Characterization and Antimicrobial Resistance Profiles of Biofilm Forming Strains of Staphylococcus aureus Isolated from Skin Lesions
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection, Cultivation, and Identification of Staphylococcus aureus
2.2. Genomic DNA Extraction
2.3. Testing of Biofilm Formation
2.4. Antimicrobial Susceptibility Testing
2.5. Detection of Efflux Pump
2.6. Gene Detection Using PCR
2.7. Statistical Analysis
3. Results
3.1. Identification of Bacterial Isolates
3.2. Evaluation of Biofilm Formation
3.3. Antimicrobial Susceptibility Profiles of S. aureus Isolates
3.4. Evaluation of Efflux Pump Production
3.5. Identification of Antimicrobial Resistance Genes and Genes Related to Biofilm Formation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| agr | accessory gene regulator |
| AMP | ampicillin |
| BORSA | borderline oxacillin-resistant Staphylococcus aureus |
| CA-MRSA | community-associated methicillin-resistant Staphylococcus aureus |
| CIP | ciprofloxacin |
| CLI | clindamycin |
| CoNS | coagulase-negative staphylococci |
| COT | trimethoprim + sulphonamide |
| DNA | deoxyribonucleic acid |
| ERY | erythromycin |
| EUCAST | European Committee on Antimicrobial Susceptibility Testing |
| FOX | cefoxitin |
| GEN | gentamicin |
| HA-MRSA | hospital-associated methicillin-resistant Staphylococcus aureus |
| CHL | chloramphenicol |
| LNZ | linezolid |
| MALDI-TOF MS | matrix-assisted laser desorption ionization–time of flight mass spectrometry |
| mBHI | modified brain heart infusion broth |
| MFX | moxifloxacin |
| MIC | minimum inhibitory concentration |
| MLSB | macrolide-lincosamide-streptogramin B resistance |
| MODSA | modified Staphylococcus aureus |
| MRSA | methicillin-resistant Staphylococcus aureus |
| MSCRAMM | microbial surface components recognizing adhesive matrix molecules |
| NIT | nitrofurantoin |
| OXA | oxacillin |
| PCR | polymerase chain reaction |
| PIA | polysaccharide intercellular antigen |
| PVL | Panton-Valentine leucocidin |
| RIF | rifampicin |
| SAM | ampicillin + sulbactam |
| SCCmec | staphylococcal cassette chromosome mec |
| TEC | teicoplanin |
| TET | tetracycline |
| TGC | tigecycline |
| TMP | trimethoprim |
| TSST | toxic shock syndrome toxin |
| TZP | piperacillin + tazobactam |
| VAN | vancomycin |
| VISA | vancomycin-intermediate Staphylococcus aureus |
| VRSA | vancomycin-resistant Staphylococcus aureus |
References
- Ali, M.U.; Khalid, M.; Alshanbari, H.; Zafar, A.; Lee, S.W. Enhancing Skin Lesion Detection: A Multistage Multiclass Convolutional Neural Network-Based Framework. Bioengineering 2023, 10, 1430. [Google Scholar] [CrossRef]
- Skuhala, T.; Trkulja, V.; Rimac, M.; Dragobratović, A.; Desnica, B. Analysis of Types of Skin Lesions and Diseases in Everyday Infectious Disease Practice—How Experienced Are We? Life 2022, 12, 978. [Google Scholar] [CrossRef]
- Osmosis. Available online: https://www.osmosis.org/answers/skin-lesions (accessed on 2 July 2025).
- Pătrașcu, A.-I.; Vâță, D.; Temelie-Olinici, D.; Mocanu, M.; Guguluș, D.-L.; Marinescu, M.; Stafie, L.; Tarcău, B.-M.; Creţu, I.; Popescu, I.-A.; et al. Skin Lesions with Loss of Tissue and Cutaneous-Onset Sepsis: The Skin Infection–Sepsis Relationship. Diagnostics 2024, 14, 659. [Google Scholar] [CrossRef] [PubMed]
- Sandru, F.; Poenaru, E.; Stoleru, S.; Radu, A.-M.; Roman, A.-M.; Ionescu, C.; Zugravu, A.; Nader, J.M.; Băicoianu-Nițescu, L.-C. Microbial Colonization and Antibiotic Resistance Profiles in Chronic Wounds: A Comparative Study of Hidradenitis Suppurativa and Venous Ulcers. Antibiotics 2025, 14, 53. [Google Scholar] [CrossRef]
- Tsige, Y.; Tadesse, S.; G/Eyesus, T.; Tefera, M.M.; Amsalu, A.; Menberu, M.A.; Gelaw, B. Prevalence of Methicillin-Resistant Staphylococcus aureus and Associated Risk Factors among Patients with Wound Infection at Referral Hospital, Northeast Ethiopia. J. Pathog. 2020, 2020, 3168325. [Google Scholar] [CrossRef]
- Almuhayawi, M.S.; Alruhaili, M.H.; Gattan, H.S.; Alharbi, M.T.; Nagshabandi, M.; Jaouni, S.A.; Selim, S.; Alanazi, A.; Alruwaili, Y.; Faried, O.A.; et al. Staphylococcus aureus induced wound infections which antimicrobial resistance, methicillin-and vancomycin-resistant: Assessment of emergence and cross sectional study. Infect. Drug Resist. 2023, 2023, 5335–5346. [Google Scholar] [CrossRef]
- Touaitia, R.; Mairi, A.; Ibrahim, N.A.; Basher, N.S.; Idres, T.; Touati, A. Staphylococcus aureus: A Review of the Pathogenesis and Virulence Mechanisms. Antibiotics 2025, 14, 470. [Google Scholar] [CrossRef]
- Sato’o, Y. Staphylococcus aureus Pathogenesis Based on Genetic Background. In Staphylococcus Aureus: Interplay Between Bacteria and Hosts; Nakane, A., Asano, K., Eds.; Springer: Singapore, 2024; pp. 119–150. [Google Scholar] [CrossRef]
- Linz, M.S.; Mattappallil, A.; Finkel, D.; Parker, D. Clinical Impact of Staphylococcus aureus Skin and Soft Tissue Infections. Antibiotics 2023, 12, 557. [Google Scholar] [CrossRef]
- Peng, Q.; Tang, X.; Dong, W.; Sun, N.; Yuan, W. A Review of Biofilm Formation of Staphylococcus aureus and Its Regulation Mechanism. Antibiotics 2022, 12, 12. [Google Scholar] [CrossRef]
- Yamazaki, Y.; Ito, T.; Tamai, M.; Nakagawa, S.; Nakamura, Y. The role of Staphylococcus aureus quorum sensing in cutaneous and systemic infections. Inflamm. Regener. 2024, 44, 9. [Google Scholar] [CrossRef]
- Hulme, J. Harnessing Ultrasonic Technologies to Treat Staphylococcus Aureus Skin Infections. Molecules 2025, 30, 512. [Google Scholar] [CrossRef]
- Ahmad, A.A.M.; Abdelgalil, S.Y.; Khamis, T.; Abdelwahab, A.M.O.; Atwa, D.N.; Elmowalid, G.A. Thymoquinone’ potent impairment of multidrug-resistant Staphylococcus aureus NorA efflux pump activity. Sci. Rep. 2024, 14, 16483. [Google Scholar] [CrossRef]
- Gaurav, A.; Bakht, P.; Saini, M.; Pandey, S.; Pathania, R. Role of bacterial efflux pumps in antibiotic resistance, virulence, and strategies to discover novel efflux pump inhibitors. Microbiology 2023, 169, 001333. [Google Scholar] [CrossRef] [PubMed]
- Dashtbani-Roozbehani, A.; Brown, M.H. Efflux Pump Mediated Antimicrobial Resistance by Staphylococci in Health-Related Environments: Challenges and the Quest for Inhibition. Antibiotics 2021, 10, 1502. [Google Scholar] [CrossRef] [PubMed]
- Kumawat, M.; Nabi, B.; Daswani, M.; Viquar, I.; Pal, N.; Sharma, P.; Tiwari, S.; Sarma, D.K.; Shubham, S.; Kumar, M. Role of bacterial efflux pump proteins in antibiotic resistance across microbial species. Microb. Pathog. 2023, 181, 106182. [Google Scholar] [CrossRef] [PubMed]
- Garcia, Í.R.; de Oliveira Garcia, F.A.; Pereira, P.S.; Coutinho, H.D.M.; Siyadatpanah, A.; Norouzi, R.; Wilairatana, P.; de Lourdes Pereira, M.; Nissapatorn, V.; Tintino, S.R.; et al. Microbial resistance: The role of efflux pump superfamilies and their respective substrates. Life Sci. 2022, 295, 120391. [Google Scholar] [CrossRef]
- Du, D.; Wang-Kan, X.; Neuberger, A.; van Veen, H.W.; Pos, K.M.; Piddock, L.J.V.; Luisi, B.F. Multidrug efflux pumps: Structure, function and regulation. Nat. Rev. Microbiol. 2018, 16, 523–539. [Google Scholar] [CrossRef]
- Bessède, E.; Angla-gre, M.; Delagarde, Y.; Hieng, S.S.; M’enard, A.; M’egraud, F. Matrix-assisted laser-desorption/ionization biotyper: Experience in the routine of a university hospital. Clin. Microbiol. Infect. 2011, 17, 533–538. [Google Scholar] [CrossRef]
- O’Toole, G.A.; Pratt, L.A.; Watnick, P.I.; Newman, D.K.; Weaver, V.B.; Kolter, R. Genetic approaches to study of biofilms. Methods Enzym. 1999, 310, 91–109. [Google Scholar]
- Gattringer, R.; Niks, M.; Ostertag, R.; Schwarz, K.; Medvedovic, H.; Graninger, W.; Georgopoulos, A. Evaluation of MIDITECH automated colorimetric MIC reading for antimicrobial susceptibility testing. J. Antimicrob. Chemother. 2002, 49, 651–659. [Google Scholar] [CrossRef]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters, Version 14.0. 2024. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_14.0_Breakpoint_Tables.pdf (accessed on 1 January 2024).
- Martins, M.; Viveiros, M.; Couto, I.; Costa, S.S.; Pacheco, T.; Fanning, S.; Pagès, J.M.; Amaral, L. Identification of efflux pump-mediated multidrug-resistant bacteria by the ethidium bromide-agar cartwheel method. In vivo 2011, 25, 171–178. [Google Scholar]
- Király, J.; Hajdučková, V.; Gregová, G.; Szabóová, T.; Pilipčinec, E. Resistant S. aureus Isolates Capable of Producing Biofilm from the Milk of Dairy Cows with Subclinical Mastitis in Slovakia. Agriculture 2024, 14, 571. [Google Scholar] [CrossRef]
- Kryvtsova, M.V.; Király, J.; Koščová, J.; Kostenko, Y.Y.; Bubnov, R.V.; Spivak, M.Y. Determination of biofilm formation and associated gene detection in Staphylococcus genus isolated from the oral cavity under inflammatory periodontal diseases. Stud. Biol. 2020, 14, 49–64. [Google Scholar] [CrossRef]
- Hussain, M.; von Eiff, C.; Sinha, B.; Joost, I.; Herrmann, M.; Peters, G.; Becker, K. eap Gene as novel target for specific identification of Staphylococcus aureus. J. Clin. Microbiol. 2008, 46, 470–476. [Google Scholar] [CrossRef]
- Iqbal, Z.; Seleem, M.N.; Hussain, H.I.; Huang, L.; Hao, H.; Yuan, Z. Comparative virulence studies and transcriptome analysis of Staphylococcus aureus strains isolated from animals. Sci. Rep. 2016, 6, 35442. [Google Scholar] [CrossRef]
- Nourbakhsh, F.; Namvar, A.E. Detection of genes involved in biofilm formation in Staphylococcus aureus isolates. GMS Hyg. Infect. Control 2016, 11, Doc07. [Google Scholar] [CrossRef]
- Pereyra, E.A.L.; Picech, F.; Renna, M.S.; Baravalle, C.; Andreotti, C.S.; Russi, R.; Calvinho, L.F.; Diez, C.; Dallard, B.E. Detection of Staphylococcus aureus adhesion and biofilm-producing genes and their expression during internalization in bovine mammary epithelial cells. Vet. Microbiol. 2016, 183, 69–77. [Google Scholar] [CrossRef]
- Englerová, K.; Bedlovičová, Z.; Nemcová, R.; Király, J.; Maďar, M.; Hajdučková, V.; Styková, E.; Mucha, R.; Reiffová, K. Bacillus amyloliquefaciens-Derived Lipopeptide Biosurfactants Inhibit Biofilm Formation and Expression of Biofilm-Related Genes of Staphylococcus aureus. Antibiotics 2021, 10, 1252. [Google Scholar] [CrossRef]
- Regecová, I.; Výrostková, J.; Zigo, F.; Gregová, G.; Pipová, M.; Jevinová, P.; Becová, J. Detection of Resistant and Enterotoxigenic Strains of Staphylococcus warneri Isolated from Food of Animal Origin. Foods 2022, 11, 1496. [Google Scholar] [CrossRef]
- Gehrke, A.-K.E.; Giai, C.; Gómez, M.I. Staphylococcus aureus Adaptation to the Skin in Health and Persistent/Recurrent Infections. Antibiotics 2023, 12, 1520. [Google Scholar] [CrossRef]
- Khalili, H.; Najar-Peerayeh, S.; Mahrooghi, M.; Mansouri, P.; Bakhshi, B. Methicillin-resistant Staphylococcus aureus colonization of infectious and non-infectious skin and soft tissue lesions in patients in Tehran. BMC Microbiol. 2021, 21, 282. [Google Scholar] [CrossRef]
- Vella, V.; Galgani, I.; Polito, L.; Arora, A.K.; Creech, C.B.; David, M.Z.; Lowy, F.D.; Macesic, N.; Ridgway, J.P.; Uhlemann, A.C.; et al. Staphylococcus aureus skin and soft tissue infection recurrence rates in outpatients: A retrospective database study at 3 US medical centers. Clin. Infect. Dis. 2021, 73, 1045–1053. [Google Scholar] [CrossRef]
- Ghebremedhin, B.; Olugbosi, M.O.; Raji, A.M.; Layer, F.; Bakare, R.A.; König, B.; König, W. Emergence of a community-associated methicillin-resistant Staphylococcus aureus strain with a unique resistance profile in Southwest Nigeria. J. Clin. Microbiol. 2009, 47, 2975–2980. [Google Scholar] [CrossRef]
- Godebo, G.; Kibru, G.; Tassew, H. Multidrug-resistant bacterial isolates in infected wounds at Jimma University Specialized Hospital, Ethiopia. Ann. Clin. Microbiol. Antimicrob. 2013, 12, 17. [Google Scholar] [CrossRef] [PubMed]
- Almeida, G.C.M.; dos Santos, M.M.; Lima, N.G.M.; Cidral, T.A.; Melo, M.C.N.; Lima, K.C. Prevalence and factors associated with wound colonization by Staphylococcus spp. and Staphylococcus aureus in hospitalized patients in inland northeastern Brazil: A cross-sectional study. BMC Infect. Dis. 2014, 14, 328. [Google Scholar] [CrossRef]
- Rasquel-Oliveira, F.S.; Ribeiro, J.M.; Martelossi-Cebinelli, G.; Costa, F.B.; Nakazato, G.; Casagrande, R.; Verri, W.A. Staphylococcus aureus in Inflammation and Pain: Update on Pathologic Mechanisms. Pathogens 2025, 14, 185. [Google Scholar] [CrossRef]
- Sivori, F.; Cavallo, I.; Truglio, M.; De Maio, F.; Sanguinetti, M.; Fabrizio, G.; Licursi, V.; Francalancia, M.; Fraticelli, F.; La Greca, I.; et al. Staphylococcus aureus colonizing the skin microbiota of adults with severe atopic dermatitis exhibits genomic diversity and convergence in biofilm traits. Biofilm 2024, 8, 100222. [Google Scholar] [CrossRef]
- Kwiecinski, J.; Kahlmeter, G.; Jin, T. Biofilm Formation by Staphylococcus aureus Isolates from Skin and Soft Tissue Infections. Curr. Microbiol. 2015, 70, 698–703. [Google Scholar] [CrossRef]
- Vergara-Irigaray, M.; Valle, J.; Merino, N.; Latasa, C.; García, B.; Ruiz de los Mozos, I.; Toledo-Arana, A.; Penadés, J.R.; Lasa, I. Relevant role of fibronectin-binding proteins in Staphylococcus aureus biofilm-associated foreign-body infections. Infect. Immun. 2009, 77, 3978–3991. [Google Scholar] [CrossRef]
- Cucarella, C.; Solano, C.; Valle, J.; Amorena, B.; Lasa, I.; Penadés, J.R. Bap, a Staphylococcus aureus surface protein involved in biofilm formation. J. Bacteriol. 2001, 183, 2888–2896. [Google Scholar] [CrossRef]
- Valle, J.; Fang, X.; Lasa, I. Revisiting Bap Multidomain Protein: More Than Sticking Bacteria Together. Front. Microbiol. 2020, 11, 613581. [Google Scholar] [CrossRef] [PubMed]
- Matilla-Cuenca, L.; Gil, C.; Cuesta, S.; Rapún-Araiz, B.; Žiemytè, M.; Mira, A.; Lasa, I.; Valle, J. Antibiofilm activity of flavonoids on staphylococcal biofilms through targeting BAP amyloids. Sci. Rep. 2020, 10, 18968. [Google Scholar] [CrossRef] [PubMed]
- Rimi, S.S.; Ashraf, M.N.; Sigma, S.H.; Ahammed, M.T.; Siddique, M.P.; Zinnah, M.A.; Rahman, M.T.; Islam, M.S. Biofilm formation, agr typing and antibiotic resistance pattern in methicillin-resistant Staphylococcus aureus isolated from hospital environments. PLoS ONE 2024, 19, e0308282. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.H.; Wong, M.Y.; Huang, T.Y.; Kao, C.C.; Lin, Y.H.; Lu, C.H.; Huang, Y.K. Exploration of agr types, virulence-associated genes, and biofilm formation ability in Staphylococcus aureus isolates from hemodialysis patients with vascular access infections. Front. Cell Infect. Microbiol. 2024, 14, 1367016. [Google Scholar] [CrossRef]
- O’Neill, E.; Pozzi, C.; Houston, P.; Humphreys, H.; Robinson, D.A.; Loughman, A.; Foster, T.J.; O’Gara, J.P. A novel Staphylococcus aureus biofilm phenotype mediated by the fibronectin-binding proteins, FnBPA and FnBPB. J. Bacteriol. 2008, 190, 3835–3850. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Invasive Staphylococcus aureus Infection Surveillance. Available online: https://www.cdc.gov/healthcareassociatedinfections/php/haiceip/invasivestaphylococcus.html. (accessed on 17 April 2024).
- Mediavilla, J.R.; Chen, L.; Mathema, B.; Kreiswirth, B.N. Global epidemiology of community-associated methicillin resistant Staphylococcus aureus (CA-MRSA). Curr. Opin. Microbiol. 2012, 15, 588–595. [Google Scholar] [CrossRef]
- Ji, X.; Zhu, W.; Lu, H.; Wu, Z.; Chen, H.; Lin, C.H.; Zeng, Z.; You, C.; Li, L. Antibiotic Resistance Profiles and MLST Typing of Staphylococcus Aureus Clone Associated with Skin and Soft Tissue Infections in a Hospital of China. Infect. Drug, Resist. 2024, 17, 2555–2566. [Google Scholar] [CrossRef]
- Koumaki, D.; Maraki, S.; Evangelou, G.; Koumaki, V.; Gregoriou, S.; Kouloumvakou, S.; Petrou, D.; Rovithi, E.; Zografaki, K.; Doxastaki, A.; et al. Clinical features and Antibiotic Susceptibility of Staphylococcus aureus-infected dermatoses. J. Clin. Med. 2025, 14, 1084. [Google Scholar] [CrossRef]
- Bawankar, N.S.; Agrawal, G.N.; Zodpey, S.S. Revealing inducible clindamycin resistance in methicillin-resistant S. aureus: A vital diagnostic imperative for effective treatment. J. Postgrad. Med. 2024, 70, 223–226. [Google Scholar] [CrossRef]
- Assefa, M. Inducible Clindamycin-Resistant Staphylococcus aureus Strains in Africa: A Systematic Review. Int. J. Microbiol. 2022, 2022, 1835603. [Google Scholar] [CrossRef]
- Michalik, M.; Podbielska-Kubera, A.; Dmowska-Koroblewska, A. Antibiotic Resistance of Staphylococcus aureus Strains—Searching for New Antimicrobial Agents—Review. Pharmaceuticals 2025, 18, 81. [Google Scholar] [CrossRef] [PubMed]
- Brdová, D.; Ruml, T.; Viktorová, J. Mechanisms of staphylococcal resistance to clinically relevant antibiotics. Drug Resist. Updat. 2024, 77, 101147. [Google Scholar] [CrossRef]
- Thumu, S.C.; Halami, P.M. Acquired resistance to macrolide-lincosamide-streptogramin antibiotics in lactic Acid bacteria of food origin. Indian. J. Microbiol. 2012, 52, 530–537. [Google Scholar] [CrossRef] [PubMed]
- Leclercq, R. Mechanisms of resistance to macrolides and lincosamides: Nature of the resistance elements and their clinical implications. Clin. Infect. Dis. 2002, 34, 482–492. [Google Scholar] [CrossRef] [PubMed]
- Saderi, H.; Emadi, B.; Owlia, P. Phenotypic and genotypic study of macrolide, lincosamide and streptogramin B (MLSB) resistance in clinical isolates of Staphylococcus aureus in Tehran, Iran. Med. Sci. Monit. 2011, 17, BR48–BR53. [Google Scholar] [CrossRef]
- Henry, T.; Khachemoune, A. Dermatologic conditions and risk factors in people experiencing homelessness (PEH): Systematic review. Arch. Dermatol. Res. 2023, 315, 2795–2803. [Google Scholar] [CrossRef]
- Cohen, P.R. Community-acquired methicillin-resistant Staphylococcus aureus skin infections: A review of epidemiology, clinical features, management, and prevention. Int. J. Dermatol. 2007, 46, 1–11. [Google Scholar] [CrossRef]
- Kosmidis, C.; Schindler, B.D.; Jacinto, P.L.; Patel, D.; Bains, K.; Seo, S.M.; Kaatz, G.W. Expression of multidrug resistance efflux pump genes in clinical and environmental isloates of Staphylococcus aureus. Int. J. Antimicrob. Agents 2012, 40, 204–209. [Google Scholar] [CrossRef]
- Floyd, J.L.; Smith, K.P.; Kumar, S.H.; Floyd, J.T.; Varela, M.F. LmrS Is a Multidrug Efflux Pump of the Major Facilitator Superfamily from Staphylococcus aureus. Antimicrob. Agents Chemother. 2010, 54, 5406–5412. [Google Scholar] [CrossRef]
- Lekshmi, M.; Stephen, J.; Ojha, M.; Kumar, S.; Varela, M. Staphylococcus aureus antimicrobial efflux pumps and their inhibitors: Recent developments. AIMS Med. Sci. 2022, 9, 367–393. [Google Scholar] [CrossRef]
- Favour, E.N.; Isaac, A.A. Phenotypic characterization of biofilm formation and efflux pump activity in multi-drug resistant staphylococcus species isolated from asymptomatic students. J. Microbiol. Exp. 2020, 8, 223–229. [Google Scholar] [CrossRef]
- Patel, D.; Kosmidis, C.; Seo, S.M.; Kaatz, G.W. Ethidium Bromide MIC Screening for Enhanced Efflux Pump Gene Expresion or Efflux Activity in Staphylococcus aureus. AAC 2010, 54, 5070–5073. [Google Scholar] [CrossRef]
- Abdi, P.; Mahdavi Ourtakand, M.; Honarmand Jahromy, S. The Effect of Matricaria chamomilla alcoholic extract on phenotype detection of efflux pumps of methicillin resistant Staphylococcus aureus (MRSA) isolated from skin lesions. Iran. J. Med. Microbiol. 2019, 13, 220–231. [Google Scholar] [CrossRef]




| Microbiological Medium | Incubation Conditions | Colony Appearance | ||
|---|---|---|---|---|
| Temperature | Time | Atmosphere | ||
| Columbia Blood Agar | 35–37 °C | 24–48 h | Aerobic | Golden-yellow, white, or cream colonies with beta/gamma hemolysis |
| Baird-Parker Agar | 30–35 °C | 24–48 h | Aerobic | Grey-black and shiny colonies with a positive, opaque zone around the colony |
| Mannitol Salt Agar | 30–35 °C | 18–72 h | Aerobic | Yellow or white colonies surrounded by a yellow zone |
| Gene | Primer Sequence (5′→3′) | Product Size (bp) | Reference |
|---|---|---|---|
| 16S rRNA | TACAATGGACAATACAAAGGGC TCACCGTAGCATGCTGATCT | 141 | [26] |
| eap | TACTAACGAAGCATCTGCC TTAAATCGATATCACTAATACCTC | 230 | [27] |
| nuc | ACCTGCGACATTAATTAAAGCG TGTTTCAGGTGTATCAACCAATAATAG | 103 | [25] |
| mecA | TGGAAGTTAGATTGGGATCATAGC CGATGCCTATCTCATATGCTGTT | 154 | [25] |
| mecC | GACGATGGATCTGGTACAGCA CATTCATGAATGGATAAACATCGTA | 94 | [25] |
| bap | TTGACGAGGTTGGTAATGGC CGCCTACAGTTTCTGGTAATGC | 87 | [25] |
| icaA | CTTGCTGGCGCAGTCAATAC GTAGCCAACGTCGACAACTG | 75 | [28] |
| icaB | ATACCGGCGACTGGGTTTAT ATGCAAATCGTGGGTATGTGT | 141 | [29] |
| icaC | CTTGGGTATTTGCACGCATT GCAATATCATGCCGACACCT | 209 | [30] |
| icaD | ACCCAACGCTAAAATCATCG GCGAAAATGCCCATAGTTTC | 211 | [29] |
| srtA | GTGGTACTTATCCTAGTGGCAGC GCCTGCCACTTTCGATTTATC | 183 | [31] |
| agrA | TCGTAAGCATGACCCAGTTG AAATCCATCGCTGCAACTTT | 96 | [31] |
| fnbA | GAAGTGGCACAGCCAAGAAC ACGTTGACCAGCATGTGG | 192 | [31] |
| fnbB | CAATGATCCTATCATTGAGAAGAGTG CCTTCTACACCTTCAACAGCTGTA | 156 | [31] |
| clfA | GAGAGCATTTAGTTTAGCGGCA TCACCTTTAACAGCAGAATTAGGC | 180 | [25] |
| clfB | GTCTACACAAACGAGCAATACCAC TGAGGAACAGTTTGATCTTGCA | 120 | [25] |
| No. of Isolates | |||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
| AMP | 0.25 | 0.25 | 8 | 0.5 | 4 | 0.5 | 0.5 | 0.25 | 0.25 | 1 | 16 | 4 | 4 |
| SAM | 0.25 | 1 | 4 | 0.25 | 2 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 4 | 2 | 2 |
| TZP | 0.5 | 0.5 | 1 | 1 | 2 | 0.5 | 0.5 | 0.5 | 0.5 | 4 | 8 | 2 | 4 |
| OXA | 0.25 | 0.5 | 0.5 | 0.25 | 0.25 | 0.5 | 0.25 | 0.25 | 0.25 | 0.5 | 8 | 0.5 | 0.5 |
| FOX | 2 | 4 | 4 | 4 | 8 | 4 | 4 | 4 | 4 | 2 | 32 | 4 | 4 |
| GEN | 0.5 | 0.5 | 0.5 | 0.5 | 128 | 0.5 | 16 | 0.5 | 128 | 128 | 0.5 | 128 | 16 |
| CIP | 0.25 | 0.5 | 0.5 | 0.5 | 0.25 | 0.25 | 0.5 | 1 | 0.5 | 0.5 | 0.125 | 0.5 | 2 |
| MFX | 0.063 | 0.125 | 0.125 | 0.125 | 0.063 | 0.063 | 0.125 | 0.063 | 0.031 | 0.063 | 0.031 | 0.25 | 0.125 |
| ERY | 0.5 | 0.25 | 0.5 | 8 | 16 | 0.25 | 0.25 | 16 | 0.25 | 0.25 | 0.25 | 16 | 16 |
| CLI | 0.25 | 0.25 | 0.25 | 1 | 8 | 0.125 | 0.125 | 1 | 0.125 | 0.25 | 0.1255 | 1 | 1 |
| LNZ | 4 | 2 | 2 | 2 | 4 | 2 | 2 | 2 | 2 | 4 | 2 | 2 | 2 |
| RIF | 0.063 | 0.031 | 0.031 | 0.031 | 0.031 | 0.031 | 0.031 | 0.031 | 0.031 | 0.063 | 0.031 | 0.031 | 0.031 |
| VAN | 1 | 0.5 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 0.5 | 2 | 2 |
| TEC | 1 | 1 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.25 | 0.25 | 0.5 | 0.25 | 2 | 0.5 |
| TET | 0.25 | 0.25 | 0.25 | 0.125 | 0.125 | 0.25 | 1 | 1 | 0.125 | 0.25 | 0.125 | 0.25 | 0.25 |
| TGC | 0.063 | 0.063 | 0.063 | 0.063 | 0.063 | 0.063 | 0.125 | 0.063 | 0.063 | 0.125 | 0.063 | 0.125 | 0.063 |
| CHL | 4 | 4 | 4 | 4 | 4 | 4 | 64 | 8 | 4 | 8 | 4 | 4 | 4 |
| TMP | 1 | 4 | 2 | 1 | 1 | 2 | 2 | 0.5 | 1 | 1 | 1 | 2 | 1 |
| COT | 0.25 | 0.25 | 0.25 | 0.125 | 0.25 | 0.5 | 0.25 | 0.25 | 0.25 | 0.25 | 0.125 | 0.25 | 0.25 |
| NIT | 8 | 16 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 16 |
| Gene | No. of Positive Isolates (n = 13) | % of Occurrence |
|---|---|---|
| icaA, icaB, icaC, icaD | 13/13 | 100.0 |
| agrA | 13/13 | 100.0 |
| srtA | 13/13 | 100.0 |
| fnbA | 6/13 | 46.2 |
| fnbB | 3/13 | 23.1 |
| clfA | 9/13 | 69.2 |
| clfB | 13/13 | 100.0 |
| bap | 0/13 | 0.0 |
| No. of Isolates | Antimicrobial Resistance | Resistance Mechanism | Biofilm Formation | Efflux Pump Production | Occurrence of Genes |
|---|---|---|---|---|---|
| 1 | - | - | Strong | Negative | icaABCD, agrA, srtaA, fnbB, clfAB |
| 2 | - | Resistance to penicillins | Weak | Negative | icaABCD, agrA, srtA, fnbA, clfAB |
| 3 | AMP | Resistance to penicillins | Strong | Negative | icaABCD, agrA, srtA, clfAB |
| 4 | AMP, ERY, CLI | Resistance to penicillins; Inducible MLSB/i | Strong | Weak | mecA, icaABCD, agrA, srtA, clfB |
| 5 | AMP, GEN, ERY, CLI | Resistance to penicillins; Aminogl.PH(2″)-AC(6′)!; Constitutive MLSB/c | Strong | Intermediate | icaABCD, agrA, srtA, fnbAB, clfAB |
| 6 | AMP | Resistance to penicillins | Strong | Negative | icaABCD, agrA, srtA, fnbB, clfAB |
| 7 | AMP, GEN, CHL | Resistance to penicillins; Aminogl. PH(2″)-AC(6′)! | Strong | Weak | icaABCD, agrA, srtA, fnbA, clfAB |
| 8 | ERY, CLI | Inducible MLSB/i | Strong | Negative | icaABCD, agrA, srtA, clfB |
| 9 | GEN | Aminogl.PH(2″)-AC(6′)! | Strong | Negative | icaABCD, agrA, srtA, fnbA, clfAB |
| 10 | AMP, GEN | Resistance to penicillins; Aminogl.PH(2″)-AC(6′)! | Strong | Negative | icaABCD, agrA, srtA, fnbA, clfAB |
| 11 | AMP, OXA, FOX | MRSA! | Strong | Negative | mecA, icaABCD, agrA, srtA, fnbA, clfAB |
| 12 | AMP, GEN, ERY, CLI | Resistance to penicillins; Aminogl.PH(2″)-AC(6′)!; Inducible MLSB/i | Strong | Negative | icaABCD, agrA, srtA, clfB |
| 13 | AMP, GEN, ERY, CLI | Resistance to penicillins; Aminogl.PH(2″)-AC(6′)!; Inducible MLSB/i | Strong | Negative | icaABCD, agrA, srtA, clfB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dančová, N.; Király, J.; Hajdučková, V.; Hudecová, P.; Hisirová, S.; Nagyová, M.; Fedáková, Z.; Pilipčinec, E.; Gregová, G. Characterization and Antimicrobial Resistance Profiles of Biofilm Forming Strains of Staphylococcus aureus Isolated from Skin Lesions. Microorganisms 2025, 13, 2449. https://doi.org/10.3390/microorganisms13112449
Dančová N, Király J, Hajdučková V, Hudecová P, Hisirová S, Nagyová M, Fedáková Z, Pilipčinec E, Gregová G. Characterization and Antimicrobial Resistance Profiles of Biofilm Forming Strains of Staphylococcus aureus Isolated from Skin Lesions. Microorganisms. 2025; 13(11):2449. https://doi.org/10.3390/microorganisms13112449
Chicago/Turabian StyleDančová, Nikola, Ján Király, Vanda Hajdučková, Patrícia Hudecová, Simona Hisirová, Mária Nagyová, Zuzana Fedáková, Emil Pilipčinec, and Gabriela Gregová. 2025. "Characterization and Antimicrobial Resistance Profiles of Biofilm Forming Strains of Staphylococcus aureus Isolated from Skin Lesions" Microorganisms 13, no. 11: 2449. https://doi.org/10.3390/microorganisms13112449
APA StyleDančová, N., Király, J., Hajdučková, V., Hudecová, P., Hisirová, S., Nagyová, M., Fedáková, Z., Pilipčinec, E., & Gregová, G. (2025). Characterization and Antimicrobial Resistance Profiles of Biofilm Forming Strains of Staphylococcus aureus Isolated from Skin Lesions. Microorganisms, 13(11), 2449. https://doi.org/10.3390/microorganisms13112449

