Agrobacterium fabrum (tumefaciens) Chemosensory System: A Typical Model of One Histidine Kinase for Two Coupling Proteins and Multiple Response Regulators
Abstract
1. Introduction
2. Prototype of Chemosensory Signaling System and Co-Existence of Multiple Systems
2.1. Prototype of Chemosensory Signaling System
2.2. Co-Existence of Multiple Chemosensory Systems
3. Chemosensory-Related Proteins Encoded by Agrobacterium fabrum Genome
3.1. Chemoreceptor (Or Methyl-Accepting Chemotaxis Protein, MCP)
3.2. Coupling Protein, CheW
3.3. Histidine Kinase, CheA
3.4. Response Regulators, CheY and CheB
3.5. Methyltransferase and Deamidase for Chemoreceptor Modification, CheR and CheD
3.6. The Other Chemosensory-Related Proteins Encoded by the A. faberum Genome
4. The Possible Signaling Pathways in the Agrobacterium fabrum Chemosensory System
5. Perspectives on Multiple Chemosensory Pathways Sharing a Histidine Kinase
- How is the chemosensory array assembled in A. fabrum?
- 2.
- How are the signals transduced in the A. fabrum chemosensory system?
- 3.
- Does the A. fabrum chemosensory system play a role in long-term adaptation?
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adler, J. Chemotaxis in bacteria. Science 1966, 153, 708–716. [Google Scholar] [CrossRef]
- Guo, M.; Huang, Z.; Yang, J. Is there any crosstalk between the chemotaxis and virulence induction signaling in Agrobacterium tumefaciens? Biotechnol. Adv. 2017, 35, 505–551. [Google Scholar] [CrossRef]
- Muok, A.R.; Olsthoorn, F.A.; Briegel, A. Unpacking alternative features of the bacterial chemotaxis system. Annu. Rev. Microbiol. 2024, 78, 169–189. [Google Scholar] [CrossRef]
- Sourjik, V.; Wingreen, N.S. Responding to chemical gradients: Bacterial chemotaxis. Curr. Opin. Cell Biol. 2012, 24, 262–268. [Google Scholar] [CrossRef]
- Matilla, M.A.; Gavira, J.A.; Krell, T. Accessing nutrients as the primary benefit arising from chemotaxis. Curr. Opin. Microbiol. 2023, 75, 102358. [Google Scholar] [CrossRef]
- Zhou, B.; Szymanski, C.M.; Baylink, A. Bacterial chemotaxis in human diseases. Trends Microbiol. 2023, 31, 453–467. [Google Scholar] [CrossRef]
- Matilla, M.A.; Krell, T. Targeting motility and chemotaxis as a strategy to combat bacterial pathogens. Microb. Biotechnol. 2023, 16, 2205–2211. [Google Scholar] [CrossRef]
- Xu, Q.; Ali, S.; Afzal, M.; Nizami, A.S.; Han, S.; Dar, M.A.; Zhu, D. Advancements in bacterial chemotaxis: Utilizing the navigational intelligence of bacteria and its practical applications. Sci. Total Environ. 2024, 931, 172967. [Google Scholar] [CrossRef]
- Malvino, M.L. Unraveling the dynamics of Xanthomonas’ flagella: Insights into host-pathogen interactions. Peer J. 2024, 12, e18204. [Google Scholar] [CrossRef]
- Matilla, M.A.; Krell, T. Sensing the environment by bacterial plant pathogens: What do their numerous chemoreceptors recognize? Microb. Biotechnol. 2024, 17, e14368. [Google Scholar] [CrossRef]
- Munar-Palmer, M.; Santamaría-Hernando, S.; Liedtke, J.; Ortega, D.R.; López-Torrejón, G.; Rodríguez-Herva, J.J.; Briegel, A.; López-Solanilla, E. Chemosensory systems interact to shape relevant traits for bacterial plant pathogenesis. mBio 2024, 15, e0087124. [Google Scholar] [CrossRef]
- Bundurus, I.A.; Balta, I.; Pet, I.; Stef, L.; Popescu, C.A.; McCleery, D.; Lemon, J.; Callaway, T.; Douglas, A.; Corcionivoschi, N. Mechanistic concepts involved in biofilm associated processes of Campylobacter jejuni: Persistence and inhibition in poultry environments. Poult. Sci. 2024, 103, 104328. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, Y.-H.; Zhu, H.-Z.; Andrianova, E.P.; Jiang, C.-Y.; Li, D.; Ma, L.; Feng, J.; Liu, Z.-P.; Xiang, H.; et al. Cross talk between chemosensory pathways that modulate chemotaxis and biofilm formation. mBio 2019, 10, e02876-18. [Google Scholar] [CrossRef]
- Oliveira, N.M.; Foster, K.R.; Durham, W.M. Single-cell twitching chemotaxis in developing biofilms. Proc. Natl. Acad. Sci. USA 2016, 113, 6532–6537. [Google Scholar] [CrossRef]
- Xu, X.; Li, H.; Qi, X.; Chen, Y.; Qin, Y.; Zheng, J.; Jiang, X. cheA, cheB, cheR, cheV, and cheY are involved in regulating the adhesion of Vibrio harveyi. Front. Cell. Infect. Microbiol. 2021, 10, 591751. [Google Scholar]
- Jazleena, P.J.; Das, A.; Guiseppi, A.; Debard, F.; Sharma, J.; Yaikhomba, M.; Mignot, T.; Mauriello, E.M.F.; Gayathri, P. Di-HAMP domains of a cytoplasmic chemoreceptor modulate nucleoid array formation and downstream signaling. mBio 2025, 16, e0005725. [Google Scholar] [CrossRef] [PubMed]
- Seymour, J.R.; Brumley, D.R.; Stocker, R.; Raina, J.B. Swimming towards each other: The role of chemotaxis in bacterial interactions. Trends Microbiol. 2024, 32, 640–649. [Google Scholar] [CrossRef]
- Yarrington, K.D.; Shendruk, T.N.; Limoli, D.H. The type IV pilus chemoreceptor PilJ controls chemotaxis of one bacterial species towards another. PLoS Biol. 2024, 22, e3002488. [Google Scholar] [CrossRef] [PubMed]
- Aroney, S.T.N.; Poole, P.S.; Sánchez-Cañizares, C. Rhizobial chemotaxis and motility systems at work in the soil. Front. Plant Sci. 2021, 12, 725338. [Google Scholar] [CrossRef]
- Guo, M.; Ye, J.; Gao, D.; Xu, N.; Yang, J. Agrobacterium-mediated horizontal gene transfer: Mechanism, biotechnological application, potential risk and forestalling strategy. Biotechnol. Adv. 2019, 37, 259–270. [Google Scholar] [CrossRef]
- Keegstra, J.M.; Carrara, F.; Stocker, R. The ecological roles of bacterial chemotaxis. Nat. Rev. Microbiol. 2022, 20, 491–504. [Google Scholar] [CrossRef]
- O’Neal, L.; Vo, L.; Alexandre, G. Specific root exudate compounds sensed by dedicated chemoreceptors shape Azospirillum brasilense chemotaxis in the rhizosphere. Appl. Environ. Microbiol. 2020, 86, e01026-20. [Google Scholar] [CrossRef]
- Fulcher, N.B.; Holliday, P.M.; Klem, E.; Cann, M.J.; Wolfgang, M.C. The Pseudomonas aeruginosa Chp chemosensory system regulates intracellular cAMP levels by modulating adenylate cyclase activity. Mol. Microbiol. 2010, 76, 889–904. [Google Scholar] [CrossRef]
- Huang, W.; Wang, D.; Zhang, X.X.; Zhao, M.; Sun, L.; Zhou, Y.; Guan, X.; Xie, Z. Regulatory roles of the second messenger c-di-GMP in beneficial plant-bacteria interactions. Microbiol. Res. 2024, 285, 127748. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Hua, C.; Deng, X. c-di-GMP signaling in Pseudomonas syringae complex. Microbiol. Res. 2023, 275, 127445. [Google Scholar] [CrossRef]
- Zhuang, Z.; Sethupathy, S.; Bajón-Fernández, Y.; Ali, S.; Niu, L.; Zhu, D. Microbial chemotaxis in degradation of xenobiotics: Current trends and opportunities. Microbiol. Res. 2025, 290, 127935. [Google Scholar] [CrossRef] [PubMed]
- Adler, J. Chemoreceptors in bacteria. Science 1969, 166, 1588–1597. [Google Scholar] [CrossRef]
- Gumerov, V.M.; Ortega, D.R.; Adebali, O.; Ulrich, L.E.; Zhulin, I.B. MiST 3.0: An updated microbial signal transduction database with an emphasis on chemosensory systems. Nucleic Acids Res. 2020, 48, D459–D464. [Google Scholar] [CrossRef]
- Wuichet, K.; Zhulin, I.B. Origins and diversification of a complex signal transduction system in prokaryotes. Sci. Signal 2010, 3, ra50. [Google Scholar] [CrossRef]
- Qin, Z.; Zhang, P. Studying bacterial chemosensory array with CryoEM. Biochem. Soc. Trans. 2021, 49, 2081–2089. [Google Scholar] [CrossRef]
- Gumerov, V.M.; Andrianova, E.P.; Zhulin, I.B. Diversity of bacterial chemosensory systems. Curr. Opin. Microbiol. 2021, 61, 42–50. [Google Scholar] [CrossRef]
- Matilla, M.A.; Martín-Mora, D.; Gavira, J.A.; Krell, T. Pseudomonas aeruginosa as a model to study chemosensory pathway signaling. Microbiol. Mol. Biol. Rev. 2021, 85, e00151-20. [Google Scholar] [CrossRef]
- Ortega, Á.; Krell, T. Chemoreceptors with C-terminal pentapeptides for CheR and CheB binding are abundant in bacteria that maintain host interactions. Comput. Struct. Biotechnol. J. 2020, 18, 1947–1955. [Google Scholar] [CrossRef]
- Guo, M.; Jin, S.; Sun, D.; Hew, C.L.; Pan, S.Q. Recruitment of conjugative DNA transfer substrate to Agrobacterium type IV secretion apparatus. Proc. Natl. Acad. Sci. USA 2007, 104, 20019–20024. [Google Scholar] [CrossRef]
- Loyola-Vargas, V.M.; Méndez-Hernández, H.A.; Quintana-Escobar, A.O. The history of Agrobacterium rhizogenes: From pathogen to a multitasking platform for biotechnology. Methods Mol. Biol. 2024, 2827, 51–69. [Google Scholar]
- Thomson, G.; Dickinson, L.; Jacob, Y. Genomic consequences associated with Agrobacterium-mediated transformation of plants. Plant J. 2024, 117, 342–363. [Google Scholar] [CrossRef]
- Hooykaas, P.J.J. The Ti plasmid, driver of Agrobacterium pathogenesis. Phytopathology 2023, 113, 594–604. [Google Scholar] [CrossRef]
- Azizi-Dargahlou, S.; Pouresmaeil, M. Agrobacterium tumefaciens-mediated plant transformation: A review. Mol. Biotechnol. 2024, 66, 1563–1580. [Google Scholar] [CrossRef]
- Yang, J.; Pan, X.; Xu, Y.; Li, Y.; Xu, N.; Huang, Z.; Ye, J.; Gao, D.; Guo, M. Agrobacterium tumefaciens ferritins play an important role in full virulence through regulating iron homeostasis and oxidative stress survival. Mol. Plant Pathol. 2020, 21, 1167–1178. [Google Scholar] [CrossRef]
- Du, Y.; Zou, J.; Yin, Z.; Chen, T. Pan-chromosome and comparative analysis of Agrobacterium fabrum reveal important traits concerning the genetic diversity, evolutionary dynamics, and niche adaptation of the species. Microbiol. Spectr. 2023, 11, e0292422. [Google Scholar] [CrossRef]
- Xu, N.; Yang, Q.; Yang, X.; Wang, M.; Guo, M. Reconstruction and analysis of a genome-scale metabolic model for Agrobacterium tumefaciens. Mol. Plant Pathol. 2021, 22, 348–360. [Google Scholar] [CrossRef]
- Subramoni, S.; Nathoo, N.; Klimov, E.; Yuan, Z.C. Agrobacterium tumefaciens responses to plant-derived signaling molecules. Front. Plant Sci. 2014, 5, 322. [Google Scholar] [CrossRef]
- Xu, N.; Wang, M.; Yang, X.; Xu, Y.; Guo, M. In silico analysis of the chemotactic system of Agrobacterium tumefaciens. Microb. Genom. 2020, 6, mgen000460. [Google Scholar] [CrossRef]
- Agbekudzi, A.; Arapov, T.D.; Stock, A.M.; Scharf, B.E. The dual role of a novel Sinorhizobium meliloti chemotaxis protein CheT in signal termination and adaptation. Mol. Microbiol. 2024, 122, 429–446. [Google Scholar] [CrossRef] [PubMed]
- Sourjik, V.; Schmitt, R. Different roles of CheY1 and CheY2 in the chemotaxis of Rhizobium meliloti. Mol. Microbiol. 1996, 22, 427–436. [Google Scholar] [CrossRef]
- Liu, W.; Bai, X.; Li, Y.; Min, J.; Kong, Y.; Hu, X. CheY1 and CheY2 of Azorhizobium caulinodans ORS571 regulate chemotaxis and competitive colonization with the host plant. Appl. Environ. Microbiol. 2020, 86, e00599-20. [Google Scholar] [CrossRef]
- Dogra, G.; Purschke, F.G.; Wagner, V.; Haslbeck, M.; Kriehuber, T.; Hughes, J.G.; Van Tassell, M.L.; Gilbert, C.; Niemeyer, M.; Ray, W.K.; et al. Sinorhizobium meliloti CheA complexed with CheS exhibits enhanced binding to CheY1, resulting in accelerated CheY1 dephosphorylation. J. Bacteriol. 2012, 194, 1075–1087. [Google Scholar] [CrossRef]
- Wuichet, K.; Cantwell, B.J.; Zhulin, I.B. Evolution and phyletic distribution of two-component signal transduction systems. Curr. Opin. Microbiol. 2010, 13, 219–225. [Google Scholar] [CrossRef]
- Colin, R.; Ni, B.; Laganenka, L.; Sourjik, V. Multiple functions of flagellar motility and chemotaxis in bacterial physiology. FEMS Microbiol. Rev. 2021, 45, fuab038. [Google Scholar] [CrossRef]
- Karmakar, R. State of the art of bacterial chemotaxis. J. Basic Microbiol. 2021, 61, 366–379. [Google Scholar] [CrossRef]
- Parkinson, J.S.; Hazelbauer, J.L.; Falke, J.J. Signaling and sensory adaptation in Escherichia coli chemoreceptors: 2015 update. Trends Microbiol. 2015, 23, 257–266. [Google Scholar] [CrossRef]
- Micali, G.; Endres, R.G. Bacterial chemotaxis: Information processing, thermodynamics, and behavior. Curr. Opin. Microbiol. 2016, 30, 8–15. [Google Scholar] [CrossRef]
- Moore, J.P.; Emonet, T. Physics of bacterial chemotaxis. Curr. Biol. 2024, 34, R972–R977. [Google Scholar] [CrossRef]
- Matilla, M.A.; Gavira, J.A.; Monteagudo-Cascales, E.; Zhulin, I.B.; Krell, T. Structural and functional diversity of sensor domains in bacterial transmembrane receptors. Trends Microbiol. 2025, 33, 796–809. [Google Scholar] [CrossRef]
- Briegel, A.; Li, X.; Bilwes, A.M.; Hughes, K.T.; Jensen, G.J.; Crane, B.R. Bacterial chemoreceptor arrays are hexagonally packed trimers of receptor dimers networked by rings of kinase and coupling proteins. Proc. Natl. Acad. Sci. USA 2012, 109, 3766–3771. [Google Scholar] [CrossRef]
- Cassidy, C.K.; Qin, Z.; Frosio, T.; Gosink, K.; Yang, Z.; Sansom, M.S.P.; Stansfeld, P.J.; Parkinson, J.S.; Zhang, P. Structure of the native chemotaxis core signaling unit from phage E-protein lysed E. coli cells. mBio 2023, 14, e0079323. [Google Scholar] [CrossRef]
- Piñas, G.E.; DeSantis, M.D.; Cassidy, C.K.; Parkinson, J.S. Hexameric rings of the scaffolding protein CheW enhance response sensitivity and cooperativity in Escherichia coli chemoreceptor arrays. Sci. Signal. 2022, 15, eabj1737. [Google Scholar] [CrossRef]
- Burt, A.; Cassidy, C.K.; Ames, P.; Bacia-Verloop, M.; Baulard, M.; Huard, K.; Luthey-Schulten, Z.; Desfosses, A.; Stansfeld, P.J.; Margolin, W.; et al. Complete structure of the chemosensory array core signalling unit in an E. coli minicell strain. Nat. Commun. 2020, 11, 743. [Google Scholar] [CrossRef]
- Cassidy, C.K.; Himes, B.A.; Sun, D.; Ma, J.; Zhao, G.; Parkinson, J.S.; Stansfeld, P.J.; Luthey-Schulten, Z.; Zhang, P. Structure and dynamics of the E. coli chemotaxis core signaling complex by cryo-electron tomography and molecular simulations. Commun. Biol. 2020, 3, 24. [Google Scholar] [CrossRef]
- Riechmann, C.; Zhang, P. Recent structural advances in bacterial chemotaxis signalling. Curr. Opin. Struct. Biol. 2023, 79, 102565. [Google Scholar] [CrossRef]
- Li, X.; Eyles, S.J.; Thompson, L.K. Hydrogen exchange of chemoreceptors in functional complexes suggests protein stabilization mediates long-range allosteric coupling. J. Biol. Chem. 2019, 294, 16062–16079. [Google Scholar] [CrossRef]
- Tran, T.; Karunanayake Mudiyanselage, A.P.K.K.; Eyles, S.J.; Thompson, L.K. Bacterial chemoreceptor signaling complexes control kinase activity by stabilizing the catalytic domain of CheA. Proc. Natl. Acad. Sci. USA 2023, 120, e2218467120. [Google Scholar] [CrossRef]
- Flack, C.E.; Parkinson, J.S. Structural signatures of Escherichia coli chemoreceptor signaling states revealed by cellular crosslinking. Proc. Natl. Acad. Sci. USA 2022, 119, e2204161119. [Google Scholar] [CrossRef]
- Piñas, G.E.; DeSantis, M.D.; Parkinson, J.S. Noncritical signaling role of a kinase-receptor interaction surface in the Escherichia coli chemosensory core complex. J. Mol. Biol. 2018, 430, 1051–1064. [Google Scholar] [CrossRef]
- Reyes, G.I.; Flack, C.E.; Parkinson, J.S. The structural logic of dynamic signaling in the Escherichia coli serine chemoreceptor. Protein Sci. 2024, 33, e5209. [Google Scholar] [CrossRef]
- Yang, W.; Briegel, A. Diversity of bacterial chemosensory arrays. Trends Microbiol. 2020, 28, 68–80. [Google Scholar] [CrossRef]
- Briegel, A.; Wong, M.L.; Hodges, H.L.; Oikonomou, C.M.; Piasta, K.N.; Harris, M.J.; Fowler, D.J.; Thompson, L.K.; Falke, J.J.; Kiessling, L.L.; et al. New insights into bacterial chemoreceptor array structure and assembly from electron cryotomography. Biochemistry 2014, 53, 1575–1585. [Google Scholar] [CrossRef]
- Lacal, J.; García-Fontana, C.; Muñoz-Martínez, F.; Ramos, J.L.; Krell, T. Sensing of environmental signals: Classification of chemoreceptors according to the size of their ligand binding regions. Environ. Microbiol. 2010, 12, 2873–2884. [Google Scholar] [CrossRef] [PubMed]
- Herrera Seitz, M.K.; Frank, V.; Massazza, D.A.; Vaknin, A.; Studdert, C.A. Bacterial chemoreceptors of different length classes signal independently. Mol. Microbiol. 2014, 93, 814–822. [Google Scholar] [CrossRef]
- Alexander, R.P.; Zhulin, I.B. Evolutionary genomics reveals conserved structural determinants of signaling and adaptation in microbial chemoreceptors. Proc. Natl. Acad. Sci. USA 2007, 104, 2885–2890. [Google Scholar] [CrossRef]
- Briegel, A.; Ortega, D.R.; Tocheva, E.I.; Wuichet, K.; Li, Z.; Chen, S.; Müller, A.; Iancu, C.V.; Murphy, G.E.; Dobro, M.J.; et al. Universal architecture of bacterial chemoreceptor arrays. Proc. Natl. Acad. Sci. USA 2009, 106, 17181–17186. [Google Scholar] [CrossRef]
- Fortier, E.M.; Bouillet, S.; Infossi, P.; Ali Chaouche, A.; Espinosa, L.; Giudici-Orticoni, M.-T.; Mauriello, E.M.F.; Iobbi-Nivol, C. Defining two chemosensory arrays in Shewanella oneidensis. Biomolecules 2023, 13, 21. [Google Scholar] [CrossRef]
- Omori, F.; Tajima, H.; Asaoka, S.; Nishiyama, S.I.; Sowa, Y.; Kawagishi, I. Chemotaxis and related signaling systems in Vibrio cholerae. Biomolecules 2025, 15, 434. [Google Scholar] [CrossRef]
- Ortega, D.R.; Kjaer, A.; Briegel, A. The chemosensory systems of Vibrio cholerae. Mol. Microbiol. 2020, 114, 367–376. [Google Scholar] [CrossRef]
- Ortega, D.R.; Yang, W.; Subramanian, P.; Mann, P.; Kjær, A.; Chen, S.; Watts, K.J.; Pirbadian, S.; Collins, D.A.; Kooger, R.; et al. Repurposing a chemosensory macromolecular machine. Nat. Commun. 2020, 11, 2041. [Google Scholar] [CrossRef]
- Ganusova, E.E.; Rost, M.; Aksenova, A.; Abdulhussein, M.; Holden, A.; Alexandre, G. Azospirillum brasilense AerC and Tlp4b cytoplasmic chemoreceptors are promiscuous and interact with the two membrane-bound chemotaxis signaling clusters mediating chemotaxis responses. J. Bacteriol. 2023, 205, e0048422. [Google Scholar] [CrossRef]
- O’Neal, L.; Gullett, J.M.; Aksenova, A.; Hubler, A.; Briegel, A.; Ortega, D.; Kjær, A.; Jensen, G.; Alexandre, G. Distinct chemotaxis protein paralogs assemble into chemoreceptor signaling arrays to coordinate signaling output. mBio 2019, 10, e01757-19. [Google Scholar] [CrossRef] [PubMed]
- Boyeldieu, A.; Ali Chaouche, A.; Ba, M.; Honoré, F.A.; Méjean, V.; Jourlin-Castelli, C. The phosphorylated regulator of chemotaxis is crucial throughout biofilm biogenesis in Shewanella oneidensis. NPJ Biofilms Microbiomes. 2020, 6, 54. [Google Scholar] [CrossRef]
- Ortega, Á.; Zhulin, I.B.; Krell, T. Sensory repertoire of bacterial chemoreceptors. Microbiol. Mol. Biol. Rev. 2017, 81, e00033-17. [Google Scholar] [CrossRef]
- Salah Ud-Din, A.I.M.; Roujeinikova, A. Methyl-accepting chemotaxis proteins: A core sensing element in prokaryotes and archaea. Cell Mol. Life Sci. 2017, 74, 3293–3303. [Google Scholar] [CrossRef]
- Matilla, M.A.; Velando, F.; Martín-Mora, D.; Monteagudo-Cascales, E.; Krell, T. A catalogue of signal molecules that interact with sensor kinases, chemoreceptors and transcriptional regulators. FEMS Microbiol. Rev. 2022, 46, fuab043. [Google Scholar] [CrossRef]
- Muok, A.R.; Deng, Y.; Gumerov, V.M.; Chong, J.E.; DeRosa, J.R.; Kurniyati, K.; Coleman, R.E.; Lancaster, K.M.; Li, C.; Zhulin, I.B.; et al. A di-iron protein recruited as an Fe[II] and oxygen sensor for bacterial chemotaxis functions by stabilizing an iron-peroxy species. Proc. Natl. Acad. Sci. USA 2019, 116, 14955–14960. [Google Scholar] [CrossRef]
- Gumerov, V.M.; Ulrich, L.E.; Zhulin, I.B. MiST 4.0: A new release of the microbial signal transduction database, now with a metagenomic component. Nucleic Acids Res. 2024, 52, D647–D653. [Google Scholar] [CrossRef]
- Ye, J.; Gao, M.; Zhou, Q.; Wang, H.; Xu, N.; Guo, M. The only chemoreceptor encoded by che operon affects the chemotactic response of Agrobacterium to various chemoeffectors. Microorganisms 2021, 9, 1923. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, M.; Xu, Y.; Zong, R.; Xu, N.; Guo, M. Agrobacterium fabrum atu0526-encoding protein is the only chemoreceptor that regulates chemoattraction toward the broad antibacterial agent formic acid. Biology 2021, 10, 1345. [Google Scholar] [CrossRef]
- Zong, R.; Gao, M.; Zhang, M.; Wang, H.; Xu, N.; Guo, M. Functional identification of Agrobacterium tumefaciens chemoreceptor MCP1912 in regulating chemotactic response. Acta Microbiol. Sin. 2022, 62, 1949–1961. [Google Scholar]
- Huang, Z.; Zou, J.; Guo, M.; Zhang, G.; Gao, J.; Zhao, H.; Yan, F.; Niu, Y.; Wang, G.L. An aerotaxis receptor influences invasion of Agrobacterium tumefaciens into its host. Peer J. 2024, 12, e16898. [Google Scholar] [CrossRef]
- Gavira, J.A.; Gilabert, M.J.; Santamaría-Hernando, S.; Molina-Ollero, A.; Rico-Jiménez, M.; Cabrera, J.J.; López-Solanilla, E.; Matilla, M.A. Acetylcholine chemotaxis in global bacterial plant pathogens. Microbiol. Res. 2025, 300, 128294. [Google Scholar] [CrossRef]
- Xu, N.; Yang, X.; Li, C.; Zhang, C.; Guo, M. Identification and functional characterization of chemoreceptors for phenolic acids in Agrobacterium tumefaciens. Microbiol. Res. 2026, 302, 128348. [Google Scholar] [CrossRef]
- Ye, J. Functional study of chemoreceptor-encoding genes atu0514 and atu2173 in Agrobacterium fabrum C58. Ph.D. Thesis, Yangzhou University, Yangzhou, China, 2022. [Google Scholar]
- Huang, Z.; Pan, X.; Xu, N.; Guo, M. Bacterial chemotaxis coupling protein: Structure, function and diversity. Microbiol. Res. 2019, 219, 40–48. [Google Scholar] [CrossRef]
- Vass, L.R.; Bourret, R.B.; Foster, C.A. Analysis of CheW-like domains provides insights into organization of prokaryotic chemotaxis systems. Proteins 2023, 91, 315–329. [Google Scholar] [CrossRef]
- Huang, Z.; Zhou, Q.; Sun, P.; Yang, J.; Guo, M. Two Agrobacterium tumefaciens CheW proteins are incorporated into one chemosensory pathway with different efficiencies. Mol. Plant Microbe Interact. 2018, 31, 460–470. [Google Scholar] [CrossRef]
- Muok, A.R.; Briegel, A.; Crane, B.R. Regulation of the chemotaxis histidine kinase CheA: A structural perspective. Biochim. Biophys. Acta Biomembr. 2020, 1862, 183030. [Google Scholar] [CrossRef]
- Berry, M.A.; Andrianova, E.P.; Zhulin, I.B. Diverse domain architectures of CheA histidine kinase, a central component of bacterial and archaeal chemosensory systems. Microbiol. Spectr. 2024, 12, e0346423. [Google Scholar] [CrossRef]
- Gao, R.; Bouillet, S.; Stock, A.M. Structural basis of response regulator function. Annu. Rev. Microbiol. 2019, 73, 175–197. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, E.N.; Barr, S.A.; Liu, X.; Vass, L.R.; Liu, Y.; Xie, Z.; Bourret, R.B. Azorhizobium caulinodans chemotaxis is controlled by an unusual phosphorelay network. J. Bacteriol. 2022, 204, e0052721. [Google Scholar] [CrossRef] [PubMed]
- Wheatley, P.; Gupta, S.; Pandini, A.; Chen, Y.; Petzold, C.J.; Ralston, C.Y.; Blair, D.F.; Khan, S. Allosteric priming of E. coli CheY by the flagellar motor protein FliM. Biophys. J. 2020, 119, 1108–1122. [Google Scholar] [CrossRef]
- Ganusova, E.E.; Vo, L.T.; Mukherjee, T.; Alexandre, G. Multiple CheY proteins control surface-associated lifestyles of Azospirillum brasilense. Front. Microbiol. 2021, 12, 664826. [Google Scholar] [CrossRef]
- Gao, D.; Zong, R.; Huang, Z.; Ye, J.; Wang, H.; Xu, N.; Guo, M. The divergent key residues of two Agrobacterium fabrum (tumefaciens) CheY paralogs play a key role in distinguishing their functions. Microorganisms 2021, 9, 1134. [Google Scholar] [CrossRef]
- Djordjevic, S.; Goudreau, P.N.; Xu, Q.; Stock, A.M.; West, A.H. Structural basis for methylesterase CheB regulation by a phosphorylation-activated domain. Proc. Natl. Acad. Sci. USA 1998, 95, 1381–1386. [Google Scholar] [CrossRef]
- Li, M.; Xu, X.; Zou, X.; Hazelbauer, G.L. A selective tether recruits activated response regulator CheB to its chemoreceptor substrate. mBio 2021, 12, e0310621. [Google Scholar] [CrossRef]
- Barnakov, A.N.; Barnakova, L.A.; Hazelbauer, G.L. Efficient adaptational demethylation of chemoreceptors requires the same enzyme-docking site as efficient methylation. Proc. Natl. Acad. Sci. USA 1999, 96, 10667–10672. [Google Scholar] [CrossRef]
- Agbekudzi, A.; Scharf, B.E. Chemoreceptors in Sinorhizobium meliloti require minimal pentapeptide tethers to provide adaptational assistance. Mol. Microbiol. 2024, 122, 50–67. [Google Scholar] [CrossRef]
- Velando, F.; Monteagudo-Cascales, E.; Matilla, M.A.; Krell, T. Differential CheR affinity for chemoreceptor C-terminal pentapeptides modulates chemotactic responses. Mol. Microbiol. 2024, 122, 465–476. [Google Scholar] [CrossRef]
- Fukuoka, H.; Nishitani, K.; Deguchi, T.; Oshima, T.; Uchida, Y.; Hamamoto, T.; Che, Y.S.; Ishijima, A. CheB localizes to polar receptor arrays during repellent adaptation. Sci. Adv. 2024, 10, eadp5636. [Google Scholar] [CrossRef]
- Velando, F.; Gavira, J.A.; Rico-Jiménez, M.; Matilla, M.A.; Krell, T. Evidence for pentapeptide-dependent and independent CheB methylesterases. Int. J. Mol. Sci. 2020, 21, 8459. [Google Scholar] [CrossRef] [PubMed]
- Batra, M.; Sharma, R.; Malik, A.; Dhindwal, S.; Kumar, P.; Tomar, S. Crystal structure of pentapeptide-independent chemotaxis receptor methyltransferase (CheR) reveals idiosyncratic structural determinants for receptor recognition. J. Struct. Biol. 2016, 196, 364–374. [Google Scholar] [CrossRef]
- Li, M.; Hazelbauer, G.L. Methyltransferase CheR binds to its chemoreceptor substrates independent of their signaling conformation yet modifies them differentially. Protein Sci. 2020, 29, 443–454. [Google Scholar] [CrossRef]
- Su, Y.; Li, J.; Zhang, W.; Ni, J.; Huang, R.; Wang, Z.; Cheng, S.; Wang, Y.; Tian, Z.; Zhou, Q.; et al. Methylation of PhoP by CheR regulates Salmonella virulence. mBio 2021, 12, e02099-21. [Google Scholar] [CrossRef]
- Glekas, G.D.; Plutz, M.J.; Walukiewicz, H.E.; Allen, G.M.; Rao, C.V.; Ordal, G.W. Elucidation of the multiple roles of CheD in Bacillus subtilis chemotaxis. Mol. Microbiol. 2012, 86, 743–756. [Google Scholar] [CrossRef]
- Walukiewicz, H.E.; Tohidifar, P.; Ordal, G.W.; Rao, C.V. Interactions among the three adaptation systems of Bacillus subtilis chemotaxis as revealed by an in vitro receptor-kinase assay. Mol. Microbiol. 2014, 93, 1104–1118. [Google Scholar] [CrossRef]
- Chao, X.; Muff, T.J.; Park, S.Y.; Zhang, S.; Pollard, A.M.; Ordal, G.W.; Bilwes, A.M.; Crane, B.R. A receptor-modifying deamidase in complex with a signaling phosphatase reveals reciprocal regulation. Cell 2006, 124, 561–571. [Google Scholar] [CrossRef]
- Moon, K.H.; Hobbs, G.; Motaleb, M.A. Borrelia burgdorferi CheD promotes various functions in chemotaxis and the pathogenic life cycle of the spirochete. Infect Immun. 2016, 84, 1743–1752. [Google Scholar] [CrossRef]
- Orillard, E.; Watts, K.J. Deciphering the Che2 chemosensory pathway and the roles of individual Che2 proteins from Pseudomonas aeruginosa. Mol. Microbiol. 2021, 115, 222–237. [Google Scholar] [CrossRef]
- Sharma, A.K.; Rigby, A.C.; Alper, S.L. STAS domain structure and function. Cell Physiol. Biochem. 2011, 28, 407–422. [Google Scholar] [CrossRef]
- Gálvez-Roldán, C.; Cerna-Vargas, J.P.; Rodríguez-Herva, J.J.; Krell, T.; Santamaría-Hernando, S.; López-Solanilla, E. A nitrate-sensing domain-containing chemoreceptor is required for successful entry and virulence of Dickeya dadantii 3937 in potato plants. Phytopathology 2023, 113, 390–399. [Google Scholar] [CrossRef]
- Santamaría-Hernando, S.; López-Maroto, Á.; Galvez-Roldán, C.; Munar-Palmer, M.; Monteagudo-Cascales, E.; Rodríguez-Herva, J.J.; Krell, T.; López-Solanilla, E. Pseudomonas syringae pv. tomato infection of tomato plants is mediated by GABA and l-Pro chemoperception. Mol. Plant Pathol. 2022, 23, 1433–1445. [Google Scholar] [CrossRef] [PubMed]
- Tumewu, S.A.; Matsui, H.; Yamamoto, M.; Noutoshi, Y.; Toyoda, K.; Ichinose, Y. Requirement of γ-aminobutyric acid chemotaxis for virulence of Pseudomonas syringae pv. tabaci 6605. Microbes Environ. 2020, 35, ME20114. [Google Scholar] [CrossRef]
- Sanchis-López, C.; Cerna-Vargas, J.P.; Santamaría-Hernando, S.; Ramos, C.; Krell, T.; Rodríguez-Palenzuela, P.; López-Solanilla, E.; Huerta-Cepas, J.; Rodríguez-Herva, J.J. Prevalence and specificity of chemoreceptor profiles in plant-associated bacteria. mSystems 2021, 6, e0095121. [Google Scholar] [CrossRef]
- Xu, N.; Wang, W.; Cheng, S.; Zuo, J.; Guo, M. Function and regulation of pob genes for 4-hydroxybenzoate catabolism in Agrobacterium tumefaciens. Appl. Environ. Microbiol. 2025, 91, e0025525. [Google Scholar] [CrossRef]



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Feng, M.; Xu, N.; Wang, H.; Guo, M. Agrobacterium fabrum (tumefaciens) Chemosensory System: A Typical Model of One Histidine Kinase for Two Coupling Proteins and Multiple Response Regulators. Microorganisms 2025, 13, 2556. https://doi.org/10.3390/microorganisms13112556
Liu J, Feng M, Xu N, Wang H, Guo M. Agrobacterium fabrum (tumefaciens) Chemosensory System: A Typical Model of One Histidine Kinase for Two Coupling Proteins and Multiple Response Regulators. Microorganisms. 2025; 13(11):2556. https://doi.org/10.3390/microorganisms13112556
Chicago/Turabian StyleLiu, Jinjing, Mengya Feng, Nan Xu, Hao Wang, and Minliang Guo. 2025. "Agrobacterium fabrum (tumefaciens) Chemosensory System: A Typical Model of One Histidine Kinase for Two Coupling Proteins and Multiple Response Regulators" Microorganisms 13, no. 11: 2556. https://doi.org/10.3390/microorganisms13112556
APA StyleLiu, J., Feng, M., Xu, N., Wang, H., & Guo, M. (2025). Agrobacterium fabrum (tumefaciens) Chemosensory System: A Typical Model of One Histidine Kinase for Two Coupling Proteins and Multiple Response Regulators. Microorganisms, 13(11), 2556. https://doi.org/10.3390/microorganisms13112556

