Outer Membrane Vesicles, Lipidome, and Biofilm Formation in the Endophyte Enterobacter Cloacae SEA01 from Agave Tequilana
Abstract
1. Introduction
2. Materials and Methods
2.1. Seeds and Plant Material
2.2. Isolation of Endophytic Bacteria from A. tequilana Seeds
2.3. Identification of Bacterial Endophytes by MALDI-TOF MS and 16S rRNA Gene Sequencing
2.4. Phylogenetic Analysis
2.5. Putative Plant Growth-Promoting Traits: Nitrogen Fixation, Phosphate Solubilization, IAA Production, Siderophore Secretion, and ACC Deaminase Activity
- (a)
- Nitrogen Fixation
- (b)
- Indole-3-Acetic Acid (IAA) Production
- (c)
- Phosphate Solubilization
- (d)
- ACC Deaminase Activity
- (e)
- Siderophore Production
2.6. Catalase Activity and Native PAGE Electrophoresis
2.7. OMVs Isolation, Purification, and SEM Visualization
2.8. Dynamic Light Scattering (DLS)
2.9. Lipid Extraction and Lipidomic Analysis
2.10. Statistical Analysis
3. Results
3.1. Identification of Bacterial Endophytes from Agave Seeds
3.2. Qualitative Characterization of Agave Endophytes as Plant Growth-Promoting Bacteria (PGPB)
3.3. Visualization of OMVs Release and Biofilm Formation by E. cloacae SEA01
3.4. Characterization of DLS and Zeta Potential
3.5. Lipid Analysis of OMVs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Federica, D.; Cosimato, I.; Salzano, F.; Mensitieri, F.; Andretta, V.; Santoro, E.; Boccia, G.; Folliero, V.; Franci, G. Adaptations of bacterial extracellular vesicles in response to antibiotic pressure. Int. J. Mol. Sci. 2025, 26, 5025. [Google Scholar] [CrossRef] [PubMed]
- Fauzia, K.A.; Effendi, W.I.; Alfaray, R.I.; Malaty, H.M.; Yamaoka, Y.; Mifthussurur, M. Molecular mechanisms of biofilm formation in Helicobacter pylori. Antibiotics 2024, 13, 976. [Google Scholar] [CrossRef] [PubMed]
- Potapova, A.; Garvey, W.; Dahl, P.; Guo, S.; Chang, Y.; Schwechheimer, C.; Trebino, M.A.; Floyd, K.A.; Phinney, B.S.; Liu, J.; et al. Outer membrane vesicles and the outer membrane protein OmpU govern Vibrio cholerae biofilm matrix assembly. mBio 2024, 15, e03304-23. [Google Scholar] [CrossRef] [PubMed]
- Grande, R.; Di Marcantonio, M.C.; Robuffo, I.; Pompilio, A.; Celia, C.; Di Marzio, L.; Paolino, D.; Codagnone, M.; Muraro, R.; Stoodley, P.; et al. Helicobacter pylori ATCC 43629/NCTC 11639 outer membrane vesicles (OMVs) from biofilm and planktonic phase associated with extracellular DNA (eDNA). Front. Microbiol. 2015, 6, 1369. [Google Scholar] [CrossRef]
- Jan, A.T. Outer membrane vesicles (OMVs) of Gram-negative bacteria: A perspective update. Front. Microbiol. 2017, 8, 1053. [Google Scholar] [CrossRef]
- Jeong, D.; Kim, M.J.; Park, Y.; Chung, J.; Kweon, H.S.; Kang, N.G.; Hwang, S.J.; Youn, S.H.; Hwang, B.K.; Kim, D. Visualizing extracellular vesicle biogenesis in gram-positive bacteria using super-resolution microscopy. BMC Biol. 2022, 20, 270. [Google Scholar] [CrossRef]
- Toyofuku, M.; Schild, S.; Kaparakis-Liaskos, M.; Eberl, L. Composition and functions of bacterial membrane vesicles. Nat. Rev. Microbiol. 2023, 21, 415–430. [Google Scholar] [CrossRef]
- Zhao, X.; Wei, Y.; Bu, Y.; Ren, X.; Dong, Z. Review on bacterial outer membrane vesicles: Structure, vesicle formation, separation and biotechnological applications. Microb. Cell Fact. 2025, 24, 27. [Google Scholar] [CrossRef]
- Turnbull, L.; Toyofuku, M.; Hynen, A.L.; Kurosawa, M.; Pessi, G.; Petty, N.K.; Osvath, S.R.; Cárcamo-Oyarce, G.; Gloag, E.S.; Shimoni, R.; et al. Explosive cell lysis as a mechanism for the biogenesis of bacterial membrane vesicles and biofilms. Nat. Commun. 2016, 7, 11220. [Google Scholar] [CrossRef]
- Lee, E.Y.; Choi, D.S.; Kim, K.P.; Gho, Y.S. Proteomics in gram-negative bacterial outer membrane vesicles. Mass. Spectrom. Rev. 2008, 27, 535–555. [Google Scholar] [CrossRef]
- Baquero, D.P.; Borrel, G.; Gazi, A.; Martin-Gallausiaux, C.; Cvirkaite-Krupovic, V.; Commere, P.H.; Pende, N.; Tachon, S.; Sartori-Rupp, A.; Douché, T.; et al. Biogenesis of DNA-carrying extracellular vesicles by the dominant human gut methanogenic archaeon. Nat. Commun. 2025, 16, 5093. [Google Scholar] [CrossRef] [PubMed]
- Puca, V.; Marinacci, B.; Pellegrini, B.; Campanile, F.; Santagati, M.; Grande, R. Biofilm and bacterial membrane vesicles: Recent advances. Expert Opin. Ther. Pat. 2024, 34, 475–491. [Google Scholar] [CrossRef]
- Mozaheb, N.; Mingeot-Leclercq, M.P. Membrane vesicle production as a bacterial defense against stress. Front. Microbiol. 2020, 11, 600221. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, Q.; Zhao, L.; Dickey, S.W.; Wang, H.; Xu, R.; Chen, T.; Jian, Y.; Wang, X.; Lv, H.; et al. Essential role of membrane vesicles for biological activity of the bacteriocin micrococcin PL. J. Extracell. Vesicles 2022, 11, e12212. [Google Scholar] [CrossRef]
- Lima, S.; Matinha-Cardoso, J.; Giner-Lamia, J.; Couto, N.; Pacheco, C.; Florencio, F.J.; Wright, P.C.; Tamagnini, P.; Oliveira, P. Extracellular vesicles as an alternative copper-secretion mechanism in bacteria. J. Hazard. Mater. 2022, 431, 128594. [Google Scholar] [CrossRef]
- Macdonald, L.A.; Kuehn, M.J. Stress-induced outer membrane vesicle production by Pseudomonas aeruginosa. J. Bacteriol. 2013, 195, 2971–2981. [Google Scholar] [CrossRef]
- Gerritzen, M.J.H.; Maas, R.H.W.; van den Ijssel, J.; van Keulen, L.; Martens, D.E.; Wijffels, R.H.; Stork, M. High dissolved oxygen tension triggers outer membrane vesicle formation by Neisseria meningitidis. Microb. Cell Fact. 2018, 17, 157. [Google Scholar] [CrossRef]
- Work, E.; Knox, K.W.; Vesk, M. The chemistry and electron microscopy of an extracellular lipopolysaccharide from Escherichia coli. Ann. N. Y. Acad. Sci. 1966, 133, 438–449. [Google Scholar] [CrossRef]
- Ionescu, M.; Zaini, P.A.; Baccari, C.; Tran, S.; da Silva, A.M.; Lindow, S.E. Xylella fastidiosa outer membrane vesicles modulate plant colonization by blocking attachment to surfaces. Proc. Natl. Acad. Sci. USA 2014, 111, E3910–E3918. [Google Scholar] [CrossRef]
- Salvachúa, D.; Werner, A.Z.; Pardo, I.; Michalska, M.; Black, B.A.; Donohoe, B.S.; Haugen, S.J.; Katahira, R.; Notonier, S.; Ramirez, K.J.; et al. Outer membrane vesicles catabolize lignin-derived aromatic compounds in Pseudomonas putida KT2440. Proc. Natl. Acad. Sci. USA 2020, 117, 9302–9310. [Google Scholar] [CrossRef]
- Chalupowicz, L.; Mordukhovich, G.; Assouline, N.; Kats, L.; Sela, N.; Bahar, O. Bacterial outer membrane vesicles induce a transcriptional shift in Arabidopsis towards immune system activation leading to suppression of pathogen growth in planta. J. Extracell. Vesicles 2023, 12, e12286. [Google Scholar] [CrossRef]
- Guerrero-Mandujano, A.; Hernández-Cortez, C.; Ibarra, J.A.; Castro-Escarpulli, G. The outer membrane vesicles: Secretion system type zero. Traffic 2017, 18, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Ruf, A.; Blumenkamp, P.; Ludwig, C.; Lippegaus, A.; Brachmann, A.; Klingl, A.; Goesmann, A.; Brinkrolf, K.; Papenfort, K.; Robatzek, S. Extracellular Vesicles from Xylella fastidiosa Carry sRNAs and Genomic Islands, Suggesting Roles in Recipient Cells. J. Extracell. Vesicles 2025, 14, e70102. [Google Scholar] [CrossRef] [PubMed]
- Meneses, N.; Taboada, H.; Dunn, M.F.; Vargas, M.D.C.; Buchs, N.; Heller, M.; Encarnacion, S. The naringenin-induced exoproteome of Rhizobium etli CE3. Arch. Microbiol. 2017, 199, 737–755. [Google Scholar] [CrossRef]
- Taboada, H.; Dunn, M.F.; Meneses, N.; Vargas-Lagunas, C.; Buchs, N.; Andrade-Dominguez, A.; Encarnacion, S. Qualitative changes in proteins contained in outer membrane vesicles produced by Rhizobium etli grown in the presence of the nod gene inducer naringenin. Arch. Microbiol. 2019, 201, 1173–1194. [Google Scholar] [CrossRef]
- Li, D.; Li, Z.; Wu, J.; Tang, Z.; Xie, F.; Chen, D.; Lin, H.; Li, Y. Analysis of outer membrane vesicles indicates that glycerophospholipid metabolism contributes to early symbiosis between Sinorhizobium fredii HH103 and soybean. Mol. Plant Microbe Interact. 2022, 35, 311–322. [Google Scholar] [CrossRef]
- Lei, J.; Shi, Y.; Li, H.; Wang, R. Characterizing the endophytic microbiome and microbial functional assemblages associated with Fengtang plum (Prunus salicina Lindl.) development and resistance. Horticulturae 2025, 11, 483. [Google Scholar] [CrossRef]
- Dėlkus, M.; Lukša-Žebelovič, J.; Žižytė-Eidetienė, M.; Ivanauskas, A.; Valiūnas, D.; Servienė, E. Comparative analysis of endophytic bacterial microbiomes in healthy and phytoplasma-infected European blueberry plants. Forests 2025, 16, 758. [Google Scholar] [CrossRef]
- Das, D.; Sharma, P.L.; Paul, P.; Baruah, N.R.; Choudhury, J.; Begum, T.; Karmakar, R.; Khan, T.; Kalita, J. Harnessing endophytes: Innovative strategies for sustainable agricultural practices. Discov. Bact. 2025, 2, 1. [Google Scholar] [CrossRef]
- Khaskheli, M.A.; Nizamani, M.M.; Tarafder, E.; Das, D.; Muhae-Ud-Din, G.; Khaskheli, R.A.; Wang, Y. Manipulation of root-associated bacterial endophytes for sustainable crop production system: A review. Rhizosphere 2025, 33, 101044. [Google Scholar] [CrossRef]
- Beltran-Garcia, M.J.; White, J.F., Jr.; Prado, F.M.; Prieto, K.R.; Yamaguchi, L.F.; Torres, M.S.; Kato, M.J.; Medeiros, M.H.G.; Di Mascio, P. Nitrogen acquisition in Agave tequilana from degradation of endophytic bacteria. Sci. Rep. 2014, 4, 6938. [Google Scholar] [CrossRef]
- Martínez-Rodríguez, J.C.; De la Mora-Amutio, M.; Plascencia-Correa, L.A.; Audelo-Regalado, E.; Guardado, F.R.; Hernández-Sánchez, E.; Peña-Ramírez, Y.J.; Escalante, A.; Beltrán-García, M.J.; Ogura, T. Cultivable endophytic bacteria from leaf bases of Agave tequilana and their role as plant growth promoters. Braz. J. Microbiol. 2015, 45, 1333–1339. [Google Scholar] [CrossRef]
- Martinez-Rodriguez, A.; Macedo-Raygoza, G.; Huerta-Robles, A.X.; Reyes-Sepulveda, I.; Lozano-Lopez, J.; García-Ochoa, E.Y.; Fierro-Kong, L.; Medeiros, M.H.G.; Di Mascio, P.; White, J.F.; et al. Agave seed endophytes: Ecology and Impacts on Root Architecture, Nutrient Acquisition, and Cold Stress Tolerance. In Seed Endophytes; Verma, S., White, J., Jr., Eds.; Springer: Cham, Switzerland, 2019; pp. 195–214. [Google Scholar]
- Martinez-Rodriguez, A.; Beltran-Garcia, C.; Valdez-Salas, B.; Santacruz-Ruvalcaba, F.; Di Mascio, P.; Beltran-Garcia, M.J. Micropropagation of seed-derived clonal lines of the endangered Agave marmorata Roezl and their compatibility with endophytes. Biology 2022, 11, 1423. [Google Scholar] [CrossRef] [PubMed]
- Lima, A.S.; Prieto, K.R.; Santos, C.S.; Valerio, P.H.; Garcia-Ochoa, E.Y.; Huerta-Robles, A.; Beltran-Garcia, M.J.; Di Mascio, P.; Bertotti, M. In-vivo electrochemical monitoring of H2O2 production induced by root-inoculated endophytic bacteria in Agave tequilana leaves. Biosens. Bioelectron. 2018, 99, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Echeverri, L.M.; Benavides-López, S.; Geiger, O.; Trujillo-Roldán, M.A.; Valdez-Cruz, N.A. Bacterial extracellular vesicles: Biotechnological perspective for enhanced productivity. World J. Microbiol. Biotechnol. 2024, 40, 174. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.D.; Gibson, T.J.; Plewniak, F.; Jeanmougin, F.; Higgins, D.G. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997, 25, 4876–4882. [Google Scholar] [CrossRef]
- Waterhouse, A.M.; Procter, J.B.; Martin, D.M.; Clamp, M.; Barton, G.J. Jalview Version 2—A multiple sequence alignment editor and analysis workbench. Bioinformatics 2009, 25, 1189–1191. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [CrossRef]
- Döbereiner, J.; Baldani, V.L.D.; Baldani, J.I. Como Isolar e Identificar Bactérias Diazotróficas de Plantas Não-Leguminosas; Embrapa-SPI: Itaguaí, Brazil, 1995. [Google Scholar]
- Ullah, I.; Khan, A.R.; Park, G.S.; Lim, J.H.; Waqas, M.; Lee, I.J.; Shin, J.-H. Analysis of phytohormones and phosphate solubilization in Photorhabdus spp. Food Sci. Biotechnol. 2013, 22, 25–31. [Google Scholar]
- Nautiyal, C.S. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 1999, 170, 265–270. [Google Scholar] [CrossRef]
- Penrose, D.M.; Glick, B.R. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol. Plant. 2003, 118, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Schwyn, B.; Neilands, J.B. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 1987, 160, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Wayne, L.G.; Diaz, G.A. A double staining method for differentiating between two classes of mycobacterial catalase in polyacrylamide electrophoresis gels. Anal. Biochem. 1986, 157, 89–92. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, Y.; Kodai, S.; Takemura, S.; Minamiyama, Y.; Niki, E. Simultaneous measurement of F2-isoprostane, hydroxyoctadecadienoic acid, hydroxyeicosatetraenoic acid, and hydroxycholesterols from physiological samples. Anal. Biochem. 2008, 379, 105–115. [Google Scholar] [CrossRef]
- Chaves-Filho, A.B.; Pinto, I.F.D.; Dantas, L.S.; Xavier, A.M.; Inague, A.; Faria, R.L.; Medeiros, M.H.G.; Glezer, I.; Yoshinaga, M.Y.; Miyamoto, S. Alterations in lipid metabolism of spinal cord linked to amyotrophic lateral sclerosis. Sci. Rep. 2019, 9, 11642. [Google Scholar] [CrossRef]
- Han, X. Lipidomics: Comprehensive Mass Spectrometry of Lipids. Part II: Characterization of Lipids; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Biedendieck, R.; Knuuti, T.; Moore, S.J.; Jahn, D. The “beauty in the beast”—The multiple uses of Priestia megaterium in biotechnology. Appl. Microbiol. Biotechnol. 2021, 105, 5719–5737. [Google Scholar] [CrossRef]
- Cilia, V.; Lafay, B.; Christen, R. Sequence heterogeneities among 16S ribosomal RNA sequences, and their effect on phylogenetic analyses at the species level. Mol. Biol. Evol. 1996, 13, 451–461. [Google Scholar] [CrossRef]
- Macedo-Raygoza, G.M.; Valdez-Salas, B.; Prado, F.M.; Prieto, K.R.; Yamaguchi, L.F.; Kato, M.J.; Canto-Canché, B.B.; Carrillo-Beltrán, M.; Di Mascio, P.; White, J.F.; et al. Enterobacter cloacae, an Endophyte That Establishes a Nutrient-Transfer Symbiosis with Banana Plants and Protects Against the Black Sigatoka Pathogen. Front. Microbiol. 2019, 10, 804. [Google Scholar] [CrossRef]
- Niu, B.; Paulson, J.N.; Zheng, X.; Kolter, R. Simplified and Representative Bacterial Community of Maize Roots. Proc. Natl. Acad. Sci. USA 2017, 114, E2450–E2459. [Google Scholar] [CrossRef]
- Zenebe, A.; Hailemichael, F.; Beshah, A.; Giray, R.; Oner, E.T.; Tesfaw, A. The nitrogen-fixing strains of Enterobacter cloacae isolated from mung bean (Vigna radiata L.) enhance mung bean nodulation and growth. Discov. Appl. Sci. 2025, 7, 329. [Google Scholar] [CrossRef]
- Synek, L.; Rawat, A.; L’Haridon, F.; Weisskopf, L.; Saad, M.M.; Hirt, H. Multiple strategies of plant colonization by beneficial endophytic Enterobacter sp. SA187. Environ. Microbiol. 2021, 23, 6223–6240. [Google Scholar] [CrossRef]
- Naher, K.; Miwa, H.; Okazaki, S.; Yasuda, M. Effects of Different Sources of Nitrogen on Endophytic Colonization of Rice Plants by Azospirillum sp. B510. Microbes Environ. 2018, 33, 301–308. [Google Scholar] [CrossRef]
- Liebrenz, K.; Gómez, C.; Brambilla, S.; Frare, R.; Stritzler, M.; Maguire, V.; Ruiz, O.; Soldini, D.; Pascuan, C.; Soto, G.; et al. Whole-Genome Resequencing of Spontaneous Oxidative Stress-Resistant Mutants Reveals an Antioxidant System of Bradyrhizobium japonicum Involved in Soybean Colonization. Microb. Ecol. 2022, 84, 1133–1140. [Google Scholar] [CrossRef] [PubMed]
- Shankar, M.; Ponraj, P.; Illakkiam, D.; Rajendhran, J.; Gunasekaran, P. Inactivation of the transcriptional regulator-encoding gene sdiA enhances rice root colonization and biofilm formation in Enterobacter cloacae GS1. J. Bacteriol. 2013, 195, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Ma, L.; Ge, J.; Feng, F.; Wan, Q.; Zeng, D.; Yu, X. Colonization Mechanism of Endophytic Enterobacter cloacae TMX-6 on Rice Seedlings Mediated by Organic Acids Exudated from Roots. J. Agric. Food Chem. 2023, 71, 4802–4809. [Google Scholar] [CrossRef] [PubMed]
- Saha, K.K.; Mandal, S.; Barman, A.; Mondal, S.; Chatterjee, S.; Mandal, N.C. Genomic insight of phosphate solubilization and plant growth promotion of two taxonomically distinct winter crops by Enterobacter sp. DRP3. J. Appl. Microbiol. 2024, 135, lxae146. [Google Scholar] [CrossRef]
- Guardado-Fierros, B.G.; Tuesta-Popolizio, D.A.; Lorenzo-Santiago, M.A.; Rubio-Cortés, R.; Camacho-Ruíz, R.M.; Castañeda-Nava, J.J.; Gutiérrez-Mora, A.; Contreras-Ramos, S.M. PGPB consortium formulation to increase fermentable sugar in Agave tequilana Weber var. blue: A study in the field. Plants 2024, 13, 1371. [Google Scholar] [CrossRef]
- Desgarennes, D.; Garrido, E.; Torres-Gomez, M.J.; Peña-Cabriales, J.J.; Partida-Martinez, L.P. Diazotrophic potential among bacterial communities associated with wild and cultivated Agave species. FEMS Microbiol. Ecol. 2014, 90, 844–857. [Google Scholar] [CrossRef]
- Paungfoo-Lonhienne, C.; Rentsch, D.; Robatzek, S.; Webb, R.I.; Sagulenko, E.; Näsholm, T.; Schmidt, S.; Lonhienne, T.G.A. Turning the table: Plants consume microbes as a source of nutrients. PLoS ONE 2010, 5, e11915. [Google Scholar] [CrossRef]
- Verma, S.K.; Sahu, P.K.; Kumar, K.; Pal, G.; Gond, S.K.; Kharwar, R.N.; White, J.F. Endophyte roles in nutrient acquisition, root system architecture development and oxidative stress tolerance. J. Appl. Microbiol. 2021, 131, 2161–2177. [Google Scholar] [CrossRef] [PubMed]
- White, J.F.; Kingsley, K.L.; Verma, S.K.; Kowalski, K.P. Rhizophagy cycle: An oxidative process in plants for nutrient extraction from symbiotic microbes. Microorganisms 2018, 6, 95. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.J.; Singh, R.K.; Singh, P.; Li, D.P.; Sharma, A.; Xing, Y.X.; Song, X.P.; Yang, L.T.; Li, Y.R. Complete Genome Sequence of Enterobacter roggenkampii ED5, a Nitrogen Fixing Plant Growth Promoting Endophytic Bacterium with Biocontrol and Stress Tolerance Properties, Isolated from Sugarcane Root. Front. Microbiol. 2020, 11, 580081. [Google Scholar] [CrossRef] [PubMed]
- Shetty, A.; Chen, S.; Tocheva, E.I.; Jensen, G.J.; Hickey, W.J. Nanopods: A new bacterial structure and mechanism for deployment of outer membrane vesicles. PLoS ONE 2011, 6, e20725. [Google Scholar] [CrossRef]
- Bhar, S.; Edelmann, M.J.; Jones, M.K. Characterization and proteomic analysis of outer membrane vesicles from a commensal microbe, Enterobacter cloacae. J. Proteom. 2021, 231, 103994. [Google Scholar] [CrossRef]
- Rossoni, S.; Beard, S.; Segura-Bidermann, M.I.; Duarte-Ramírez, J.; Osorio, F.K.; Varas-Godoy, M.; Martínez-Bellange, P.; Vera, M.; Quatrini, R.; Castro, M. Membrane vesicles in Acidithiobacillia class extreme acidophiles: Influence on collective behaviors of Fervidacidithiobacillus caldus. Front. Microbiol. 2024, 14, 1331363. [Google Scholar] [CrossRef]
- Richards, G.P.; Uknalis, J.; Watson, M.A. Highly Pleomorphic Strains of the Vibrio Predator Pseudoalteromonas piscicida and Their Outer Membrane Vesicles: A Scanning Electron Micrographic Study. Microorganisms 2025, 13, 365. [Google Scholar] [CrossRef]
- Potter, M.; Hanson, C.; Anderson, A.J.; Vargis, E.; Britt, D.W. Abiotic stressors impact outer membrane vesicle composition in a beneficial rhizobacterium: Raman spectroscopy characterization. Sci. Rep. 2020, 10, 21289. [Google Scholar] [CrossRef]
- Li, W.; Wang, J.J.; Qian, H.; Tan, L.; Zhang, Z.; Liu, H.; Pan, Y.; Zhao, Y. Insights into the role of extracellular DNA and extracellular proteins in biofilm formation of Vibrio parahaemolyticus. Front. Microbiol. 2020, 11, 813. [Google Scholar] [CrossRef]
- Mugunthan, S.; Wong, L.L.; Winnerdy, F.R.; Summers, S.; Bin Ismail, M.H.; Foo, Y.H.; Jaggi, T.K.; Meldrum, O.W.; Tiew, P.Y.; Chotirmall, S.H.; et al. RNA is a key component of extracellular DNA networks in Pseudomonas aeruginosa biofilms. Nat. Commun. 2023, 14, 7772. [Google Scholar] [CrossRef]
- Rath, S.; Fatma, S.; Das, S. Unraveling the multifaceted role of extracellular DNA (eDNA) of biofilm in bacterial physiology, biofilm formation, and matrixome architecture. Crit. Rev. Biochem. Mol. Biol. 2025, 60, 1–32. [Google Scholar] [CrossRef]
- Mlynek, K.D.; Bozue, J.A. Why vary what’s working? Phase variation and biofilm formation in Francisella tularensis. Front. Microbiol. 2022, 13, 1076694. [Google Scholar] [CrossRef]
- Bogdanov, M.; Pyrshev, K.; Yesylevskyy, S.; Ryabichko, S.; Boiko, V.; Ivanchenko, P.; Kiyamova, R.; Guan, Z.; Ramseyer, C.; Dowhan, W. Phospholipid distribution in the cytoplasmic membrane of Gram-negative bacteria is highly asymmetric, dynamic, and cell shape dependent. Sci. Adv. 2020, 6, eaaz6333. [Google Scholar] [CrossRef] [PubMed]
- Nagakubo, T.; Nomura, N.; Toyofuku, M. Cracking Open Bacterial Membrane Vesicles. Front. Microbiol. 2020, 10, 3026. [Google Scholar] [CrossRef] [PubMed]
- Grogan, D.W.; Cronan, J.E. Cyclopropane ring formation in membrane lipids of bacteria. Microbiol. Mol. Biol. Rev. 1997, 61, 429–441. [Google Scholar] [PubMed]
- Shabala, L.; Ross, T. Cyclopropane fatty acids improve Escherichia coli survival in acidified minimal media by reducing membrane permeability to H+ and enhanced ability to extrude H+. Res. Microbiol. 2008, 159, 458–461. [Google Scholar] [CrossRef]
- Maiti, A.; Kumar, A.; Daschakraborty, S. How do cyclopropane fatty acids protect the cell membrane of Escherichia coli in cold shock? J. Phys. Chem. B 2023, 127, 1607–1617. [Google Scholar] [CrossRef]
- Geng, J.; Long, J.; Hu, Q.; Liu, M.; Ge, A.; Du, Y.; Zhang, T.; Jin, Y.; Yang, H.; Chen, S.; et al. Current status of cyclopropane fatty acids on bacterial cell membranes characteristics and physiological functions. Microb. Pathog. 2025, 200, 107295. [Google Scholar] [CrossRef]
- Tempelhagen, L.; Ayer, A.; Culham, D.E.; Stocker, R.; Wood, J.M. Cultivation at high osmotic pressure confers ubiquinone 8-independent protection of respiration on Escherichia coli. J. Biol. Chem. 2020, 295, 981–993. [Google Scholar] [CrossRef]
- Aussel, L.; Pierrel, F.; Loiseau, L.; Lombard, M.; Fontecave, M.; Barras, F. Biosynthesis and physiology of coenzyme Q in bacteria. Biochim. Biophys. Acta 2014, 1837, 1004–1011. [Google Scholar] [CrossRef]
- Søballe, B.; Poole, R.K. Ubiquinone limits oxidative stress in Escherichia coli. Microbiology 2000, 146, 787–796. [Google Scholar] [CrossRef]
- Chen, N.; Li, Y.; Liang, X.; Qin, K.; Zhang, Y.; Wang, J.; Wu, Q.; Gupta, T.B.; Ding, Y. Bacterial extracellular vesicle: A non-negligible component in biofilm life cycle and challenges in biofilm treatments. Biofilm 2024, 8, 100216. [Google Scholar] [CrossRef]
- Rudnicka, M.; Noszczyńska, M.; Malicka, M.; Kasperkiewicz, K.; Pawlik, M.; Piotrowska-Seget, Z. Outer membrane vesicles as mediators of plant-bacterial interactions. Front. Microbiol. 2022, 13, 902181. [Google Scholar] [CrossRef]
- Pawlik, M.; Rudnicka, M.; Bondaruk, I.; Kasperkiewicz, K.; Noszczyńska, M.; Malicka, M.; Siupka, P.; Piotrowska-Seget, Z. Assessment of the Effect of Outer Membrane Vesicles of Endophytic Bacteria on the Growth and Physiological Response of Arabidopsis thaliana. Biol. Life Sci. Forum. 2022, 16, 36. [Google Scholar]
- Li, P.; Luo, W.; Xiang, T.X.; Jiang, Y.; Liu, P.; Wei, D.D.; Fan, L.; Huang, S.; Liao, W.; Liu, Y.; et al. Horizontal gene transfer via OMVs co-carrying virulence and antimicrobial-resistant genes is a novel way for the dissemination of carbapenem-resistant hypervirulent Klebsiella pneumoniae. Front. Microbiol. 2022, 13, 945972. [Google Scholar] [CrossRef]




| Strain | Nitrogen Fixation | Phosphate Solubilization | IAA | Siderophore | ACC-Deaminase |
|---|---|---|---|---|---|
| E. cloacae SEA01 | + | + | - | + | + |
| K. cowanii Agave 3 | + | + | - | + | - |
| P. megaterium B511-1 | + | + | - | + | - |
| B. altitudinis A6-2111 | - | - | - | + | + |
| B. pumilus A12-212 | + | + | - | + | + |
| B. aerius PMBG1 | - | - | - | - | + |
| B. subtilis Rb | + | + | - | - | + |
| B. tequilensis 29G | + | + | + | - | - |
| B. safensis ATC9 | - | - | - | + | - |
| K. marina KM | + | - | + | - | - |
| E. casseliflavus x19 | + | + | + | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prieto, K.R.; Valério, H.P.; Chaves-Filho, A.B.; Yoshinaga, M.Y.; Miyamoto, S.; Prado, F.M.; Zaizar-Castañeda, I.; Montaño-Silva, P.; Martinez-Rodriguez, A.; Curiel, M.; et al. Outer Membrane Vesicles, Lipidome, and Biofilm Formation in the Endophyte Enterobacter Cloacae SEA01 from Agave Tequilana. Microorganisms 2025, 13, 2432. https://doi.org/10.3390/microorganisms13112432
Prieto KR, Valério HP, Chaves-Filho AB, Yoshinaga MY, Miyamoto S, Prado FM, Zaizar-Castañeda I, Montaño-Silva P, Martinez-Rodriguez A, Curiel M, et al. Outer Membrane Vesicles, Lipidome, and Biofilm Formation in the Endophyte Enterobacter Cloacae SEA01 from Agave Tequilana. Microorganisms. 2025; 13(11):2432. https://doi.org/10.3390/microorganisms13112432
Chicago/Turabian StylePrieto, Kátia R., Hellen P. Valério, Adriano B. Chaves-Filho, Marcos Y. Yoshinaga, Sayuri Miyamoto, Fernanda M. Prado, Itzel Zaizar-Castañeda, Paul Montaño-Silva, América Martinez-Rodriguez, Mario Curiel, and et al. 2025. "Outer Membrane Vesicles, Lipidome, and Biofilm Formation in the Endophyte Enterobacter Cloacae SEA01 from Agave Tequilana" Microorganisms 13, no. 11: 2432. https://doi.org/10.3390/microorganisms13112432
APA StylePrieto, K. R., Valério, H. P., Chaves-Filho, A. B., Yoshinaga, M. Y., Miyamoto, S., Prado, F. M., Zaizar-Castañeda, I., Montaño-Silva, P., Martinez-Rodriguez, A., Curiel, M., Medeiros, M. H. G., Winck, F. V., Di Mascio, P., & Beltran-Garcia, M. J. (2025). Outer Membrane Vesicles, Lipidome, and Biofilm Formation in the Endophyte Enterobacter Cloacae SEA01 from Agave Tequilana. Microorganisms, 13(11), 2432. https://doi.org/10.3390/microorganisms13112432

