Characterization of Metabolomic Response of Candida spp. to Heavy Metal Exposure
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Growth and Culture Conditions
Sample Preparation for GC-MS Analysis
2.2. Characterization
2.3. GC-MS Analysis Results
2.4. Statistical Analysis
3. Results
Metabolic Profile
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metal toxicity and the environment. In Molecular, Clinical and Environmental Toxicology; Experientia Supplementum; Springer: Basel, Swizerland, 2012; Volume 101, pp. 133–164. [Google Scholar] [CrossRef]
- Belyaeva, E.A.; Sokolova, T.V.; Emelyanova, L.V.; Zakharova, I.O. Mitochondrial electron transport chain in heavy metal-induced neurotoxicity: Effects of cadmium, mercury, and copper. Sci. World J. 2012, 2012, 136063. [Google Scholar] [CrossRef] [PubMed]
- Catalá, A. Lipid peroxidation of membrane phospholipids generates hydroxy-alkenals and oxidized phospholipids active in physiological and/or pathological conditions. Chem. Phys. Lipids 2009, 157, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Priyadarshanee, M.; Das, S. Biosorption and removal of toxic heavy metals by metal tolerating bacteria for bioremediation of metal contamination: A comprehensive review. J. Environ. Chem. Eng. 2021, 9, 104686. [Google Scholar] [CrossRef]
- Bhavya, G.; De Britto, S.; Satapute, P.; Geetha, N.; Jogaiah, S. Biofabricated yeast: Super-soldier for detoxification of heavy metals. World J. Microbiol. Biotechnol. 2023, 39, 148. [Google Scholar] [CrossRef] [PubMed]
- Trama Freitas, B.; Fernandes, J.; Labuto, G.; Oliveira, J.; Niero, C.; Pascon, R.; Vallim, M. The Evaluation of Bioremediation Potential of a Yeast Collection Isolated from Composting. Adv. Microbiol. 2014, 4, 796–807. [Google Scholar] [CrossRef]
- Kanekar, P.; Kanekar, S. Metallophilic, Metal-Resistant, and Metal-Tolerant Microorganisms. In Diversity and Biotechnology of Extremophilic Microorganisms from India; Springer: Basel, Swizerland, 2022; pp. 187–213. [Google Scholar]
- Vadkertiová, R.; Sláviková, E. Metal tolerance of yeasts isolated from water, soil and plant environments. J. Basic Microbiol. 2006, 46, 145–152. [Google Scholar] [CrossRef]
- Tang, Y.; Chen, Y.; Chang, S.; Li, M.; Sun, J. Evaluation of yeast inoculum seeding on the remediation of water and sediment in an urban river. Can. J. Chem. Eng. 2017, 95, 2038–2047. [Google Scholar] [CrossRef]
- Bianchi, M.E.; Carbone, M.L.; Lucchini, G.; Magni, G.E. Mutants resistant to manganese in Saccharomyces cerevisiae. Curr. Genet. 1981, 4, 215–220. [Google Scholar] [CrossRef]
- Orbegozo, J.; Abanto Marin, M.; de Garcia, R.; Ramirez, P. Identificación molecular de Pichia guillermondii aislada de aguas ácidas de minas en el Perú y su resistencia a metales pesados. In Revista Peruana Bioloia; Facultad de Ciencias Biologicas: Monterrey, Mexico, 2007; Volume 15, pp. 91–96. [Google Scholar] [CrossRef]
- Bansal, S.; Garg, M.; Chatterjee, M. Evaluation of heavy metal resistance profile of Candida parapsilosis. Indian J. Biotechnol. 2019, 18, 64–68. [Google Scholar]
- Luk, C.H.J.; Yip, J.; Yuen, C.W.M.; Pang, S.K.; Lam, K.H.; Kan, C.W. Biosorption Performance of Encapsulated Candida krusei for the removal of Copper(II). Sci. Rep. 2017, 7, 2159. [Google Scholar] [CrossRef]
- Kubier, A.; Wilkin, R.T.; Pichler, T. Cadmium in soils and groundwater: A review. Appl. Geochemistry 2019, 108, 104388. [Google Scholar] [CrossRef]
- Witkowska, D.; Słowik, J.; Chilicka, K. Heavy Metals and Human Health: Possible Exposure Pathways and the Competition for Protein Binding Sites. Molecules 2021, 26. [Google Scholar] [CrossRef]
- Liu, Y.; Xiao, T.; Perkins, R.B.; Zhu, J.; Zhu, Z.; Xiong, Y.; Ning, Z. Geogenic cadmium pollution and potential health risks, with emphasis on black shale. J. Geochem. Explor. 2017, 176, 42–49. [Google Scholar] [CrossRef]
- Sebastian, A.; Prasad, M.N.V. Cadmium minimization in rice. A review. Agron. Sustain. Dev. 2014, 34, 155–173. [Google Scholar] [CrossRef]
- Li, C.X.; Gleason, J.E.; Zhang, S.X.; Bruno, V.M.; Cormack, B.P.; Culotta, V.C. Candida albicans adapts to host copper during infection by swapping metal cofactors for superoxide dismutase. Proc. Natl. Acad. Sci. USA 2015, 112, E5336–E5342. [Google Scholar] [CrossRef] [PubMed]
- Citiulo, F.; Jacobsen, I.D.; Miramón, P.; Schild, L.; Brunke, S.; Zipfel, P.; Brock, M.; Hube, B.; Wilson, D. Candida albicans Scavenges Host Zinc via Pra1 during Endothelial Invasion. PLOS Pathog. 2012, 8, e1002777. [Google Scholar] [CrossRef]
- García-Béjar, B.; Owens, R.A.; Briones, A.; Arévalo-Villena, M. Differential distribution and proteomic response of Saccharomyces cerevisiae and non-model yeast species to zinc. Environ. Microbiol. 2020, 22, 4633–4646. [Google Scholar] [CrossRef] [PubMed]
- Roetzer, A.; Klopf, E.; Gratz, N.; Marcet-Houben, M.; Hiller, E.; Rupp, S.; Gabaldón, T.; Kovarik, P.; Schüller, C. Regulation of Candida glabrata oxidative stress resistance is adapted to host environment. FEBS Lett. 2011, 585, 319–327. [Google Scholar] [CrossRef]
- López-Ramos, J.E.; Bautista, E.; Gutiérrez-Escobedo, G.; Mancilla-Montelongo, G.; Castaño, I.; González-Chávez, M.M.; De Las Peñas, A. Analysis of Volatile Molecules Present in the Secretome of the Fungal Pathogen Candida glabrata. Molecules 2021, 26, 3881. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Nace, G.; Irwin, P. A 6 × 6 drop plate method for simultaneous colony counting and MPN enumeration of Campylobacter jejuni, Listeria monocytogenes, and Escherichia coli. J. Microbiol. Methods 2003, 55, 475–479. [Google Scholar] [CrossRef] [PubMed]
- El-Bestawy, E.A.; El-Batouti, M.M.; Zabermawi, N.M.; Zaghlol, H.M. Removal of heavy metals, turbidity and coliform from contaminated raw drinking water using Saccharomyces cerevisiae, the Baker’s yeast. Sustain. Chem. Pharm. 2023, 33, 101131. [Google Scholar] [CrossRef]
- Cormack, B.P.; Falkow, S. Efficient homologous and illegitimate recombination in the opportunistic yeast pathogen Candida glabrata. Genetics 1999, 151, 979–987. [Google Scholar] [CrossRef]
- Rana, S.; Handa, S.; Aggarwal, Y.; Puri, S.; Chatterjee, M. Role of Candida in the bioremediation of pollutants: A review. Lett. Appl. Microbiol. 2023, 76, ovad103. [Google Scholar] [CrossRef]
- Kolb, M.; Bahadir, M.; Teichgräber, B. Determination of chemical oxygen demand (COD) using an alternative wet chemical method free of mercury and dichromate. Water Res. 2017, 122, 645–654. [Google Scholar] [CrossRef]
- Chandran, P.; Das, N. Role of Sophorolipid Biosurfactant in Degradation of Diesel Oil by Candida tropicalis. Bioremediat. J. 2012, 16, 19–30. [Google Scholar] [CrossRef]
- Luna, J.; Sarubbo, L.; Campos Takaki, G. A New Biosurfactant Produced by Candida glabrata UCP 1002: Characteristics of Stability and Application in Oil Recovery. Braz. Arch. Biol. Technol. 2009, 52, 785–793. [Google Scholar] [CrossRef]
- Coelho, N.; Coelho, L.; Coelho, L.M.; Rezende, H.C.; de Sousa, P.A.R.; Melo, D.F.O. Bioremediation of Polluted Waters Using Microorganisms. In Advances in Bioremediation of Wastewater and Polluted Soil; Shiomi, N., Ed.; IntechOpen: Rijeka, Croatia, 2015. [Google Scholar] [CrossRef]
- Rehman, A.; Anjum, M.S. Multiple metal tolerance and biosorption of cadmium by Candida tropicalis isolated from industrial effluents: Glutathione as detoxifying agent. Environ. Monit. Assess. 2011, 174, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Coleman, M.G.; Hudson, A.O. Chapter 13-Isolation, Total Synthesis, and Biological Activities of 1-Aminocyclopropane-1-Carboxylic Acid (ACC) Containing Natural Compounds. In Studies in Natural Products Chemistry; Atta-ur-Rahman, Ed.; Elsevier: Amsterdam, The Netherlands, 2016; Volume 47, pp. 405–430. [Google Scholar]
- Klug, L.; Daum, G. Yeast lipid metabolism at a glance. FEMS Yeast Res. 2014, 14, 369–388. [Google Scholar] [CrossRef]
- Lima, R.; Andrade, R.; Montero Rodríguez, D.; Araújo, H.; Santos, V.; Campos Takaki, G. Production and characterization of biosurfactant isolated from Candida glabrata using renewable substrates. African J. Microbiol. Res. 2017, 11, 237–244. [Google Scholar] [CrossRef]
- Fang, Z.; Chen, Z.; Wang, S.; Shi, P.; Shen, Y.; Zhang, Y.; Xiao, J.; Huang, Z. Overexpression of OLE1 Enhances Cytoplasmic Membrane Stability and Confers Resistance to Cadmium in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2017, 83, e02319-16. [Google Scholar] [CrossRef] [PubMed]
- Wernig, F.; Baumann, L.; Boles, E.; Oreb, M. Production of octanoic acid in Saccharomyces cerevisiae: Investigation of new precursor supply engineering strategies and intrinsic limitations. Biotechnol. Bioeng. 2021, 118, 3046–3057. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kim, Y.-G.; Khadke, S.K.; Lee, J. Antibiofilm and antifungal activities of medium-chain fatty acids against Candida albicans via mimicking of the quorum-sensing molecule farnesol. Microb. Biotechnol. 2021, 14, 1353–1366. [Google Scholar] [CrossRef] [PubMed]
- Baumann, L.; Doughty, T.; Siewers, V.; Nielsen, J.; Boles, E.; Oreb, M. Transcriptomic response of Saccharomyces cerevisiae to octanoic acid production. FEMS Yeast Res. 2021, 21, foab011. [Google Scholar] [CrossRef]
- Liu, P.; Chernyshov, A.; Najdi, T.; Fu, Y.; Dickerson, J.; Sandmeyer, S.; Jarboe, L. Membrane stress caused by octanoic acid in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2013, 97, 3239–3251. [Google Scholar] [CrossRef]
- Viegas, C.A.; Sá-Correia, I. Toxicity of octanoic acid in Saccharomyces cerevisiae at temperatures between 8.5 and 30 °C. Enzyme Microb. Technol. 1995, 17, 826–831. [Google Scholar] [CrossRef]
- Hall, M.J.; Ratledge, C. Lipid accumulation in an oleaginous yeast (Candida 107) growing on glucose under various conditions in a one- and two-stage continuous culture. Appl. Environ. Microbiol. 1977, 33, 577–584. [Google Scholar] [CrossRef]
- Ikonen, E. Roles of lipid rafts in membrane transport. Curr. Opin. Cell Biol. 2001, 13, 470–477. [Google Scholar] [CrossRef]
- Lalitharani, S.; Mohan, V.; Regini, G. GC-MS analysis of ethanolic extract of Zanthoxylum rhetsa (roxb.) dc spines. J. Herb. Med. Toxicol. 2010, 4, 191–192. [Google Scholar]
- Estrada Alvarado, I.; Lomascolo, A.; Navarro, D.; Delattre, M.; Asther, M.; Lesage-Meessen, L. Evidence of a new biotransformation pathway of p-coumaric acid into p-hydroxybenzaldehyde in Pycnoporus cinnabarinus. Appl. Microbiol. Biotechnol. 2001, 57, 725–730. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zhang, L.; Li, W.; Li, X.; Huang, W.; Yang, H.; Zheng, L. Chemical compositions and volatile compounds of Tricholoma matsutake from different geographical areas at different stages of maturity. Food Sci. Biotechnol. 2016, 25, 71–77. [Google Scholar] [CrossRef] [PubMed]
Genotype | Strain | Source of Reference |
---|---|---|
Candida glabrata strain BG2: ura3Δ:Tn903 NeoR Ura− | BG14 | [25] |
C. parapsilosis | ATCC-22019 | De Las Peñas’s Lab. collection |
C. tropicalis | ATCC-750 | De Las Peñas’s Lab. collection |
C. albicans Sc5314 | ATCC MYA2876 | De Las Peñas’s Lab. collection |
Metal | Strain | LD50 (mM) |
---|---|---|
Cd2+ | C. albicans | 0.03 |
C. glabrata | 2 | |
C. parapsilosis | 1.5 | |
C. tropicalis | 0.2 | |
Cu2+ | C. albicans | 6 |
C. glabrata | 7 | |
C. parapsilosis | 3.5 | |
C. tropicalis | 5 | |
Zn2+ | C. albicans | 400 |
C. glabrata | 400 | |
C. parapsilosis | 400 | |
C. tropicalis | 300 |
Heavy Metal | Compound Identified |
---|---|
Cu | (1S,3S)-6,8-dimethoxy-1,3-dimethyl-3,4-dihydro-1H-2-benzopyran-5-ol |
Tricyclo[3.3.3.0(1,5)]undec-6-ene-2,3,6-tricarbonitrile | |
2-(β-D-Galactopyranosylthio)-6,7,8,9,10-pentahydrocycloheptathieno[2,3-d]-pyrimidine-4-thione | |
2-(β-D-Glucopyranosylthio)-6,7,8,9,10-pentahydrocycloheptathieno[2,3-d]-pyrimidine-4-thione | |
2-[5-(3-methoxyphenyl)-1,3,4-oxadiazol-2-yl]phenol | |
9-Azatetracyclo[10.2.1.0(2,11).0(3,8)]pentadeca-3,5,7-triene-7-carboxylic acid | |
10-(2,5-difluorophenyl) Benzene | |
2-methoxy-4-(2-propenyl)-1-(1-propynyloxy) | |
Zn | 4-(3-Pyridyl)thieno[2,3-d]pyridazin-7(6H)-one |
9-Azatetracyclo[10.2.1.0(2,11).0(3,8)]pentadeca-3,5,7-triene-7-carboxylic acid | |
10-(2,3-difluorophenyl), E-15-Heptadecenal | |
Hexacosane | |
Hexadecane, 1-iodo | |
Cd | (2s,3r)-3-(1-naphthyl)glutamic acid |
2-propenoic acid, tridecyl ester | |
5,7-dimethyl-1,2,3,4-tetrahydro-9-acridinamine | |
Benzenamine, 2-bromo-4,6-dinitro | |
Benzene | |
Pentadecane |
Hydrocarbons |
---|
1-Docosene (81) |
Hexadecane (83) |
Octadecane, 1-iodo (80) |
Fatty acids |
Octadecanoic acid (94) |
Octanoic acid (99) |
Isopropyl myristate (95) |
3-(4-N,N-Dimethylaminophenyl)propenoic acid, 2-(diethoxyphosphinyl)-, ethyl (91) |
3,4-Dimethylbenzoic acid (93) |
Heterocyclic aromatic |
1H-Indole (93) |
2-(1,3-Benzodioxol-5-ylmethyl)-1H-isoindole-1,3(2H)-dione (90) |
Ethyl 2-(Chloromethyl)-2,3-dihydrobenzofuran-7-carboxylate (86) |
Substituted aromatics |
(3E,5E,7E,9E)-10-Phenyldeca-3,5,7,9-tetraen-2-ol (94) |
4-Methoxy-N-(2-[(4-methoxyphenyl)imino]ethylidene)aniline (93) |
Non-aromatic cyclic compounds |
4-Isopropyl-1,3-cyclohexanedione (78) |
Organosiloxanes |
Tetracosamethylcyclododecasiloxane (90) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reyes-Sánchez, P.N.; Chairez-Ávila, J.A.; García-Aguirre, K.K.; Esparza-Cordero, V.; Romo-García, M.F.; Medina-Llamas, J.C.; López-Ramos, J.E. Characterization of Metabolomic Response of Candida spp. to Heavy Metal Exposure. Microorganisms 2025, 13, 2394. https://doi.org/10.3390/microorganisms13102394
Reyes-Sánchez PN, Chairez-Ávila JA, García-Aguirre KK, Esparza-Cordero V, Romo-García MF, Medina-Llamas JC, López-Ramos JE. Characterization of Metabolomic Response of Candida spp. to Heavy Metal Exposure. Microorganisms. 2025; 13(10):2394. https://doi.org/10.3390/microorganisms13102394
Chicago/Turabian StyleReyes-Sánchez, Perla Nayeli, Jesús Alfonso Chairez-Ávila, Karol Karla García-Aguirre, Verónica Esparza-Cordero, María Fernanda Romo-García, Juan C. Medina-Llamas, and Juan Ernesto López-Ramos. 2025. "Characterization of Metabolomic Response of Candida spp. to Heavy Metal Exposure" Microorganisms 13, no. 10: 2394. https://doi.org/10.3390/microorganisms13102394
APA StyleReyes-Sánchez, P. N., Chairez-Ávila, J. A., García-Aguirre, K. K., Esparza-Cordero, V., Romo-García, M. F., Medina-Llamas, J. C., & López-Ramos, J. E. (2025). Characterization of Metabolomic Response of Candida spp. to Heavy Metal Exposure. Microorganisms, 13(10), 2394. https://doi.org/10.3390/microorganisms13102394