Chemother. 2003, 52, 1. [Google Scholar] [CrossRef] [PubMed]
- Doern, C.D. When Does 2 plus 2 Equal 5? A Review of Antimicrobial Synergy Testing. J. Clin. Microbiol. 2014, 52, 4124–4128. [Google Scholar] [CrossRef] [PubMed]
- Donkor, M.N.; Donkor, A.M.; Mosobil, R. Combination Therapy: Synergism among Three Plant Extracts against Selected Pathogens. BMC Res. Notes 2023, 16, 83. [Google Scholar] [CrossRef] [PubMed]
- Muller, A.E.; Theuretzbacher, U.; Mouton, J.W. Use of Old Antibiotics Now and in the Future from a Pharmacokinetic/Pharmacodynamic Perspective. Clin. Microbiol. Infect. 2015, 21, 881–885. [Google Scholar] [CrossRef]
- Ferraz, M.P. Antimicrobial Resistance: The Impact from and on Society According to One Health Approach. Societies 2024, 14, 187. [Google Scholar] [CrossRef]
- Wang, S.; Yao, J.; Zhou, B.; Yang, J.; Chaudry, M.T.; Wang, M.; Xiao, F.; Li, Y.; Yin, W. Bacteriostatic Effect of Quercetin as an Antibiotic Alternative in Vivo and Its Antibacterial Mechanism in Vitro. J. Food Prot. 2018, 81, 68–78. [Google Scholar] [CrossRef]
- Odabaş Köse, E.; Koyuncu Özyurt, Ö.; Bilmen, S.; Er, H.; Kilit, C.; Aydemir, E. Quercetin: Synergistic Interaction with Antibiotics against Colistin-Resistant Acinetobacter Baumannii. Antibiotics 2023, 12, 739. [Google Scholar] [CrossRef]
- Pal, A.; Tripathi, A. Quercetin Inhibits Carbapenemase and Efflux Pump Activities among Carbapenem-Resistant Gram-Negative Bacteria. J. Pathol. Microbiol. Immunol. 2020, 128, 251–259. [Google Scholar] [CrossRef]
- Pal, A.; Tripathi, A. Demonstration of Bactericidal and Synergistic Activity of Quercetin with Meropenem among Pathogenic Carbapenem Resistant Escherichia Coli and Klebsiella Pneumoniae. Microb. Pathog. 2020, 143, 104120. [Google Scholar] [CrossRef]
- Güran, M.; Çakıral, K.; Teralı, K.; Kandemir, T.; Sanlıtürk, G.; Öcal, M.M.; Nagiyev, T.; Köksal, F. Meropenem in Combination with Baicalein Exhibits Synergism against Extensively Drug Resistant and Pan-Drug-Resistant Acinetobacter Baumannii Clinical Isolates in Vitro. Pathog. Dis. 2023, 81, ftad007. [Google Scholar] [CrossRef]
- Zhang, Z.; Cao, M.; Shang, Z.; Xu, J.; Chen, X.; Zhu, Z.; Wang, W.; Wei, X.; Zhou, X.; Bai, Y.; et al. Research Progress on the Antibacterial Activity of Natural Flavonoids. Antibiotics 2025, 14, 334. [Google Scholar] [CrossRef]
- Tarahovsky, Y.S.; Kim, Y.A.; Yagolnik, E.A.; Muzafarov, E.N. Flavonoid–Membrane Interactions: Involvement of Flavonoid–Metal Complexes in Raft Signaling. Biochim. Biophys. Acta-Biomembr. 2014, 1838, 1235–1246. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Abiko, Y.; Washio, J.; Luo, Y.; Zhang, L.; Takahashi, N. Green Tea-Derived Epigallocatechin Gallate Inhibits Acid Production and Promotes the Aggregation of Streptococcus Mutans and Non-Mutans Streptococci. Caries Res. 2021, 55, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Morão, L.G.; Polaquini, C.R.; Kopacz, M.; Torrezan, G.S.; Ayusso, G.M.; Dilarri, G.; Cavalca, L.B.; Zielińska, A.; Scheffers, D.J.; Regasini, L.O.; et al. A Simplified Curcumin Targets the Membrane of Bacillus Subtilis. Microbiologyopen 2019, 8, e00683. [Google Scholar] [CrossRef] [PubMed]
- Jha, N.S.; Mishra, S.; Jha, S.K.; Surolia, A. Antioxidant Activity and Electrochemical Elucidation of the Enigmatic Redox Behavior of Curcumin and Its Structurally Modified Analogues. Electrochim. Acta 2015, 151, 574–583. [Google Scholar] [CrossRef]
- Seixas, A.F.; Quendera, A.P.; Sousa, J.P.; Silva, A.F.Q.; Arraiano, C.M.; Andrade, J.M. Bacterial Response to Oxidative Stress and RNA Oxidation. Front. Genet. 2022, 12, 821535. [Google Scholar] [CrossRef]
- Gan, C.; Langa, E.; Wang, G.; Van Bambeke, F.; Ballestero, D.; Pino-Otín, M.R. Mechanisms of Action and Resistance Prevention of Synergistic Thymol and Carvacrol Combinations with Antibiotics in Staphylococcus Aureus and Acinetobacter Baumannii. Nat. Prod. Bioprospect. 2025, 15, 36. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Y.; Lin, Y.; Cao, J.; Xu, C.; Chen, L.; Wang, Y.; Sun, Y.; Zheng, X.; Liu, Y.; et al. Resveratrol Increases Sensitivity of Clinical Colistin-Resistant Pseudomonas Aeruginosa to Colistin In Vitro and In Vivo. Microbiol. Spectr. 2023, 11, e01992-22. [Google Scholar] [CrossRef]
- Prava Rout, B.; Behera, B.; Kumar Sahu, K.; Praharaj, I.; Otta, S. An Overview of Colistin Resistance: A Breach in Last Line Defense. Med. J. Armed Forces India 2023, 79, 516. [Google Scholar] [CrossRef]
- Andrade, F.F.; Silva, D.; Rodrigues, A.; Pina-Vaz, C. Colistin Update on Its Mechanism of Action and Resistance, Present and Future Challenges. Microorganisms 2020, 8, 1716. [Google Scholar] [CrossRef] [PubMed]
- Hollman, P.C.H.; Bijsman, M.N.C.P.; Van Gameren, Y.; Cnossen, E.P.J.; De Vries, J.H.M.; Katan, M.B. The Sugar Moiety Is a Major Determinant of the Absorption of Dietary Flavonoid Glycosides in Man. Free Radic. Res. 1999, 31, 569–573. [Google Scholar] [CrossRef] [PubMed]
- Stan, D.; Enciu, A.M.; Mateescu, A.L.; Ion, A.C.; Brezeanu, A.C.; Stan, D.; Tanase, C. Natural Compounds With Antimicrobial and Antiviral Effect and Nanocarriers Used for Their Transportation. Front. Pharmacol. 2021, 12, 723233. [Google Scholar] [CrossRef] [PubMed]
- Abhinand, K.; Menon, A.M.; Thomas, S.S.; Anil, A.B.; Parvathi Mohanan, P.C.; Arun, K.B.; Edison, L.K.; Babu, P.; Kumar, G.B.; Nair, B.G.; et al. Klebsiella Pneumoniae: Host Interactions, Virulence Mechanisms, and Novel Therapeutic Strategies. Microb. Pathog. 2025, 207, 107856. [Google Scholar] [CrossRef]
- Swearengen, J.R. Choosing the Right Animal Model for Infectious Disease Research. Anim. Model. Exp. Med. 2018, 1, 100. [Google Scholar] [CrossRef]
- Bissantz, C.; Zampaloni, C.; David-Pierson, P.; Dieppois, G.; Guenther, A.; Trauner, A.; Winther, L.; Stubbings, W. Translational PK/PD for the Development of Novel Antibiotics—A Drug Developer’s Perspective. Antibiotics 2024, 13, 72. [Google Scholar] [CrossRef]
- Alara, O.R.; Abdurahman, N.H.; Ukaegbu, C.I. Extraction of Phenolic Compounds: A Review. Curr. Res. Food Sci. 2021, 4, 200–214. [Google Scholar] [CrossRef]
- Gambini, J.; Inglés, M.; Olaso, G.; Lopez-Grueso, R.; Bonet-Costa, V.; Gimeno-Mallench, L.; Mas-Bargues, C.; Abdelaziz, K.M.; Gomez-Cabrera, M.C.; Vina, J.; et al. Properties of Resveratrol: In Vitro and In Vivo Studies about Metabolism, Bioavailability, and Biological Effects in Animal Models and Humans. Oxid. Med. Cell. Longev. 2015, 2015, 837042. [Google Scholar] [CrossRef]
- Li, J.; Wu, Y.; Ma, Y.; Bai, L.; Li, Q.; Zhou, X.; Xu, P.; Li, X.; Xue, M. A UPLC-MS/MS Method Reveals the Pharmacokinetics and Metabolism Characteristics of Kaempferol in Rats under Hypoxia. Drug Metab. Pharmacokinet. 2022, 43, 100440. [Google Scholar] [CrossRef]
- Li, H.; Li, H.; Jiang, S.; Xu, J.; Cui, Y.; Wang, H.; Dai, L.; Lin, Y.; Zhang, J. Study of the Metabolism of Myricetin in Rat Urine, Plasma and Feces by Ultra-High-Performance Liquid Chromatography. Biomed. Chromatogr. 2022, 36, e5281. [Google Scholar] [CrossRef]
- Springer, M.; Moco, S. Resveratrol and Its Human Metabolites—Effects on Metabolic Health and Obesity. Nutrients 2019, 11, 143. [Google Scholar] [CrossRef]
- Zhang, B.; Dong, Y.; Yu, N.; Sun, Y.; Xing, Y.; Yang, F.; Yu, X.; Sun, W.; Sun, J.; Li, X.; et al. Intestinal Metabolism of Baicalein after Oral Administration in Mice: Pharmacokinetics and Mechanisms. J. Funct. Foods 2019, 54, 53–63. [Google Scholar] [CrossRef]
- Rodríguez-Gascón, A.; Solinís, M.Á.; Isla, A. The Role of PK/PD Analysis in the Development and Evaluation of Antimicrobials. Pharmaceutics 2021, 13, 833. [Google Scholar] [CrossRef] [PubMed]
- Alikhani, M.S.; Nazari, M.; Hatamkhani, S. Enhancing Antibiotic Therapy through Comprehensive Pharmacokinetic/Pharmacodynamic Principles. Front. Cell. Infect. Microbiol. 2025, 15, 1521091. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Yang, Z.; Liu, H.; Man, J.; Oladejo, A.O.; Ibrahim, S.; Wang, S.; Hao, B. Novel Drug Delivery Systems: An Important Direction for Drug Innovation Research and Development. Pharmaceutics 2024, 16, 674. [Google Scholar] [CrossRef]
- Kapare, H.; Kanadje, S.; Bhole, R. Quercetin Nano-Formulations as a Potential Approach for Skin Cancer. Pharm. Nanotechnol. 2025, 13, 827–838. [Google Scholar] [CrossRef]
- Peng, J.; Zhang, W.; Zhu, Y.; Zhu, H.; Ho, C.-T. Pharmacokinetic Profiles and Improvement of Resveratrol and Derived Stilbenes. J. Food Bioact. 2025, 30, 6–18. [Google Scholar] [CrossRef]
- Alanazi, A.Z.; Alqinyah, M.; Alhamed, A.S.; Mohammed, H.; Raish, M.; Aljerian, K.; Alsabhan, J.F.; Alhazzani, K. Cardioprotective Effects of Liposomal Resveratrol in Diabetic Rats: Unveiling Antioxidant and Anti-Inflammatory Benefits. Redox Rep. 2024, 29, 2416835. [Google Scholar] [CrossRef]
- Radeva, L.; Yordanov, Y.; Spassova, I.; Kovacheva, D.; Tibi, I.P.E.; Zaharieva, M.M.; Kaleva, M.; Najdenski, H.; Petrov, P.D.; Tzankova, V.; et al. Incorporation of Resveratrol-Hydroxypropyl-β-Cyclodextrin Complexes into Hydrogel Formulation for Wound Treatment. Gels 2024, 10, 396. [Google Scholar] [CrossRef]
- Furniturewalla, A.; Barve, K. Approaches to Overcome Bioavailability Inconsistencies of Epigallocatechin Gallate, a Powerful Anti-Oxidant in Green Tea. Food Chem. Adv. 2022, 1, 100037. [Google Scholar] [CrossRef]
- Abdi Syahputra, R.; Dalimunthe, A.; Utari, Z.D.; Halim, P.; Sukarno, M.A.; Zainalabidin, S.; Salim, E.; Gunawan, M.; Nurkolis, F.; Park, M.N.; et al. Nanotechnology and Flavonoids: Current Research and Future Perspectives on Cardiovascular Health. J. Funct. Foods 2024, 120, 106355. [Google Scholar] [CrossRef]
- Gao, J.; Fan, Y.; Lu, C.; Zhao, X.; He, X. The Baicalein Amorphous Solid Dispersion to Enhance the Dissolution and Bioavailability and Effects on Growth Performance, Meat Quality, Antioxidant Capacity and Intestinal Flora in Taihang Chickens. Poult. Sci. 2024, 103, 103768. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zheng, C.; Tian, F.; Xiao, Z.; Sun, Z.; Lu, L.; Dai, W.; Zhang, Q.; Mei, X. Improving the Dissolution Rate and Bioavailability of Curcumin via Co-Crystallization. Pharmaceuticals 2024, 17, 489. [Google Scholar] [CrossRef] [PubMed]
- Eseberri, I.; Trepiana, J.; Léniz, A.; Gómez-García, I.; Carr-Ugarte, H.; González, M.; Portillo, M.P. Variability in the Beneficial Effects of Phenolic Compounds: A Review. Nutrients 2022, 14, 1925. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Zhang, Q. The Potential Toxic Side Effects of Flavonoids. Biocell 2021, 46, 357–366. [Google Scholar] [CrossRef]
- Salehi, B.; Mishra, A.P.; Nigam, M.; Sener, B.; Kilic, M.; Sharifi-Rad, M.; Fokou, P.V.T.; Martins, N.; Sharifi-Rad, J. Resveratrol: A Double-Edged Sword in Health Benefits. Biomedicines 2018, 6, 91. [Google Scholar] [CrossRef]
- Xiong, H.H.; Lin, S.Y.; Chen, L.L.; Ouyang, K.H.; Wang, W.J. The Interaction between Flavonoids and Intestinal Microbes: A Review. Foods 2023, 12, 320. [Google Scholar] [CrossRef]
- Tängdén, T.; Lundberg, C.V.; Friberg, L.E.; Huttner, A. How Preclinical Infection Models Help Define Antibiotic Doses in the Clinic. Int. J. Antimicrob. Agents 2020, 56, 106008. [Google Scholar] [CrossRef]
- Gajic, I.; Kabic, J.; Kekic, D.; Jovicevic, M.; Milenkovic, M.; Mitic Culafic, D.; Trudic, A.; Ranin, L.; Opavski, N. Antimicrobial Susceptibility Testing: A Comprehensive Review of Currently Used Methods. Antibiotics 2022, 11, 427. [Google Scholar] [CrossRef]
- Thornton, A.; Lee, P. Publication Bias in Meta-Analysis: Its Causes and Consequences. J. Clin. Epidemiol. 2000, 53, 207–216. [Google Scholar] [CrossRef]





| Antibiotic | Natural Compound | Reference | n | Median FICI (CI 95%) | Min FICI | Max FICI |
|---|---|---|---|---|---|---|
| Cefotaxime | Baicalein | [60] | 16 | 0.82 (0.69–1.00) | 0.38 | 1.5 |
| Cefotaxime | Cinnamaldehyde | [61] | 32 | 0.455 (0.34–0.58) | 0.076 | 1.5 |
| Cefotaxime | Matrine | [60] | 16 | 1.07 (1.01–1.21) | 1.008 | 2.008 |
| Ciprofloxacin | Cinnamaldehyde | [61] | 33 | 2.15 (1.26–3.31) | 0.122 | 16.06 |
| Ciprofloxacin | Myricetin | [65] | 3 | 1.36 (0.86–2.00) | 0.74 | 2 |
| Colistin | 6-Gingerol | [66] | 3 | 0.193 (0.15–0.25) | 0.15 | 0.25 |
| Colistin | Eugenol | [67] | 6 | 0.266 (0.21–0.30) | 0.31 | 0.156 |
| Colistin | Kaempferol | [68] | 6 | 0.27 (0.07–0.50) | 0.012 | 0.75 |
| Imipenem | Epigallocatechin-3-gallate | [69] | 26 | 0.543 (0.44–0.65) | 0.15625 | 1.03125 |
| Levofloxacin | Chlorogenic acid | [70] | 3 | 0.22 (0.16–0.25) | 0.16 | 0.25 |
| Meropenem | Baicalein | [72] | 1 | 0.070 * | 0.07 | 0.07 |
| Meropenem | Carvacrol | [62] | 25 | 0.695 (0.63–0.76) | 0.5 | 1 |
| Meropenem | Curcumin | [63] | 39 | 1.436 (1.05–1.83) | 0.001 | 4 |
| Meropenem | Quercetin | [71] | 30 | 0.5 (0.27–0.86) | 0.03 | 5 |
| Polymyxin B | Resveratrol | [64] | 26 | 0.199 (0.14–0.27) | 0.002 | 0.502 |
| Polymyxin E | Forsythin | [72] | 1 | 1.010 * | 1.01 | 1.01 |
| Tetracycline | Epigallocatechin gallate | [65] | 3 | 0.82 (0.49–1.32) | 0.49 | 1.32 |
| Tigecycline | Forsythoside B | [72] | 1 | 1.01 | 1.01 | 1.01 |
| Antibiotic | Compound | Reference | n | Median FICI (CI 95%) | KW p-Value | Dunn–Bonferroni CLD | ||
|---|---|---|---|---|---|---|---|---|
| Chi2 | df | p | ||||||
| Cefotaxime | Baicalein | [60] | 16 | 0.82 (0.69–1.00) | 31.77 | 2 | <0.001 | A |
| Matrine | [60] | 16 | 1.07(1.01–1.21) | A | ||||
| Cinnamaldehyde | [61] | 32 | 0.455(0.34–0.58) | B | ||||
| Meropenem | Curcumin | [63] | 39 | 1.436 (1.05–1.83) | 16.83 | 2 | <0.001 | A |
| Quercetin | [71] | 30 | 0.5 (0.27–0.86) | B | ||||
| Carvacrol | [62] | 25 | 0.695 (0.63–0.76) | A | ||||
| Colistin | Kaempferol | [68] | 6 | 0.27(0.07–0.50) | 1.74 | 2 | 0.419 | NS |
| 6-Gingerol | [66] | 3 | 0.193(0.15–0.25) | NS | ||||
| Eugenol | [67] | 6 | 0.266(0.21–0.30) | NS | ||||
| Combination | Reference | n | Min FICI | Max FICI | Range | IQR | SD |
|---|---|---|---|---|---|---|---|
| Cefotaxime + Baicalein | [60] | 16 | 0.38 | 1.5 | 1.12 | 0.28 | 0.31 |
| Cefotaxime + Matrine | [60] | 16 | 1.008 | 2.008 | 1 | 0 | 0.24 |
| Cefotaxime + Cinnamaldehyde | [61] | 32 | 0.076 | 1.5 | 1.424 | 0.314 | 0.33 |
| Meropenem + Curcumin | [63] | 39 | 0.009 | 4 | 3.991 | 1.84 | 1.266 |
| Meropenem + Quercetin | [71] | 30 | 0.03 | 5 | 4.97 | 0.32 | 0.900 |
| Meropenem + Carvacrol | [62] | 25 | 0.5 | 1 | 0.5 | 0.25 | 0.173 |
| Colistin + Eugenol | [67] | 6 | 0.156 | 0.312 | 0.156 | 0.06 | 0.062 |
| Colistin + Kaempferol | [68] | 6 | 0.012 | 0.75 | 0.738 | 0.39 | 0.30 |
| Colistin + 6-Gingerol | [66] | 3 | 0.15 | 0.25 | 0.1 | 0.05 | 0.051 |
| Compound | Flavonoid | Stilbene | Phenol Simple | Curcuminoid | Glycoside | Alkaloid | Gallocatechin | Michael Acceptor |
|---|---|---|---|---|---|---|---|---|
| Baicalein | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE |
| Carvacrol | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE |
| Curcumin | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | TRUE |
| Epigallocatechin gallate | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE |
| Forsythin | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE |
| Forsythoside B | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE |
| Kaempferol | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE |
| Matrine | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE |
| Myricetin | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE |
| Quercetin | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE |
| Resveratrol | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE |
| Structural Feature/Group | % Synergy (95% CI) Flag Present | % Synergy (95% CI) Flag Absent | OR (Synergy) | RD | p (Fisher) | Δ-Median log2(FICI) (HL Estimate) | p (Mann–Whitney) | Approx. Fold Change in FICI |
|---|---|---|---|---|---|---|---|---|
| Flavonoids | 64.9 (51.9–76.0) | 23.8 (15.8–34.1) | 5.94 | 41.2 | 1.6 × 10−6 | −1.415 | 3.7 × 10−7 | ↓ 2.7 |
| Catechol/Gallol motif | 80.9 (66.7–90.0) | 23.2 (15.8–32.6) | 14.1 | 57.8 | 2.5 × 10−10 | −1.95 | 1.3 × 10−8 | ↓ 4 |
| Curcuminoid/Michael acceptor | 30.8 (18.6–46.4) | 44.9 (35.4–54.8) | 0.55 | −14.1 | 0.18 | 0.99 | 0.016 | ↑ 2 |
| Simple phenols (carvacrol, eugenol) | 28 | 56.8 | 0.3 | −28.8 | 0.02 | 1 | 0.12 | ↑ 2 |
| Phenolic acid | 100 (43.9–100) | 51.1 | – | – | 0.248 | – | – | – |
| Alkaloid | 0 | 54.9 | ~0.02 | −51.9 | 5.38 × 10−6 | – | – | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ormeneanu, V.-P.; Andrei, C.; Zanfirescu, A.; Pușcașu, C.; Olaru, O.T.; Negreș, S. Synergistic Interactions Between Natural Phenolic Compounds and Antibiotics Against Multidrug-Resistant K. pneumoniae: A Pooled Analysis of 216 In Vitro Tests. Microorganisms 2025, 13, 2497. https://doi.org/10.3390/microorganisms13112497
Ormeneanu V-P, Andrei C, Zanfirescu A, Pușcașu C, Olaru OT, Negreș S. Synergistic Interactions Between Natural Phenolic Compounds and Antibiotics Against Multidrug-Resistant K. pneumoniae: A Pooled Analysis of 216 In Vitro Tests. Microorganisms. 2025; 13(11):2497. https://doi.org/10.3390/microorganisms13112497
Chicago/Turabian StyleOrmeneanu, Victor-Pierre, Corina Andrei, Anca Zanfirescu, Ciprian Pușcașu, Octavian Tudorel Olaru, and Simona Negreș. 2025. "Synergistic Interactions Between Natural Phenolic Compounds and Antibiotics Against Multidrug-Resistant K. pneumoniae: A Pooled Analysis of 216 In Vitro Tests" Microorganisms 13, no. 11: 2497. https://doi.org/10.3390/microorganisms13112497
APA StyleOrmeneanu, V.-P., Andrei, C., Zanfirescu, A., Pușcașu, C., Olaru, O. T., & Negreș, S. (2025). Synergistic Interactions Between Natural Phenolic Compounds and Antibiotics Against Multidrug-Resistant K. pneumoniae: A Pooled Analysis of 216 In Vitro Tests. Microorganisms, 13(11), 2497. https://doi.org/10.3390/microorganisms13112497

