Thermostable Proteases from Geobacillus: Production, Characterization, Structural Stability Mechanisms and Biotechnological Applications
Abstract
1. Introduction
2. Production, Purification and Characterization of Thermostable Proteases of Geobacillus
3. Structural Stability Mechanisms of Thermostable Proteases of Geobacillus
3.1. Increased Hydrogen Bonds
3.2. Introduction of Disulfide Bridges
3.3. Hydrophobic Interactions
3.4. Metal Ions
3.5. Smaller and Fewer Cavities
3.6. Amino Acid Substitutions/Insertions
4. Biotechnological Applications of Thermostable Proteases of Geobacillus
4.1. Detergent Industry
4.2. Food Industry
4.3. Waste Treatment
4.4. Leather-Processing Industry
4.5. Textile Industry
4.6. Other Potential Applications
5. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Turk, B. Targeting Proteases: Successes, Failures and Future Prospects. Nat. Rev. Drug. Discov. 2006, 5, 785–799. [Google Scholar] [CrossRef]
- Rawlings, N.D.; Morton, F.R.; Kok, C.Y.; Kong, J.; Barrett, A.J. MEROPS: The Peptidase Database. Nucleic Acids Res. 2008, 36, D320–D325. [Google Scholar] [CrossRef]
- Ran, L.Y.; Su, H.N.; Zhou, M.Y.; Wang, L.; Chen, X.L.; Xie, B.B.; Song, X.Y.; Shi, M.; Qin, Q.L.; Pang, X.; et al. Characterization of a Novel Subtilisin-like Protease Myroicolsin from Deep Sea Bacterium Myroides profundi D25 and Molecular Insight into Its Collagenolytic Mechanism. J. Biol. Chem. 2014, 89, 6041–6053. [Google Scholar] [CrossRef]
- Li, H.J.; Tang, B.L.; Shao, X.; Liu, B.X.; Zheng, X.Y.; Han, X.X.; Li, P.Y.; Zhang, X.Y.; Song, X.Y.; Chen, X.L. Characterization of a New S8 serine Protease from Marine Sedimentary Photobacterium sp. A5-7 and the Function of Its Protease-Associated Domain. Front. Microbiol. 2016, 7, 2016. [Google Scholar] [CrossRef]
- Giddings, L.A.; Newman, D.J. Bioactive Compounds from Terrestrial Extremophiles. In Bioactive Compounds from Terrestrial Extremophiles; Springer: Cham, Switzerland, 2015; pp. 1–75. ISBN 978-3-319-13260-0. [Google Scholar]
- Bruins, M.E.; Janssen, A.E.M.; Boom, R.M. Thermozymes and Their Applications: A Review of Recent Literature and Patents. Appl. Biochem. Biotechnol. 2001, 90, 155–186. [Google Scholar] [CrossRef]
- Bayoumi, R.A.; Louboudy, S.S.; Sidkey, N.M.; Rahman, M.A.A.E. Biotechnological Application of Bacterial Alkaline Thermostable Enzymes in Bio-Detergent Industry. Egypt. J. Microbiol. 2009, 44, 29–46. [Google Scholar]
- Hussein, A.H.; Lisowska, B.K.; Leak, D.J. The Genus Geobacillus and Their Biotechnological Potential. Adv. Appl. Microbiol. 2015, 92, 1–48. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0065216415000064 (accessed on 9 October 2025).
- Guo, W.Q.; Zheng, H.S.; Li, S.; Ho, S.H.; Yang, S.S.; Feng, X.C.; Chang, J.S.; Wang, X.J.; Ren, N.Q. Promotion Effects of Ultrasound on Sludge Biodegradation by Thermophilic Bacteria Geobacillus stearothermophilus TP-12. Biochem. Eng. J. 2016, 105, 281–287. [Google Scholar] [CrossRef]
- Birrane, G.; Bhyravbhatla, B.; Navia, M.A. Synthesis of Aspartame by Thermolysin: An X-Ray Structural Study. ACS Med. Chem. Lett. 2014, 5, 706–710. [Google Scholar] [CrossRef]
- Nazina, T.N.; Tourova, T.P.; Poltaraus, A.B.; Novikova, E.V.; Isakov, A.Y. Taxonomic Study of Aerobic thermophilic Bacilli: Descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from Petroleum Reservoirs and Transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermodenitrificans to Geobacillus as the New Combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrifican. Int. J. Syst. Evol. Microbiol. 2001, 51, 433–446. Available online: https://www.microbiologyresearch.org/content/journal/ijsem/10.1099/00207713-51-2-433#tab2 (accessed on 9 October 2025).
- Aliyu, H.; Lebre, P.; Blom, J.; Cowan, D.; De Maayer, P. Phylogenomic Re-Assessment of the Thermophilic Genus Geobacillus. Syst. Appl. Microbiol. 2016, 39, 527–533, Erratum in: Syst. Appl. Microbiol. 2018, 41, 529–530. [Google Scholar] [CrossRef]
- Margaryan, A.; Shahinyan, G.; Hovhannisyan, P.; Panosyan, H.; Birkeland, N.K.; Trchounian, A. Geobacillus and Anoxybacillus spp. from Terrestrial Geothermal Springs Worldwide: Diversity and Biotechnological Applica-tions. In Extremophiles in Eurasian Ecosystems: Ecology, Diversity, and Applications; Nils-Kåre, B., Dilfuza, E., Eds.; Springer: Singapore, 2018; Volume 8, pp. 119–166. ISBN 978-981-13-0329-6. [Google Scholar]
- Zeigler, D.R. The Geobacillus Paradox: Why Is a Thermophilic Bacterial Genus so Prevalent on a Mesophilic Planet? Microbiology 2014, 160, 1–11. [Google Scholar] [CrossRef]
- Wang, L.; Wang, L.; Wang, D.; Li, J. Isolation and Application of Thermophilic and Psychrophilic Microorganisms in the Composting Process. Waste Biomass Valorization 2013, 5, 433–440. [Google Scholar] [CrossRef]
- Chen, X.G.; Stabnikova, O.; Tay, J.H.; Wang, J.Y.; Tay, S.T. Thermoactive Extracellular Proteases of Geobacillus caldoproteolyticus, sp. nov., from Sewage Sludge. Extremophiles 2004, 8, 489–498. [Google Scholar] [CrossRef]
- Hawumba, J.F.; Theron, J.; Brözel, V.S. Thermophilic Protease-Producing Geobacillus from Buranga Hot Springs in Western Uganda. Curr. Microbiol. 2002, 45, 144–150. [Google Scholar] [CrossRef]
- Atasoy, P.Y.; Inan, K.; Kaçağan, M.; Çanakçi, S.; Beldüz, A.O. Isolation and Characterization of Extracellular Protease Producing Geobacillus sp. from Various Hot Springs in Turkey. Curr. Opin. Biotechnol. 2011, 22, S89. [Google Scholar] [CrossRef]
- Cui, C.X.; Wei, S.L.; Niu, F.B.; Peng, Y.H.; Ming, H. Two Thermostable Xylanases with Different Acid-alkalinity Coexistence in One Bacterium Screened Using Lignocellulosic Biomass and Its Applications. J. Appl. Microbiol. 2025, 136, lxaf212. [Google Scholar] [CrossRef] [PubMed]
- Bose, S.; Mukherjee, T.; Sen, U.; Roy, C.; Rameez, M.J.; Ghosh, W.; Mukhopadhyay, S.K. Genome Sequence of the Multiple-Protease-Producing Strain Geobacillus thermoleovorans N7, a Thermophilic Bacterium Isolated from Paniphala Hot Spring, West Bengal, India. Genome Announc. 2016, 4, e01202-16. [Google Scholar] [CrossRef] [PubMed]
- Kadnikov, V.V.; Mardanov, A.V.; Poltaraus, A.B.; Sokolova, D.S.; Semenova, E.M.; Ravin, N.V.; Tourova, T.P.; Nazina, T.N. Genome Sequencing and Annotation of Geobacillus sp. 1017, a Hydrocarbon-oxidizing Thermophilic Bacterium Isolated from a Heavy Oil Reservoir (China). Genom. Data 2017, 11, 95–97. [Google Scholar] [CrossRef]
- Struchtemeyer, C.G.; Davis, J.P.; Elshahed, M.S. Influence of the Drilling Mud Formulation Process on the Bacterial Communities in Thermogenic Natural Gas Wells of the Barnett Shale. Appl. Environ. Microbiol. 2011, 77, 4744–4753. [Google Scholar] [CrossRef]
- Valenzuela, B.; Solís-Cornejo, F.; Araya, R.; Zamorano, P. Isolation of Thermophilic Bacteria from Extreme Environments in Northern Chile. Microorganisms 2024, 12, 473. [Google Scholar] [CrossRef]
- Maugeri, T.L.; Gugliandolo, C.; Caccamo, D.; Stackebrandt, E. A Polyphasic Taxonomic Study of Thermophilic Bacilli from Shallow, Marine Vents. Syst. Appl. Microbiol. 2001, 24, 572–587. [Google Scholar] [CrossRef] [PubMed]
- Maugeri, T.L.; Gugliandolo, C.; Caccamo, D.; Stackebrandt, E. Three Novel Halotolerant and Thermophilic Geobacillus Strains from Shallow Marine Vents. Syst. Appl. Microbiol. 2002, 25, 450–455. [Google Scholar] [CrossRef]
- Kimura, H.; Asada, R.; Masta, A.; Naganuma, T. Distribution of Microorganisms in the Subsurface of the Manus Basin Hydrothermal Vent Field in Papua New Guinea. Appl. Environ. Microbiol. 2003, 69, 644–648. [Google Scholar] [CrossRef]
- Wissuwa, J.; Stokke, R.; Fedøy, A.E.; Lian, K.; Smalås, A.O.; Steen, I.H. Isolation and Complete Genome Sequence of the Thermophilic Geobacillus sp. 12AMOR1 from an Arctic Deep-Sea Hydrothermal Vent Site. Stand. Genomic Sci. 2016, 11, 16. [Google Scholar] [CrossRef]
- Ginting, E.L.; Wantania, L.L.; Moko, E.M.; Tumbol, R.A.; Siby, M.S.; Wullur, S. Isolation and Identification of Thermophilic Amylolytic Bacteria from Likupang Marine Hydrothermal, North Sulawesi, Indonesia. Biodiversitas 2021, 22, 3326–3332. [Google Scholar] [CrossRef]
- Lentini, V.; Gugliandolo, C.; Maugeri, T.L. Identification of Enzyme-producing Thermophilic Bacilli Isolated from Marine Vents of Aeolian Islands (Italy). Ann. Microbiol. 2007, 57, 355–361. [Google Scholar] [CrossRef]
- Iqbalsyah, T.M.; Malahayati; Atikah; Febriani. Purification and Partial Characterization of a Thermo-Halostable Protease Produced by Geobacillus sp. strain PLS A Isolated from Undersea Fumaroles. J. Taibah Univ. Sci. 2019, 13, 850–857. [Google Scholar] [CrossRef]
- Tang, W.; Lan, D.; Zhao, Z.; Li, S.; Li, X.; Wang, Y. A Thermostable Monoacylglycerol Lipase from Marine Geobacillus sp. 12AMOR1: Biochemical Characterization and Mutagenesis Study. Int. J. Mol. Sci. 2019, 20, 780. [Google Scholar] [CrossRef] [PubMed]
- Shirai, T.; Hung, V.S.; Akita, M.; Hatada, Y.; Ito, S.; Horikoshi, K. Crystallization and Preliminary X-ray Study of Alpha-glucosidase from Geobacillus sp. Strain HTA-462, One of The Deepest Sea Bacteria. Acta Crystallogr. D Biol. Crystallogr. 2003, 59, 1278–1279. [Google Scholar] [CrossRef]
- Akkır, E.Y.; Şahin, Y.B.; Gedikli, S.; Çelik, P.A.; Çabuk, A. Extremely Thermostable, EDTA-Resistant Alkaline Protease from a Thermophilic Geobacillus Subterraneus C2-1 Isolate. J. Microbiol. Biotechnol. 2017, 7, 50–56. Available online: https://office2.jmbfs.org/index.php/JMBFS/article/view/8636 (accessed on 9 October 2025).
- Suleiman, A.D.; Abdul Rahman, N.; Mohd Yusof, H.; Mohd Shariff, F.; Yasid, N.A. Effect of Cultural Conditions on Protease Production by a Thermophilic Geobacillus thermoglucosidasius SKF4 Isolated from Sungai Klah Hot Spring Park, Malaysia. Molecules 2020, 25, 2609. [Google Scholar] [CrossRef] [PubMed]
- Baykara, S.G.; Sürmeli, Y.; Şanlı-Mohamed, G. Purification and Biochemical Characterization of a Novel Thermostable Serine Protease from Geobacillus sp. GS53. Appl. Biochem. Biotechnol. 2021, 193, 1574–1584. [Google Scholar] [CrossRef]
- Iqbal, I.; Aftab, M.N.; Afzal, M.; Ur-Rehman, A.; Aftab, S.; Zafar, A.; Ud-Din, Z.; Khuharo, A.R.; Iqbal, J.; Ul-Haq, I. Purification and Characterization of Cloned Alkaline Protease Gene of Geobacillus stearothermophilus. J. Basic Microbiol. 2014, 55, 160–171. [Google Scholar] [CrossRef] [PubMed]
- Jasilionis, A.; Kuisiene, N. Characterization of a Novel Thermostable Oligopeptidase from Geobacillus thermoleovorans DSM 15325. J. Microbiol. Biotechnol. 2015, 25, 1070–1083. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, C.; Du, L.; Lu, F.; Gao, C. Expression, Purification, and Characterization of a Thermophilic Neutral Protease from Bacillus stearothermophilus in Bacillus subtilis. Sci. China Ser. C 2008, 51, 52–59. [Google Scholar] [CrossRef]
- Özdemir, F.İ.; Asal, Z.; Camcı, H. Purification and Characterization of Recombinant Geobacillus kaustophilus Protein Lon from E. coli. New Biotechnol. 2012, 29, S85. [Google Scholar] [CrossRef]
- Cheng, J.H.; Zhao, W.X.; Cao, H.Y.; Wang, Z.; Wang, Y.; Sheng, Q.; Chen, Y.; Wang, P.; Chen, X.L.; Zhang, Y.Z. Mechanistic Insight into the Production of Collagen Oligopeptides by the S8 Family Protease A4095. J. Agr. Food Chem. 2023, 71, 603–614. [Google Scholar] [CrossRef]
- Zhu, W.; Cha, D.M.; Cheng, G.Y.; Peng, Q.; Shen, P. Purification and Characterization of a Thermostable Protease from a Newly Isolated sp. YMTC 1049. Enzyme Microb. Technol. 2007, 40, 1592–1597. [Google Scholar] [CrossRef]
- Gegeckas, A.; Gudiukaitė, R.; Debski, J.; Citavicius, D. Keratinous Waste Decomposition and Peptide Production by Keratinase from Geobacillus stearothermophilus AD-11. Int. J. Biol. Macromol. 2015, 75, 158–165. [Google Scholar] [CrossRef]
- Thebti, W.; Riahi, Y.; Belhadj, O. Purification and Characterization of a New Thermostable, Haloalkaline, Solvent Stable, and Detergent Compatible Serine Protease from Geobacillus toebii Strain LBT 77. Biomed Res. Int. 2016, 2016, 9178962. Available online: https://onlinelibrary.wiley.com/doi/10.1155/2016/9178962 (accessed on 9 October 2025). [CrossRef]
- Miyake, R.; Shigeri, Y.; Tatsu, Y.; Yumoto, N.; Umekawa, M.; Tsujimoto, Y.; Matsui, H.; Watanabe, K. Two Thimet Oligopeptidase-Like Pz Peptidases Produced by a Collagen- Degrading Thermophile, Geobacillus collagenovorans MO-1. J. Bacteriol. 2005, 187, 4140–4148. [Google Scholar] [CrossRef] [PubMed]
- Tayyab, M.; Rashid, N.; Angkawidjaja, C.; Kanaya, S.; Akhtar, M. Highly Active Metallocarboxypeptidase from Newly Isolated Geobacillus strain SBS-4S: Cloning and Characterization. J. Biosci. Bioeng. 2011, 111, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, W.; Tayyab, M.; Aftab, M.N.; Hashmi, A.S.; Awan, A.R. Optimization of Conditions for the Higher Level Production of Protease: Characterization of Protease from Geobacillus SBS-4S. Waste Biomass Valori. 2020, 11, 6613–6623. [Google Scholar] [CrossRef]
- Sookkheo, B.; Sinchaikul, S.; Phutrakul, S.; Chen, S.T. Purification and Characterization of the Highly Thermostable Proteases from Bacillus stearothermophilus TLS33. Protein Expr. Purif. 2000, 20, 142–151. [Google Scholar] [CrossRef]
- Allison, S.D.; AdeelaYasid, N.; Shariff, F.M.; Abdul Rahman, N. Molecular Cloning, Characterization, and Application of Organic Solvent-Stable and Detergent-Compatible Thermostable Alkaline Protease from Geobacillus thermoglucosidasius SKF4. J. Microbiol. Biotechnol. 2023, 34, 436–456. [Google Scholar] [CrossRef]
- Liang, H.K.; Huang, C.M.; Ko, M.T.; Hwang, J.K. Amino acid Coupling Patterns in Thermophilic Proteins. Proteins 2005, 59, 58–63. [Google Scholar] [CrossRef]
- Osire, T.; Yang, T.; Xu, M.; Zhang, X.; Rao, Z. Lys-Arg Mutation Improved the Thermostability of Bacillus cereus Neutral Protease Through Increased Residue Interactions. World J. Microbiol. Biotechnol. 2019, 35, 173. [Google Scholar] [CrossRef]
- Nakayama, H.; Shimamura, T.; Imagawa, T.; Shirai, N.; Itoh, T.; Sako, Y.; Miyano, M.; Sakuraba, H.; Ohshima, T.; Nomura, N. Structure of a Hyperthermophilic Archaeal Homing Endonuclease, I-Tsp061I: Contribution of Cross-domain Polar Networks to Thermostability. J. Mol. Biol. 2007, 365, 362–378. [Google Scholar] [CrossRef] [PubMed]
- Littlechild, J.A.; Guy, J.; Connelly, S.; Mallett, L.; Waddell, S.; Rye, C.A.; Line, K.; Isupov, M. Natural Methods of Protein Stabilization: Thermostable Biocatalysts. Biochem. Soc. Trans. 2007, 35, 1558–1563. [Google Scholar] [CrossRef] [PubMed]
- Pace, C.N.; Fu, H.; Fryar, K.L.; Landua, J.; Trevino, S.R.; Shirley, B.A.; Hendricks, M.N.; Iimura, S.; Gajiwala, K.; Scholtz, J.M. Contribution of Hydrophobic Interactions to Protein Stability. J. Mol. Biol. 2011, 408, 514–528. [Google Scholar] [CrossRef]
- Kawasaki, A.; Nakano, H.; Hosokawa, A.; Nakatsu, T.; Kato, H.; Watanabe, K. The Exquisite Structure and Reaction Mechanism of Bacterial Pz-Peptidase A Toward Collagenous Peptides. J. Biol. Chem. 2010, 285, 34972–34980. [Google Scholar] [CrossRef] [PubMed]
- Nakano, H.; Hosokawa, A.; Tagawa, R.; Inaka, K.; Ohta, K.; Nakatsu, T.; Kato, H.; Watanabe, K. Crystallization and Preliminary X-ray Crystallographic Analysis of Pz Peptidase B from Geobacillus collagenovorans MO-1. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2012, 38, 757–759. [Google Scholar] [CrossRef]
- Kumar, S.; Tsai, C.J.; Nussinov, R. Factors Enhancing Protein Thermostability. Protein Eng. Des. Sel. 2000, 13, 179–191. [Google Scholar] [CrossRef] [PubMed]
- Tanner, J.J.; Hecht, R.M.; Krause, K.L. Determinants of Enzyme Thermostability Observed in the Molecular Structure of Thermus quaticus D-glyceraldehyde-3-phosphate Dehydrogenase at 2.5 Å resolution. Biochemistry 1996, 35, 2597–2609. [Google Scholar] [CrossRef]
- Rahimzadeh, M.; Khajeh, K.; Mirshahi, M.; Khayatian, M.; Schwarzenbacher, R. Probing the Role of Asparagine Mutation in Thermostability of Bacillus KR-8104 α-Amylase. Int. J. Biol. Macromol. 2012, 50, 1175–1182. [Google Scholar] [CrossRef]
- Sharma, P.K.; Kumar, R.; Kumar, R.; Mohammad, O.; Singh, R.; Kaur, J. Engineering of a Metagenome Derived Lipase Toward Thermal Tolerance: Effect of Asparagine to Lysine Mutation on the Protein Surface. Gene 2012, 491, 264–271. [Google Scholar] [CrossRef]
- Wang, K.; Luo, H.; Tian, J.; Turunen, O.; Huang, H.; Shi, P.; Hua, H.; Wang, C.; Wang, S.; Yao, B. Thermostability Improvement of a Streptomyces Xylanase by Introducing Proline and Glutamic Acid Residues. Appl. Environ. Microbiol. 2014, 80, 2158–2165. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, N.M.; Krishnagopal, A.; Hussain, A.; Kastner, D.; Sayed, A.M.M.; Mok, Y.K.; Swaminathan, K.; Zeeshan, N. Engineering of Serine Protease for Improved Thermostability and Catalytic Activity Using Rational Design. Int. J. Biol. Macromol. 2019, 126, 229–237. [Google Scholar] [CrossRef]
- Zhang, H.T.; Sang, J.C.; Zhang, Y.; Sun, T.W.; Liu, H.; Yue, R.; Zhang, J.; Wang, H.K.; Dai, Y.J.; Lu, F.P. Rational Design of a Yarrowia lipolytica Derived Lipase for Improved Thermostability. Int. J. Biol. Macromol. 2019, 137, 1190–1198. [Google Scholar] [CrossRef]
- Eijsink, V.G.; Vriend, G.; van der Zee, J.R.; van den Burg, B.; Venema, G. Increasing the Thermostability of the Neutral Proteinase of Bacillus stearothermophilus by Improvement of Internal Hydrogen-Bonding. Biochem. J. 1992, 285, 625–628. [Google Scholar] [CrossRef]
- Mansfeld, J.; Vriend, G.; Dijkstra, B.W.; Veltman, O.R.; Van den Burg, B.; Venema, G.; Ulbrich-Hofmann, R.; Eijsink, V.G.H. Extreme Stabilization of a Thermolysin-Like Protease by an Engineered Disulfide Bond. J. Biol. Chem. 1997, 272, 11152–11156. [Google Scholar] [CrossRef]
- Dürrschmidt, P.; Mansfeld, J.; Ulbrich-Hofmann, R. Differentiation between Conformational and Autoproteolytic Stability of the Neutral Protease from Bacillus stearothermophilus Containing an Engineered Disulfide Bond. Eur. J. Biochem. 2001, 268, 3612–3618. [Google Scholar] [CrossRef]
- Camilloni, C.; Bonetti, D.; Morrone, A.; Giri, R.; Dobson, C.M.; Brunori, M.; Gianni, S.; Vendruscolo, M. Towards a Structural Biology of the Hydrophobic Effect in Protein Folding. Sci Rep. 2016, 6, 28285. [Google Scholar] [CrossRef]
- Nguyen, C.; Young, J.T.; Slade, G.G.; Oliveira, R.J.; McCully, M.E. A Dynamic Hydrophobic Core and Surface Salt Bridges Thermostabilize a Designed Three-Helix Bundle. Biophys. J. 2019, 116, 621–632. [Google Scholar] [CrossRef]
- Fakhravar, A.; Hesampour, A. Rational Design-Based Engineering of a Thermostable Phytase by Site-directed Mutagenesis. Mol. Biol. Rep. 2018, 45, 2053–2061. [Google Scholar] [CrossRef] [PubMed]
- Nezhad, N.G.; Rahman, R.N.Z.R.A.; Normi, Y.M.; Oslan, S.N.; Shariff, F.M.; Leow, T.C. Thermostability Engineering of Industrial Enzymes Through Structure Modification. Appl. Microbiol. Biotechnol. 2022, 106, 4845–4866, Erratum in Appl. Microbiol. Biotechnol. 2022, 106, 6363. [Google Scholar] [CrossRef] [PubMed]
- Pace, C.N. Contribution of the Hydrophobic Effect to Globular Protein Stability. J. Mol. Biol. 1992, 226, 29–35. [Google Scholar] [CrossRef]
- Eijsink, V.G.H.; Dijkstra, B.W.; Gerrit, V.; Rob, V.D.Z.J.; Vettman, O.R.; van der Vinne, B.; van den Burg, B.; Kempe, S.; Venema, G. The Effect of Cavity-Filling Mutations on the Thermostability of Bacillus stearothermophilus Neutral Protease. Protein Eng. 1992, 5, 421–426. [Google Scholar] [CrossRef] [PubMed]
- Eijsink, V.G.H.; Matthews, B.W.; Vriend, G. The Role of Calcium Ions in the Stability and Instability of a Thermolysin-like Protease. Protein Sci. 2011, 20, 1346–1355. [Google Scholar] [CrossRef]
- Veltman, O.R.; Vriend, G.; Berendsen, H.J.C.; Bertus, V.D.B.; Venema, G.; Eijsink, V.G.H. A Single Calcium Binding Site Is Crucial for the Calcium-Dependent Thermal Stability of Thermolysin-Like Proteases. Biochemistry 1998, 37, 5312. [Google Scholar] [CrossRef] [PubMed]
- Karpusas, M.; Baase, W.A.; Matthews, M.B.W. Hydrophobic Packing in T4 Lysozyme Probed by Cavity-filling Mutants. Proc. Natl. Acad. Sci. USA 1989, 86, 8237–8241. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.M.; Moon, S.Y.; Kim, Y.R.; Kim, K.W.; Lee, B.J.; Kong, I.S. Improvement of Thermostability and Halostability of β-1,3-1,4-Glucanase by Substituting Hydrophobic Residue for Lys 48. Int. J. Biol. Macromol. 2017, 94, 594–602. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.Y.; Yoon, J.; An, Y.J.; Lee, S.; Cha, H.G.; Pandey, A.; Yoo, Y.J.; Joo, J.C. Statistical Analysis of the Role of Cavity Flexibility in Thermostability of Proteins. Polymers 2024, 16, 291. [Google Scholar] [CrossRef]
- Vieille, C.; Zeikus, G.J. Hyperthermophilic Enzymes: Sources, Uses, and Molecular Mechanisms for Thermostability. Microbiol. Mol. Biol. Rev. 2001, 65, 1–43. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Zhai, L.; Meng, D.; Tian, Q.; Guan, Z.; Cai, Y.; Liao, X. Improving the Catalytic Thermostability of Bacillus altitudinis W3 ω-Transaminase by Proline Substitutions. 3 Biotech 2020, 10, 323. [Google Scholar] [CrossRef]
- Cao, L.; Chen, R.; Xie, W.; Liu, Y. Enhancing the Thermostability of Feruloyl Esterase EstF27 by Directed Evolution and the Underlying Structural Basis. J. Agric. Food Chem. 2015, 63, 8225–8233. [Google Scholar] [CrossRef]
- Watanabe, K.; Masuda, T.; Ohashi, H.; Mihara, H.; Suzuki, Y. Multiple Proline Substitutions Cumulatively Thermostabilize Bacillus cereus ATCC7064 Oligo-1,6-glucosidase. Eur. J. Biochem. 1994, 226, 277–283. [Google Scholar] [CrossRef]
- Veltman, O.R.; Gert, V.; Middelhoven, P.J.; Bertus, V.D.B.; Gerard, V.; Eijsink, V.G.H. Analysis of Structural Determinants of the Stability of Thermolysin-Like Proteases by Molecular Modelling and Site-Directed Mutagenesis. Protein Eng. 1996, 9, 1181–1189. [Google Scholar] [CrossRef]
- Arya, P.S.; Yagnik, S.M.; Rajput, K.N.; Panchal, R.R.; Raval, V.H. Understanding the Basis of Occurrence, Biosynthesis, and Implications of Thermostable Alkaline Proteases. Appl. Biochem. Biotechnol. 2021, 193, 4113–4150. [Google Scholar] [CrossRef]
- Iqbal, I.; Aftab, M.N.; Afzal, M.S.; Zafar, A.; Kaleem, A. Characterization of Geobacillus stearothermophilus Protease for Detergent Industry. Rev. Mex. Ing. Quim. 2020, 19, 267–279. [Google Scholar] [CrossRef]
- Matkawala, F.; Nighojkar, S.; Kumar, A.; Nighojkar, A. Microbial Alkaline Serine Proteases: Production, Properties and Applications. World J. Microbiol. Biotechnol. 2021, 37, 63. [Google Scholar] [CrossRef] [PubMed]
- Salvador, M.; Condón, S.; Gayán, E. Parageobacillus and Geobacillus spp.: From Food Spoilage to Beneficial Food Applications. Foods 2025, 14, 2775. [Google Scholar] [CrossRef]
- Nwachukwu, I.D.; Aluko, R.E. Structural and Functional Properties of Food Protein-Derived Antioxidant Peptides. J. Food Biochem. 2019, 43, e12761. [Google Scholar] [CrossRef]
- Wu, P.; Guo, Y.; Golly, M.K.; Ma, H.; He, R.; Luo, S.; Zhang, C.; Zhang, L.; Zhu, J. Feasibility Study on Direct Fermentation of Soybean Meal by Bacillus stearothermophilus under Non-Sterile Conditions. J. Sci. Food Agric. 2019, 99, 3291–3298. [Google Scholar] [CrossRef]
- Chang, C.; Gong, S.; Liu, Z.; Yan, Q.; Jiang, Z. High Level Expression and Biochemical Characterization of an Alkaline Serine Protease from Geobacillus stearothermophilus to Prepare Antihypertensive Whey Protein Hydrolysate. BMC Biotechnol. 2021, 21, 21. [Google Scholar] [CrossRef]
- Alahyaribeik, S.; Sharifi, S.D.; Tabandeh, F.; Honarbakhsh, S.; Ghazanfari, S. Bioconversion of Chicken Feather Wastes by Keratinolytic Bacteria. Process Saf. Environ. Protect. 2020, 135, 171–178. [Google Scholar] [CrossRef]
- Siddharthan, N.; Balagurunathan, R.; Hemalatha, N. A Novel Feather-Degrading Bacterial Isolate Geobacillus thermodenitrificans PS41 Isolated from Poultry Farm Soil. Arch. Microbiol. 2022, 204, 565. [Google Scholar] [CrossRef]
- Chen, A.; Huang, Y.; Chi, B.; Tan, J.; Duan, X.; Ruan, X. Research on Enhancing Sewage Sludge Lysis and Bioreactor Initiation Through Composite Thermophilic Strains. Biochem. Eng. J. 2024, 206, 109298. [Google Scholar] [CrossRef]
- Shao, Y.; Li, S.; Wang, H.; Jin, C.; Zhao, Y.; Zhao, J.; Guo, L. Effect of Rhamnolipid on the Performance of Compound Thermophilic Bacteria Agent Pretreatment System for Waste Sludge Hydrolysis. Sci. Total Environ. 2024, 957, 177513. [Google Scholar] [CrossRef]
- Liu, Y.; Li, S.; Xing, D.; Jin, C.; Zhao, Y.; Zhao, J.; Guo, L. Performance of Four Thermophilic Bacteria for Primary Sludge Hydrolysis: Sludge Disintegration and Hydrolase Activities. Bioresour. Technol. 2025, 420, 132123. [Google Scholar] [CrossRef] [PubMed]
- Ning, Z.; Ma, C.; Zhong, W.; Liu, C.; Niu, J.; Wang, C.; Wang, Z. Compound Mutation by Ultraviolet and Diethyl sulfate of Protease Producing Thermophilic Bacteria to Hydrolyze Excess Sludge. Bioresour. Technol. 2024, 395, 130330. [Google Scholar] [CrossRef]
- Hammami, A.; Fakhfakh, N.; Abdelhedi, O.; Nasri, M.; Bayoudh, A. Proteolytic and Amylolytic Enzymes from a Newly Isolated Bacillus mojavensis SA: Characterization and Applications as Laundry Detergent Additive and in Leather Processing. Int. J. Biol. Macromol. 2018, 108, 56–68. [Google Scholar] [CrossRef]
- Cai, S.B.; Huang, Z.H.; Zhang, X.Q.; Cao, Z.J.; Zhou, M.H.; Hong, F. Identification of a Keratinase-Producing Bacterial Strain and Enzymatic Study for Its Improvement on Shrink Resistance and Tensile Strength of Wool- and Polyester-Blended Fabric. Appl. Biochem. Biotechnol. 2010, 163, 112–126. [Google Scholar] [CrossRef] [PubMed]
- Amro, A.; Serour, E.A. Wool Quality Improvement Using Thermophilic Crude Proteolytic Microbial Enzymes. American-Eurasian J. Agric. Environ. Sci. 2008, 3, 554–560. Available online: https://www.idosi.org/aejaes/jaes3(4)/7.pdf (accessed on 9 October 2025).
- Ahmad, W.; Tayyab, M.; Muneer, B.; Hashmi, A.S.; Ahmad, M.D.; Saeed, S.; Aftab, M.N.; Firyal, S.; Wasim, M.; Azam, M.; et al. Impact of Locally Characterized Protease from Geobacillus SBS 4S on the Growth of Poultry Bird. Pak. J. Zool. 2023, 56, 17–23. [Google Scholar] [CrossRef]
- Oztug, M.; Kilinc, E.; Akgoz, M.; Karaguler, N.G. Thermal Proteome Profiling and Meltome Analysis of a Thermophilic Bacterial Strain, Geobacillus thermoleovorans ARTRW1: Toward Industrial Applications. OMICS J. Integr. Biol. 2020, 24, 756–765. [Google Scholar] [CrossRef]
- Lai, R.; Lin, M.; Yan, Y.; Jiang, S.; Zhou, Z.; Wang, J. Comparative Genomic Analysis of a Thermophilic Protease-Producing Strain Geobacillus stearothermophilus H6. Genes 2023, 14, 466. [Google Scholar] [CrossRef] [PubMed]




| Protease Source | Type of Protease | Optimum Temperature (°C) | Optimum pH | Thermal Stability | Application | Reference |
|---|---|---|---|---|---|---|
| G. caldoproteolyticus SF03 | - | 70–80 | 8.0–9.0 | Retained 57% and 38% activity at 80 or 90 °C for 1 h | - | [16] |
| G. strain PA-9 | - | 70 | 6.5 | - | - | [17] |
| G. strain PA-5 | - | 60 | 8.0 | - | - | [17] |
| G. strain K13 | - | 65 | 8.0 | - | - | [18] |
| G. strain PLS A | - | 60 | 7 | - | Biocontrol agent | [30] |
| G. strain GS53 | Serine protease | 50 | 8 | Retained 85% activity at 85 °C for 6 h | Detergent industry | [35] |
| G. stearothermophilus B-1172 | Serine protease | 70 | - | Retained 71% activity at 80 °C for 3 h | Biocontrol agent | [36] |
| G. stearothermophilus | - | 65 | 7.5 | Retained 80% activity at 65 °C for 1 h | Leather-processing | [38] |
| G. kaustophilus | Serine protease | 55 | 8.5 | - | Detergent industry | [39] |
| G. strain YMTC 1049 | Serine protease | 85 | 7.5 | Stable at 65 °C for 10 h | - | [41] |
| G. stearothermophilus AD-11 | Metalloproteinase | 60 | 9 | Retained higher than 50% activity at 70–80 °C for 2 h | Waste treatment | [42] |
| G. toebii LBT 77 | Serine protease | 95 | 13 | Stable at 70 °C for 3 h | - | [43] |
| G. collagenovorans MO-1 | Metallopeptidase | 65 | 7.6 | Half-life of 30 min at 70 °C | Collagen degradation | [44] |
| G. collagenovorans MO-1 | Metallopeptidase | 70 | 8.4 | Half-life of 30 min at 75 °C | Collagen degradation | [44] |
| G. strain SBS-4S | Metalloprotease | 70 | 7.5 | - | - | [45] |
| G. strain SBS-4S | - | 60 | 9.0 | Stable at 60 °C for 2 h | Detergent industry | [46] |
| G. stearothermophilus TLS33 | Metalloprotease | 70 | 8.5 | - | - | [47] |
| G. stearothermophilus TLS33 | Metalloprotease | 85 | 7.5 | - | - | [47] |
| G. stearothermophilus TLS33 | Metalloprotease | 90 | 7.0 | - | - | [47] |
| G. thermoglucosidasius SKF4 | Serine protease | 80 | 10 | Half-life of 15 h at 80 °C | Detergent industry | [48] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Wang, J.-W.; Cheng, J.-H. Thermostable Proteases from Geobacillus: Production, Characterization, Structural Stability Mechanisms and Biotechnological Applications. Microorganisms 2025, 13, 2455. https://doi.org/10.3390/microorganisms13112455
Wang M, Wang J-W, Cheng J-H. Thermostable Proteases from Geobacillus: Production, Characterization, Structural Stability Mechanisms and Biotechnological Applications. Microorganisms. 2025; 13(11):2455. https://doi.org/10.3390/microorganisms13112455
Chicago/Turabian StyleWang, Meng, Jun-Wei Wang, and Jun-Hui Cheng. 2025. "Thermostable Proteases from Geobacillus: Production, Characterization, Structural Stability Mechanisms and Biotechnological Applications" Microorganisms 13, no. 11: 2455. https://doi.org/10.3390/microorganisms13112455
APA StyleWang, M., Wang, J.-W., & Cheng, J.-H. (2025). Thermostable Proteases from Geobacillus: Production, Characterization, Structural Stability Mechanisms and Biotechnological Applications. Microorganisms, 13(11), 2455. https://doi.org/10.3390/microorganisms13112455
