Effects of Rumen-Protected Methionine and Lysine on the Fecal Microbiota of Leizhou Goats
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Sample Collection
2.3. Growth Performance Measurement
2.4. Feed Analysis
2.5. Assessment of SCFA Concentrations in Fecal Specimens
2.6. DNA Extraction, Library Preparation, Sequencing, and Bioinformatics Analysis
2.7. Statistical Analyses
3. Results
3.1. Effect of Dietary RPML on Growth Performance
3.2. Effect of Dietary RPML on SCFAs in Feces
3.3. Summary of Combined Sequencing Datasets
3.4. Effect of Dietary RPML on Fecal Microbiota Composition
3.5. Correlations Between Fecal Bacteria and Short-Chain Fatty Acids
4. Discussion
4.1. Diet with RPML Improves Growth Performance in Leizhou Goats
4.2. Fecal SCFA Production Altered by RPML Supplementation
4.3. Diet with RPML Influences Microbial Composition in Leizhou Goats
4.4. Dietary RPML Enhances Leizhou Goats Feed Efficiency by Modulating Gut Microbiota
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seleem, M.S.; Wu, Z.H.; Xing, C.Q.; Zhang, Y.; Hanigan, M.D.; Bu, D.P. Effects of Rumen-Encapsulated Methionine and Lysine Supplementation and Low Dietary Protein on Nitrogen Efficiency and Lactation Performance of Dairy Cows. J. Dairy Sci. 2024, 107, 2087–2098. [Google Scholar] [CrossRef]
- Luo, Z.; Ou, H.; Tan, Z.; Jiao, J. Rumen-Protected Methionine and Lysine Supplementation to the Low Protein Diet Improves Animal Growth through Modulating Colonic Microbiome in Lambs. J. Anim. Sci. Biotechnol. 2025, 16, 46. [Google Scholar] [CrossRef]
- Räisänen, S.E.; Wasson, D.E.; Cueva, S.F.; Silvestre, T.; Hristov, A.N. Bioavailability of Rumen-Protected Histidine, Lysine, and Methionine Assessed Using Different in Vivo Methods. J. Dairy Sci. 2025, 108, 538–552. [Google Scholar] [CrossRef]
- An, Z.X.; Shi, L.G.; Hou, G.Y.; Zhou, H.L.; Xun, W.J. Genetic Diversity and Selection Signatures in Hainan Black Goats Revealed by Whole-Genome Sequencing Data. Animal 2024, 18, 101147. [Google Scholar] [CrossRef]
- Wang, K.; Xu, M.; Han, X.; Liu, H.; Han, J.; Sun, W.; Zhou, H. Transcriptome Analysis of Muscle Atrophy in Leizhou Black Goats: Identification of Key Genes and Insights into Limb-Girdle Muscular Dystrophy. BMC Genom. 2025, 26, 80. [Google Scholar] [CrossRef]
- Li, M.; Zi, X.; Lv, R.; Zhang, L.; Ou, W.; Chen, S.; Hou, G.; Zhou, H. Cassava Foliage Effects on Antioxidant Capacity, Growth, Immunity, and Ruminal Microbial Metabolism in Hainan Black Goats. Microorganisms 2023, 11, 2320. [Google Scholar] [CrossRef]
- Shi, L.; Zhang, Y.; Wu, L.; Xun, W.; Liu, Q.; Cao, T.; Hou, G.; Zhou, H. Moderate Coconut Oil Supplement Ameliorates Growth Performance and Ruminal Fermentation in Hainan Black Goat Kids. Front. Vet. Sci. 2020, 7, 622259. [Google Scholar] [CrossRef]
- Alvanou, M.V.; Loukovitis, D.; Melfou, K.; Giantsis, I.A. Utility of Dairy Microbiome as a Tool for Authentication and Traceability. Open Life Sci. 2024, 19, 20220983. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Zhang, Y.; Han, X.; Wu, Q.; Liu, H.; Han, J.; Zhou, H. Effects of Copy Number Variations in the Plectin (PLEC) Gene on the Growth Traits and Meat Quality of Leizhou Black Goats. Animals 2023, 13, 3651. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Han, X.; Zhang, Y.; Liu, H.; Zhou, H.; Wang, K.; Han, J. One Copy Number Variation within the Angiopoietin-1 Gene Is Associated with Leizhou Black Goat Meat Quality. Animals 2024, 14, 2682. [Google Scholar] [CrossRef] [PubMed]
- Bahrampour, J.; Piray, A.H.; Mousaie, A.; Ghaffari, M.H. A Dose–Response Meta-Analysis of Grape by-Product Effects on Lamb Growth Performance, Nutrient Digestibility, and Blood Parameters. Animal 2025, 19, 101449. [Google Scholar] [CrossRef]
- Mazinani, M.; Naserian, A.A.; Rude, B.J.; Tahmasbi, A.M.; Valizadeh, R. Effects of Feeding Rumen–Protected Amino Acids on the Performance of Feedlot Calves. J. Adv. Vet. Anim. Res. 2020, 7, 229–233. [Google Scholar] [CrossRef]
- Zou, S.; Ji, S.; Xu, H.; Wang, M.; Li, B.; Shen, Y.; Li, Y.; Gao, Y.; Li, J.; Cao, Y.; et al. Rumen-Protected Lysine and Methionine Supplementation Reduced Protein Requirement of Holstein Bulls by Altering Nitrogen Metabolism in Liver. Animals 2023, 13, 843. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Niu, X.; Li, F.; Li, F.; Guo, L. Replacing Soybean Meal with Distillers Dried Grains with Solubles plus Rumen-Protected Lysine and Methionine: Effects on Growth Performance, Nutrients Digestion, Rumen Fermentation, and Serum Parameters in Hu Sheep. Animals 2021, 11, 2428. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Zhao, Z.; Wang, H.; Zhou, J.; Zhang, C. Effect of Supplementary Levels of Rumen-Protected Lysine and Methionine on Growth Performance, Carcass Traits, and Meat Quality in Feedlot Yaks (Bos grunniens). Animals 2021, 11, 3384. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Elsaadawy, S.A.; Wu, Z.; Bu, D.P. Maternal Supply of Ruminally-Protected Lysine and Methionine During Close-Up Period Enhances Immunity and Growth Rate of Neonatal Calves. Front. Vet. Sci. 2021, 8, 780731. [Google Scholar] [CrossRef]
- Deleu, S.; Machiels, K.; Raes, J.; Verbeke, K.; Vermeire, S. Short Chain Fatty Acids and Its Producing Organisms: An Overlooked Therapy for IBD? eBioMedicine 2021, 66, 103293. [Google Scholar] [CrossRef]
- Kand, D.; Dickhoefer, U. The Effects of Rumen Nitrogen Balance on Nutrient Intake, Nitrogen Partitioning, and Microbial Protein Synthesis in Lactating Dairy Cows Offered Different Dietary Protein Sources. J. Dairy Sci. 2021, 104, 4223–4235. [Google Scholar] [CrossRef]
- He, Z.; Liu, R.; Wang, M.; Wang, Q.; Zheng, J.; Ding, J.; Wen, J.; Fahey, A.G.; Zhao, G. Combined Effect of Microbially Derived Cecal SCFA and Host Genetics on Feed Efficiency in Broiler Chickens. Microbiome 2023, 11, 198. [Google Scholar] [CrossRef]
- Ferreira, M.; Delagarde, R.; Edouard, N. CowNflow: A Dataset on Nitrogen Flows and Balances in Dairy Cows Fed Maize Forage or Herbage-Based Diets. Data Brief. 2021, 38, 107393. [Google Scholar] [CrossRef]
- Stiverson, J.; Morrison, M.; Yu, Z. Populations of Select Cultured and Uncultured Bacteria in the Rumen of Sheep and the Effect of Diets and Ruminal Fractions. Int. J. Microbiol. 2011, 2011, 750613. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Chen, Y.; Zhu, N.; Guo, Y.; Deng, M.; Liu, G.; Li, Y.; Liu, D.; Sun, B. Effect of Broussonetia Papyrifera Silage on the Serum Indicators, Hindgut Parameters and Fecal Bacterial Community of Holstein Heifers. AMB Express 2020, 10, 197. [Google Scholar] [CrossRef] [PubMed]
- Macchione, I.G.; Lopetuso, L.R.; Ianiro, G.; Napoli, M.; Gibiino, G.; Rizzatti, G.; Petito, V.; Gasbarrini, A.; Scaldaferri, F. Akkermansia Muciniphila: Key Player in Metabolic and Gastrointestinal Disorders. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 8075–8083. [Google Scholar] [CrossRef] [PubMed]
- Jousset, A.; Bienhold, C.; Chatzinotas, A.; Gallien, L.; Gobet, A.; Kurm, V.; Küsel, K.; Rillig, M.C.; Rivett, D.W.; Salles, J.F.; et al. Where Less May Be More: How the Rare Biosphere Pulls Ecosystems Strings. ISME J. 2017, 11, 853–862. [Google Scholar] [CrossRef]
- Rodrigues, V.F.; Elias-Oliveira, J.; Pereira, Í.S.; Pereira, J.A.; Barbosa, S.C.; Machado, M.S.G.; Carlos, D. Akkermansia Muciniphila and Gut Immune System: A Good Friendship That Attenuates Inflammatory Bowel Disease, Obesity, and Diabetes. Front. Immunol. 2022, 13, 934695. [Google Scholar] [CrossRef]
- Li, F.; Li, C.; Chen, Y.; Liu, J.; Zhang, C.; Irving, B.; Fitzsimmons, C.; Plastow, G.; Guan, L.L. Host Genetics Influence the Rumen Microbiota and Heritable Rumen Microbial Features Associate with Feed Efficiency in Cattle. Microbiome 2019, 7, 92. [Google Scholar] [CrossRef]
- Ma, X.; Brinker, E.; Graff, E.C.; Cao, W.; Gross, A.L.; Johnson, A.K.; Zhang, C.; Martin, D.R.; Wang, X. Whole-Genome Shotgun Metagenomic Sequencing Reveals Distinct Gut Microbiome Signatures of Obese Cats. Microbiol. Spectr. 2022, 10, e00837-22. [Google Scholar] [CrossRef]
- Bhandarkar, N.S.; Mouatt, P.; Majzoub, M.E.; Thomas, T.; Brown, L.; Panchal, S.K. Coffee Pulp, a By-Product of Coffee Production, Modulates Gut Microbiota and Improves Metabolic Syndrome in High-Carbohydrate, High-Fat Diet-Fed Rats. Pathogens 2021, 10, 1369. [Google Scholar] [CrossRef]
- Kropp, C.; Le Corf, K.; Relizani, K.; Tambosco, K.; Martinez, C.; Chain, F.; Rawadi, G.; Langella, P.; Claus, S.P.; Martin, R. The Keystone Commensal Bacterium Christensenella Minuta DSM 22607 Displays Anti-Inflammatory Properties Both in Vitro and in Vivo. Sci. Rep. 2021, 11, 11494. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, C.; Wu, H.; Meng, Q.; Zhou, Z. Small Intestine Microbiome and Metabolome of High and Low Residual Feed Intake Angus Heifers. Front. Microbiol. 2022, 13, 862151. [Google Scholar] [CrossRef]





| Items | Content, % | Content of King Grass, % |
|---|---|---|
| Ingredients | ||
| Corn | 65.20 | |
| Soybean meal | 5.60 | |
| Rapeseed meal | 16.00 | |
| Cottonseed meal | 7.00 | |
| Sodium bicarbonate | 0.10 | |
| Limeston | 0.80 | |
| NaCl | 0.80 | |
| Calcium hydrogen phosphate | 0.50 | |
| Premix 1 | 4.00 | |
| Total | 100.00 | |
| Nutrient levels 2 | ||
| ME (MJ/kg) | 10.66 | |
| DM | 95.25 | 93.56 |
| CP | 16.26 | 12.33 |
| EE | 11.54 | 9.98 |
| OM | 88.01 | 81.93 |
| NDF | 25.91 | 65.39 |
| ADF | 2.36 | 37.22 |
| Calcium | 0.57 | |
| AP | 0.10 |
| Items | CON | RPML | SEM | p-Value |
|---|---|---|---|---|
| IBW (kg) | 9.87 | 9.95 | 0.08 | 0.622 |
| FBW (kg) | 10.80 | 11.80 | 0.17 | <0.001 |
| ADG (g/d) | 22.22 | 44.05 | 3.53 | <0.001 |
| DMI (g/d) | 258.50 | 236.02 | 5.26 | 0.023 |
| DMI: ADG | 11.76 | 5.36 | 1.06 | <0.001 |
| Items | CON | RPML | SEM | p-Value |
|---|---|---|---|---|
| Total SCFAs, Mm | 15.71 | 13.07 | 0.57 | 0.009 |
| Acetate, Mm | 12.28 | 10.49 | 0.41 | 0.016 |
| Propionate, Mm | 1.58 | 1.28 | 0.12 | 0.260 |
| Butyrate, Mm | 1.09 | 0.60 | 0.11 | 0.019 |
| Iso-SCFA, Mm | 0.77 | 0.69 | 0.03 | 0.212 |
| A:P | 8.47 | 8.28 | 0.62 | 0.887 |
| Items | CON | RPML | SEM | p-Value |
|---|---|---|---|---|
| Ace | 1312 | 1355 | 55.12 | 0.719 |
| Chao | 1265 | 1305 | 50.07 | 0.709 |
| Coverage | 0.995 | 0.995 | 0.0002 | 0.962 |
| Shannon | 5.105 | 5.110 | 0.06 | 0.962 |
| Simpson | 0.016 | 0.016 | 0.001 | 0.921 |
| Sobs | 1160 | 1212 | 52.00 | 0.648 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, W.; Liu, H.; Wang, K.; Yang, Y.; Chen, A.; Zeng, M.; Wu, Q.; Han, J.; Li, M.; Zhou, H. Effects of Rumen-Protected Methionine and Lysine on the Fecal Microbiota of Leizhou Goats. Microorganisms 2025, 13, 2433. https://doi.org/10.3390/microorganisms13112433
Peng W, Liu H, Wang K, Yang Y, Chen A, Zeng M, Wu Q, Han J, Li M, Zhou H. Effects of Rumen-Protected Methionine and Lysine on the Fecal Microbiota of Leizhou Goats. Microorganisms. 2025; 13(11):2433. https://doi.org/10.3390/microorganisms13112433
Chicago/Turabian StylePeng, Weishi, Hu Liu, Ke Wang, Yuanting Yang, Anmiao Chen, Meng Zeng, Qun Wu, Jiancheng Han, Mao Li, and Hanlin Zhou. 2025. "Effects of Rumen-Protected Methionine and Lysine on the Fecal Microbiota of Leizhou Goats" Microorganisms 13, no. 11: 2433. https://doi.org/10.3390/microorganisms13112433
APA StylePeng, W., Liu, H., Wang, K., Yang, Y., Chen, A., Zeng, M., Wu, Q., Han, J., Li, M., & Zhou, H. (2025). Effects of Rumen-Protected Methionine and Lysine on the Fecal Microbiota of Leizhou Goats. Microorganisms, 13(11), 2433. https://doi.org/10.3390/microorganisms13112433

