Bacterial Pathogens and Their Antimicrobial Resistance in Farmed Nile Tilapia Experiencing “Summer Mortality” in Kafr El-Sheikh, Egypt
Abstract
1. Introduction
2. Materials and Methods
2.1. Outbreak Reporting and Case Detection
2.2. Bacteriological Examination
2.3. Molecular Screening of Bacterial Isolates
2.3.1. Genomic DNA Extraction
2.3.2. PCR Using the Universal Bacterial Primer
2.4. Sequencing and Phylogenetic Analysis
2.5. Antibiotic Susceptibility Test
3. Results
3.1. Clinical Signs and Necropsy Findings
3.2. Distribution and Diversity of Bacterial Isolates
3.3. Biochemical Characteristics of Bacterial Isolates
3.4. 16S rRNA PCR, Sequencing, and Phylogenetic Analysis
3.5. Antimicrobial Susceptibility Profile
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Soliman, N.F.; Yacout, D.M.M. Aquaculture in Egypt: Status, constraints and potentials. Aquac. Int. 2016, 24, 1201–1227. [Google Scholar] [CrossRef]
- El-Sayed, A.-F.M. Tilapia Co-culture in Egypt. In Tilapia in Intensive Co-Culture; John Wiley & Sons: Hoboken, NJ, USA, 2017; pp. 211–236. [Google Scholar]
- Ibrahim, T. Diseases of Nile tilapia with special emphasis on water pollution. J. Environ. Sci. Technol. 2020, 13, 29–56. [Google Scholar] [CrossRef]
- El-Sayed, A.-F.M.; Fitzsimmons, K. From Africa to the world—The journey of Nile tilapia. Rev. Aquac. 2023, 15, 6–21. [Google Scholar] [CrossRef]
- Miao, W.; Wang, W. Trends of aquaculture production and trade: Carp, tilapia, and shrimp. Asian Fish. Sci. FAO 2020, 33, 1–10. [Google Scholar] [CrossRef]
- Kassem, M.M.; Elsbaay, A.M.; AbouZaher, S.E.; Abdelmotaleb, I.A. Energetic performance assessment of a thermo-solar greenhouse fish (Nile tilapia) hatchery. Misr J. Agric. Eng. 2016, 33, 1649–1674. [Google Scholar] [CrossRef]
- Eissa, A.E.; Attia, M.M.; Elgendy, M.Y.; Ismail, G.A.; Sabry, N.M.; Prince, A.; Mahmoud, M.A.; El-Demerdash, G.O.; Abdelsalam, M.; Derwa, H.I.M. Streptococcus, Centrocestus formosanus and Myxobolus tilapiae concurrent infections in farmed Nile tilapia (Oreochromis niloticus). Microb. Pathog. 2021, 158, 105084. [Google Scholar] [CrossRef] [PubMed]
- Shaalan, M.; El-Mahdy, M.; Saleh, M.; El-Matbouli, M. Aquaculture in Egypt: Insights on the Current Trends and Future Perspectives for Sustainable Development. Rev. Fish. Sci. Aquac. 2018, 26, 99–110. [Google Scholar] [CrossRef]
- Magdy, S.; Mohamed, H.; Fayza, A.; Abdel-Rahman, K. Agricultural Drainage Water as a Source of Water for Fish Farming in Egypt. Ecol. Evol. Biol. 2016, 1, 68–75. [Google Scholar] [CrossRef]
- Mohamed, A.; El Safty, A.; Siha, M. Current situation of water pollution and its effect on aquatic life in Egypt. Egypt. J. Occup. Med. 2013, 37, 95–115. [Google Scholar] [CrossRef]
- Saad, A.E.-H.; Abd El-Gawad, A.; Ali, N.; Bassuny, N. The impact of agricultural drains on water quality and Phyto-zooplankton communities in fish farms, Egypt. Egypt. J. Aquat. Biol. Fish. 2013, 17, 47–56. [Google Scholar] [CrossRef]
- Ali, S.E.; Jansen, M.D.; Mohan, C.V.; Delamare-Deboutteville, J.; Charo-Karisa, H. Key risk factors, farming practices and economic losses associated with tilapia mortality in Egypt. Aquaculture 2020, 527, 735438. [Google Scholar] [CrossRef]
- Chiaramonte, L.; Munson, D.; Trushenski, J. Climate Change and Considerations for Fish Health and Fish Health Professionals. Fisheries 2016, 41, 396–399. [Google Scholar] [CrossRef]
- El Asely, A.M.; Youssuf, H.; Abdel Gawad, E.; Elabd, H.; Matter, A.; Shaheen, A.; Abbass, A. Insight into summer mortality syndrome in farmed Nile tilapia (Oreochromis niloticus) associated with bacterial infection. Benha Vet. Med. J. 2020, 39, 111–118. [Google Scholar] [CrossRef]
- Abdel-Moneam, D.; Ibrahim, R.; Nashaat, M.; Shaalan, M.J.B.E.A.F.P. Multifactorial causes of mass mortality in Oreochromis niloticus in Kafr El-Sheikh, Egypt. Eur. Assoc. Fish Pathol. 2021, 41, 2021. [Google Scholar]
- Fathi, M.; Dickson, C.; Dickson, M.; Leschen, W.; Baily, J.; Muir, F.; Ulrich, K.; Weidmann, M. Identification of Tilapia Lake Virus in Egypt in Nile tilapia affected by ‘summer mortality’ syndrome. Aquaculture 2017, 473, 430–432. [Google Scholar] [CrossRef]
- Abbas, H.; Soliman, W.; Elgendy, M.Y.; Youins, N.A.; Abu-Elala, N.M.; Marzouk, M. Insight on the potential microbial causes of summer mortality syndrome in the cultured Nile tilapia (Oreochromis niloticus). Egypt. J. Aquat. Biol. Fish. 2022, 26, 133. [Google Scholar] [CrossRef]
- Elsheshtawy, A.; Yehia, N.; Elkemary, M.; Soliman, H. Investigation of Nile tilapia Summer Mortality in Kafr El-Sheikh Governorate, Egypt. Genet. Aquat. Org. 2019, 3, 17–25. [Google Scholar] [CrossRef]
- Abdelsalam, M.; Ewiss, M.A.Z.; Khalefa, H.S.; Mahmoud, M.A.; Elgendy, M.Y.; Abdel-Moneam, D.A. Coinfections of Aeromonas spp., Enterococcus faecalis, and Vibrio alginolyticus isolated from farmed Nile tilapia and African catfish in Egypt, with an emphasis on poor water quality. Microb. Pathog. 2021, 160, 105213. [Google Scholar] [CrossRef] [PubMed]
- Elbaz, N.F.; Abd Al Fatah, M.E. Bacterial diseases outbreaks in some freshwater fish farms in Kafr El-Sheikh, Egypt. J. Appl. Aquac. 2024, 36, 1–23. [Google Scholar] [CrossRef]
- Enany, M.; Eidaroos, N.; Eltamimy, N. Microbial Causes of Summer Mortality in Farmed Fish in Egypt. Suez Canal Vet. Med. J. 2019, 24, 45–56. [Google Scholar] [CrossRef]
- Agoba, E.; Adu, F.; Agyare, C.; Boamah, V. Antibiotic use and practices in selected fish farms in the Ashanti region of Ghana. J. Infect. Dis. Treat. 2017, 3, 21617. [Google Scholar] [CrossRef]
- Oviedo-Bolaños, K.; Rodríguez-Rodríguez, J.A.; Sancho-Blanco, C.; Barquero-Chanto, J.E.; Peña-Navarro, N.; Escobedo-Bonilla, C.M.; Umaña-Castro, R. Molecular identification of Streptococcus sp. and antibiotic resistance genes present in Tilapia farms (Oreochromis niloticus) from the Northern Pacific region, Costa Rica. Aquac. Int. 2021, 29, 2337–2355. [Google Scholar] [CrossRef]
- Romero, J.; Feijoó, C.G.; Navarrete, P. Antibiotics in aquaculture–use, abuse and alternatives. Health Environ. Aquac. 2012, 159, 159–198. [Google Scholar]
- Cabello, F.C. Heavy use of prophylactic antibiotics in aquaculture: A growing problem for human and animal health and for the environment. Environ. Microbiol. 2006, 8, 1137–1144. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Steele, J.C.; Meng, X.-Z. Usage, residue, and human health risk of antibiotics in Chinese aquaculture: A review. Environ. Pollut. 2017, 223, 161–169. [Google Scholar] [CrossRef]
- Noga, E.J. Fish Disease: Diagnosis and Treatment, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Buller, N.B. Bacteria and Fungi from Fish and Other Aquatic Animals: A Practical Identification Manual; CABI: Wallingford, UK, 2014. [Google Scholar]
- Lagacé, L.; Pitre, M.; Jacques, M.; Roy, D. Identification of the Bacterial Community of Maple Sap by Using Amplified Ribosomal DNA (rDNA) Restriction Analysis and rDNA Sequencing. Appl. Environ. Microbiol. 2004, 70, 2052–2060. [Google Scholar] [CrossRef] [PubMed]
- Gordon, L.; Giraud, E.; Ganière, J.P.; Armand, F.; Bouju-Albert, A.; De La Cotte, N.; Mangion, C.; Le Bris, H. Antimicrobial resistance survey in a river receiving effluents from freshwater fish farms. J. Appl. Microbiol. 2007, 102, 1167–1176. [Google Scholar] [CrossRef]
- Tarr Cheryl, L.; Patel Jayna, S.; Puhr Nancy, D.; Sowers Evangeline, G.; Bopp Cheryl, A.; Strockbine Nancy, A. Identification of Vibrio Isolates by a Multiplex PCR Assay and rpoB Sequence Determination. J. Clin. Microbiol. 2007, 45, 134–140. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Suleski, M.; Sanderford, M.; Sharma, S.; Tamura, K. MEGA12: Molecular Evolutionary Genetic Analysis version 12 for adaptive and green computing. Mol. Biol. Evol. 2024, 41, msae263. [Google Scholar] [CrossRef]
- CLSI M100; Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fourth Informational Supplement. Clinical and Laboratory Standards Institute: Malvern, PA, USA, 2014.
- Saleh, A.; Eissa, A.E.; Ghazy, M.A.; Makled, S.O.; Abdel-Mawgood, A. Insights into Staphylococcus epidermidis in Farmed Nile Tilapia in Egypt: Molecular Characterization and Antibiotic Resistance. Egypt. J. Vet. Sci. 2025, 1–10. [Google Scholar] [CrossRef]
- Abu-Elala, N.M.; Abd-Elsalam, R.M.; Younis, N.A. Streptococcosis, Lactococcosis and Enterococcosis are potential threats facing cultured Nile tilapia (Oreochomis niloticus) production. Aquac. Res. 2020, 51, 4183–4195, Corrigendum in Aquac. Res. 2020, 51, 5273–5273. [Google Scholar] [CrossRef]
- Elgohary, I.; Eissa, A.E.; Fadel, N.G.; Ibrahim Abd Elatief, J.; Mahmoud, M.A. Bacteriological, molecular, and pathological studies on the Gram-positive bacteria Aerococcus viridans and Enterococcus faecalis and their effects on Oreochromis niloticus in Egyptian fish farms. Aquac. Res. 2021, 52, 2220–2232. [Google Scholar] [CrossRef]
- Abu-Elala, N.M.; Abd-Elsalam, R.M.; Marouf, S.; Abdelaziz, M.; Moustafa, M. Eutrophication, ammonia intoxication, and infectious diseases: Interdisciplinary factors of mass mortalities in cultured Nile tilapia. J. Aquat. Anim. Health 2016, 28, 187–198. [Google Scholar] [CrossRef]
- Mahmoud, M.A.; Abdelsalam, M.; Mahdy, O.A.; El Miniawy, H.M.F.; Ahmed, Z.A.M.; Osman, A.H.; Mohamed, H.M.H.; Khattab, A.M.; Zaki Ewiss, M.A. Infectious bacterial pathogens, parasites and pathological correlations of sewage pollution as an important threat to farmed fishes in Egypt. Environ. Pollut. 2016, 219, 939–948. [Google Scholar] [CrossRef]
- Minich, J.J.; Zhu, Q.; Xu, Z.Z.; Amir, A.; Ngochera, M.; Simwaka, M.; Allen, E.E.; Zidana, H.; Knight, R. Microbial effects of livestock manure fertilization on freshwater aquaculture ponds rearing tilapia (Oreochromis shiranus) and North African catfish (Clarias gariepinus). MicrobiologyOpen 2018, 7, e00716. [Google Scholar] [CrossRef]
- Elgendy, M.Y.; Shaalan, M.; Abdelsalam, M.; Eissa, A.E.; El-Adawy, M.M.; Seida, A.A. Antibacterial activity of silver nanoparticles against antibiotic-resistant Aeromonas veronii infections in Nile tilapia, Oreochromis niloticus (L.), in vitro and in vivo assay. Aquac. Res. 2022, 53, 901–920. [Google Scholar] [CrossRef]
- Fadel, A.; Mahmoud, M.A.; Abdelsalam, M.; Eissa, E.-S.H.; Sherif, A.H. Aeromonas veronii infection in cultured Oreochromis niloticus: Prevalence, molecular and histopathological characterization correlated to water physicochemical characteristics, with the protective autochthonous probiotic. Aquac. Int. 2025, 33, 298. [Google Scholar] [CrossRef]
- Reda, R.M.; El-Murr, A.; Abd Elhakim, Y.; El-Shahat, W. Aeromonas veronii detection in Egyptian fish farms with summer tilapia mortality outbreaks and the role of formic acid in limiting its spread. Aquac. Res. 2022, 53, 940–956. [Google Scholar] [CrossRef]
- Bakry, K.A.; Emeish, W.F. Aeromonas veronii causes hemorrhagic septicemia in cultured nile tilapia in qena governorate. SVU-Int. J. Vet. Sci. 2022, 5, 125–137. [Google Scholar] [CrossRef]
- Ke, X.; Lu, M.; Ye, X.; Gao, F.; Zhu, H.; Huang, Z. Recovery and pathogenicity analysis of Aerococcus viridans isolated from tilapia (Orecohromis niloticus) cultured in southwest of China. Aquaculture 2012, 342–343, 18–23. [Google Scholar] [CrossRef]
- Osman, K.M.; Al-Maary, K.S.; Mubarak, A.S.; Dawoud, T.M.; Moussa, I.M.I.; Ibrahim, M.D.S.; Hessain, A.M.; Orabi, A.; Fawzy, N.M. Characterization and susceptibility of streptococci and enterococci isolated from Nile tilapia (Oreochromis niloticus) showing septicaemia in aquaculture and wild sites in Egypt. BMC Vet. Res. 2017, 13, 357. [Google Scholar] [CrossRef]
- Arafa, A.; Younis, N.A.; Moustafa, M.; Abdelaziz, M.A. Survey on the most common bacterial pathogens of the Nile tilapia fries in Kafr El sheikh governorate, Egypt. Egypt. J. Aquat. Biol. Fish. 2021, 25, 385–402. [Google Scholar] [CrossRef]
- Hassan, M.A.; Abdel-Naeim, N.S.; Mabrok, M.; Dessouki, A.A.; Hassan, A.M. Isolation and identification of Enterococcus faecalis from cultured Oreochromis niloticus and Mugil cephalus with a special emphasis on a possible integrated control strategy. Aquac. Res. 2022, 53, 5521–5535. [Google Scholar] [CrossRef]
- Zahran, E.; Mahgoub, H.A.; Abdelhamid, F.; Sadeyen, J.-R.; Risha, E. Experimental pathogenesis and host immune responses of Enterococcus faecalis infection in Nile tilapia (Oreochromis niloticus). Aquaculture 2019, 512, 734319. [Google Scholar] [CrossRef]
- Abdel-Latif, H.M.R.; Dawood, M.A.O.; Menanteau-Ledouble, S.; El-Matbouli, M. The nature and consequences of co-infections in tilapia: A review. J. Fish Dis. 2020, 43, 651–664. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.E.; Mahana, O.; Mohan, C.V.; Delamare-Deboutteville, J.; Elgendy, M.Y. Genetic characterization and antimicrobial profiling of bacterial isolates collected from Nile tilapia (Oreochromis niloticus) affected by summer mortality syndrome. J. Fish Dis. 2022, 45, 1857–1871. [Google Scholar] [CrossRef]
- El-Sayed, M.; Algammal, A.; Abouel-Atta, M.; Mabrok, M.; Emam, A. Pathogenicity, genetic typing, and antibiotic sensitivity of Vibrio alginolyticus isolated from Oreochromis niloticus and Tilapia zillii. Rev. Méd. Vét. 2019, 4–6, 80–86. [Google Scholar]
- Younes, A.; Fares, M.; Gaafar, A.; Mohamed, L. Isolation of Vibrio alginolyticus and Vibrio vulnificus Strains from Cultured Oreochromis niloticus Around Qarun Lake, Egypt. Glob. Vet. 2016, 16, 1–5. [Google Scholar] [CrossRef]
- Sampaio, A.; Silva, V.; Poeta, P.; Aonofriesei, F. Vibrio spp.: Life Strategies, Ecology, and Risks in a Changing Environment. Diversity 2022, 14, 97. [Google Scholar] [CrossRef]
- Islam, S.M.M.; Sultana, R.; Imran, M.; Jannat, M.F.T.; Ashaf-Ud-Doulah, M.; Rohani, M.F.; Brown, C.; Shahjahan, M. Elevated temperature affects growth and hemato-biochemical parameters, inducing morphological abnormalities of erythrocytes in Nile tilapia Oreochromis niloticus. Aquac. Res. 2020, 51, 4361–4371. [Google Scholar] [CrossRef]
- Magouz, F.I.; Moustafa, E.M.; Abo-Remela, E.M.; Halawa, M.R.; Barakaat, P.M.; Omar, A.A. Summer mortality syndrome bacterial pathogens in farmed Nile tilapia (Oreochromis niloticus). Open Vet. J. 2024, 14, 53. [Google Scholar] [CrossRef]
- Samsing, F.; Barnes, A.C. The rise of the opportunists: What are the drivers of the increase in infectious diseases caused by environmental and commensal bacteria? Rev. Aquac. 2024, 16, 1787–1797. [Google Scholar] [CrossRef]
- Méndez, J.; Reimundo, P.; Pérez-Pascual, D.; Navais, R.; Gómez, E.; Cascales, D.; Guijarro, J.A. An overview of virulence-associated factors of gram-negative fish pathogenic bacteria. Health Environ. Aquac. 2012, 5, 133–156. [Google Scholar]
- Baik, J.E.; Ryu, Y.H.; Han, J.Y.; Im, J.; Kum, K.-Y.; Yun, C.-H.; Lee, K.; Han, S.H. Lipoteichoic Acid Partially Contributes to the Inflammatory Responses to Enterococcus faecalis. J. Endod. 2008, 34, 975–982. [Google Scholar] [CrossRef]
- Chen, W.; Xie, T.-T.; Zeng, H. Formation, Antibiotic Resistance, and Control Strategies of Staphylococcus epidermidis Biofilm. In Bacterial Biofilms; Dincer, S., Sumengen Ozdenefe, M., Arkut, A., Eds.; IntechOpen: Rijeka, Croatia, 2019. [Google Scholar]
- Hassan, S.; Abdel-Rahman, M.; Mansour, E.S.; Monir, W. Prevalence and Antibiotic Susceptibility of Bacterial Pathogens Implicating the Mortality of Cultured Nile Tilapia, Oreochromis niloticus. Egypt. J. Aquac. 2020, 10, 23–43. [Google Scholar] [CrossRef]
- Ghetas, H.; Neiana, A.; Khalil, R.; Hussein, A.M.; Khallaf, M. Streptococcus agalactiae Isolation and Characterization in Nile Tilapia (Oreochromis niloticus) with Histopathological Studies. J. Curr. Vet. Res. 2021, 3, 70–79. [Google Scholar] [CrossRef]
- Sadique, A.; Neogi, S.B.; Bashar, T.; Sultana, M.; Johura, F.-T.; Islam, S.; Hasan, N.A.; Huq, A.; Colwell, R.R.; Alam, M. Dynamics, Diversity, and Virulence of Aeromonas spp. in Homestead Pond Water in Coastal Bangladesh. Front. Public Health 2021, 9, 692166. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Zhang, X.; Gao, X.; Jiang, Q.; Wen, Y.; Lin, L. Characterization of Virulence Properties of Aeromonas veronii Isolated from Diseased Gibel Carp (Carassius gibelio). Int. J. Mol. Sci. 2016, 17, 496. [Google Scholar] [CrossRef]
- Filik, N.; Kubilay, A. Detection of Quorum Sensing System (Cell to Cell Communication) Using Marker Strains in Vibrio alginolyticus Strains and Determine Virulence under Master of this System. J. Hell. Vet. Med. Soc. 2023, 73, 4945–4956. [Google Scholar] [CrossRef]
- Hassan, M.; Khalil, R.; Saad, T.; Abdel-latif, H. Co-infection of Vibrio parahaemolyticus and Vibrio alginolyticus isolated from diseased cultured European seabass (Dicentrarchus labrax). Alex. J. Vet. Sci. 2022, 75, 46–56. [Google Scholar]
- Kubilay, A.; Uluköy, G. First isolation of Staphylococcus epidermidis from cultured gilthead sea bream (Sparus aurata) in Turkey. Bull. Eur. Assoc. Fish Pathol. 2004, 24, 5368. [Google Scholar]
- Huang, S.-L.; Chen, W.-C.; Shei, M.-C.; Liao, I.-C.; Chen, S.-N. Studies on epizootiology and pathogenicity of Staphylococcus epidermidis in Tilapia (Oreochromis spp.) cultured in Taiwan. Zool. Stud. 1999, 38, 178–188. [Google Scholar]
- Patwardhan, A.; Ray, S.; Roy, A. Molecular markers in phylogenetic studies—A review. J. Phylogenetics Evol. Biol. 2014, 2, 131. [Google Scholar] [CrossRef]
- Ali, N.; El-Nokrashy, A.; Gouda, M.; Aboyadak, I. Summer Mortality Syndrome Affecting Cultured European Seabass at Kafrelsheikh Province, Egypt. Front. Mar. Sci. 2021, 8, 717360. [Google Scholar] [CrossRef]
- Elnaggar, A.; El-Alfy, M. Physiochemical Properties of Water and Sediments in Manzala Lake, Egypt. J. Environ. Sci. 2016, 45, 157–174. [Google Scholar]
- Dayana Senthamarai, M.; Rajan, M.R.; Bharathi, P.V. Current risks of microbial infections in fish and their prevention methods: A review. Microb. Pathog. 2023, 185, 106400. [Google Scholar] [CrossRef]
- Haenen, O.L.M.; Dong, H.T.; Hoai, T.D.; Crumlish, M.; Karunasagar, I.; Barkham, T.; Chen, S.L.; Zadoks, R.; Kiermeier, A.; Wang, B.; et al. Bacterial diseases of tilapia, their zoonotic potential and risk of antimicrobial resistance. Rev. Aquac. 2023, 15, 154–185. [Google Scholar] [CrossRef]
- Subasinghe, R.; Alday-Sanz, V.; Bondad-Reantaso, M.G.; Jie, H.; Shinn, A.P.; Sorgeloos, P. Biosecurity: Reducing the burden of disease. J. World Aquac. Soc. 2023, 54, 397–426. [Google Scholar] [CrossRef]
- Limbu, S.M. Antibiotics Use in African Aquaculture: Their Potential Risks on Fish and Human Health. In Current Microbiological Research in Africa: Selected Applications for Sustainable Environmental Management; Abia, A.L.K., Lanza, G.R., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 203–221. [Google Scholar]
- Limbu, S.M.; Chen, L.-Q.; Zhang, M.-L.; Du, Z.-Y. A global analysis on the systemic effects of antibiotics in cultured fish and their potential human health risk: A review. Rev. Aquac. 2021, 13, 1015–1059. [Google Scholar] [CrossRef]
- El-Gohary, F.A.; Zahran, E.; Abd El-Gawad, E.A.; El-Gohary, A.H.; Abdelhamid, F.M.; El-Mleeh, A.; Elmahallawy, E.K.; Elsayed, M.M. Investigation of the Prevalence, Virulence Genes, and Antibiogram of Motile Aeromonads Isolated from Nile Tilapia Fish Farms in Egypt and Assessment of their Water Quality. Animals 2020, 10, 1432. [Google Scholar] [CrossRef]
- Rigos, G.; Troisi, G.M. Antibacterial Agents in Mediterranean Finfish Farming: A Synopsis of Drug Pharmacokinetics in Important Euryhaline Fish Species and Possible Environmental Implications. Rev. Fish Biol. Fish. 2005, 15, 53–73. [Google Scholar] [CrossRef]
- Ferri, G.; Lauteri, C.; Vergara, A. Antibiotic Resistance in the Finfish Aquaculture Industry: A Review. Antibiotics 2022, 11, 1574. [Google Scholar] [CrossRef] [PubMed]
- Elsherbiny, F.; El Bayomi, R.M.; Mahmoud, A.F.A.; El-Shaieb, A.; Shosha, A.; Darwish, W.S. A review on antimicrobial residues in Aquaculture, Public Health Importance and Control Measures. Egypt. J. Vet. Sci. 2025, 56, 367–375. [Google Scholar] [CrossRef]
- Hossain, A.; Habibullah-Al-Mamun, M.; Nagano, I.; Masunaga, S.; Kitazawa, D.; Matsuda, H. Antibiotics, antibiotic-resistant bacteria, and resistance genes in aquaculture: Risks, current concern, and future thinking. Environ. Sci. Pollut. Res. 2022, 29, 11054–11075. [Google Scholar] [CrossRef]
- El Latif, A.M.A.; Elabd, H.; Amin, A.; Eldeen, A.I.N.; Shaheen, A.A. High mortalities caused by Aeromonas veronii: Identification, pathogenicity, and histopathologicalstudies in Oreochromis niloticus. Aquac. Int. 2019, 27, 1725–1737. [Google Scholar] [CrossRef]
- Abdel-moneam, D.A.; Khalefa, H.S.; Rashad, M.M.; Ali, G.E.; Ahmed, Y.H.; Ragab, E.; Fouad, O.A.; Geioushy, R.A.; Mahmoud, S.B. Thyme-synthesized silver nanoparticles mitigate immunosuppression, oxidative damage, and histopathological alterations induced by multidrug-resistant Enterococcus faecalis in Oreochromis niloticus: In vitro and in vivo assays. Fish Physiol. Biochem. 2025, 51, 146. [Google Scholar] [CrossRef] [PubMed]




| Cases | Date of Collection | No. of Examined Samples | No. of Isolates | % * | Tissue Samples | ||
|---|---|---|---|---|---|---|---|
| Liver | Kidney | Spleen | |||||
| Outbreak No. 1 | August 2023 | 10 | 9 | 30.0 | 4 | 2 | 3 |
| Outbreak No. 2 | April 2024 | 10 | 5 | 16.7 | 2 | 2 | 1 |
| Outbreak No. 3 | June 2024 | 12 | 12 | 40.0 | 5 | 3 | 4 |
| Outbreak No. 4 | August 2024 | 8 | 4 | 13.3 | 2 | 1 | 1 |
| Total | 40 | 30 | 100 | 13 | 8 | 9 | |
| Tests | A. veronii | V. alginolyticus | A. viridans | E. faecalis | Staph. epidermidis |
|---|---|---|---|---|---|
| Colony on NA or BHIA | Smooth, round, convex creamy white colonies on NA | Swarmed white colonies on NA | Pinpoint white colonies on BHIA | Small, smooth, flat, grayish-white colonies on BHIA | Round, opaque, white colonies on BHIA |
| Gram staining | Gram-negative | Gram-negative | Gram-positive | Gram-positive | Gram-positive |
| Shape | Short bacilli | Curved rods | Cocci arranged in long chain | Cocci arranged in pairs or clusters | Cocci formed grape-like clusters |
| Colony on TCBS | Small round, light yellow | Large convex, yellow-colored | ND | ND | ND |
| Hemolysis on blood agar | α | γ | α | α | β |
| Motility | + | + | - | - | - |
| Cytochrome oxidase | + | + | - | - | - |
| Catalase | + | + | - | - | + |
| TSI test | K/A (no gas) | A/A (no gas) | ND | ND | ND |
| Growth in 4% NaCl | + | + | + | + | + |
| Growth in 6% NaCl | + | + | + | + | + |
| Growth in 8% NaCl | + | + | + | + | + |
| Growth in 10% NaCl | - | - | - | - | - |
| Antibiotic | Code (Number Indicates Concentration in μg Per Disc) | Bacterial Isolates | ||||
|---|---|---|---|---|---|---|
| A. veronii | V. alginolyticus | A. viridans | E. faecalis | Staph. epidermidis | ||
| Penicillin | P10 | R | R | R | R | R |
| Ampicillin | AMP10 | R | R | R | I | S |
| Amoxycillin/Clavulanic acid | AMC20/10 | S | R | I | S | S |
| Trimethoprim/Sulfamethoxazole | COT25 | S | R | R | S | S |
| Ciprofloxacin | CIP5 | I | R | I | S | I |
| Oxytetracycline | O30 | S | R | R | R | S |
| Erythromycin | E15 | R | R | R | R | S |
| Novobiocin | NV30 | R | R | R | R | S |
| Kanamycin | K30 | S | R | R | I | I |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, M.M.A.; Khalil, R.H.; Abotaleb, M.M.; Amer, M.T.; Abdel-Latif, H.M.R. Bacterial Pathogens and Their Antimicrobial Resistance in Farmed Nile Tilapia Experiencing “Summer Mortality” in Kafr El-Sheikh, Egypt. Microorganisms 2025, 13, 2448. https://doi.org/10.3390/microorganisms13112448
Hassan MMA, Khalil RH, Abotaleb MM, Amer MT, Abdel-Latif HMR. Bacterial Pathogens and Their Antimicrobial Resistance in Farmed Nile Tilapia Experiencing “Summer Mortality” in Kafr El-Sheikh, Egypt. Microorganisms. 2025; 13(11):2448. https://doi.org/10.3390/microorganisms13112448
Chicago/Turabian StyleHassan, Merna M. A., Riad H. Khalil, Mahmoud M. Abotaleb, Mahmoud T. Amer, and Hany M. R. Abdel-Latif. 2025. "Bacterial Pathogens and Their Antimicrobial Resistance in Farmed Nile Tilapia Experiencing “Summer Mortality” in Kafr El-Sheikh, Egypt" Microorganisms 13, no. 11: 2448. https://doi.org/10.3390/microorganisms13112448
APA StyleHassan, M. M. A., Khalil, R. H., Abotaleb, M. M., Amer, M. T., & Abdel-Latif, H. M. R. (2025). Bacterial Pathogens and Their Antimicrobial Resistance in Farmed Nile Tilapia Experiencing “Summer Mortality” in Kafr El-Sheikh, Egypt. Microorganisms, 13(11), 2448. https://doi.org/10.3390/microorganisms13112448

