Comparison of Next-Generation Sequencing, Real-Time PCR and HRM-PCR for Helicobacter pylori Detection in Pediatric Biopsies
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients and Biopsy Samples
2.2. Methods
2.2.1. DNA Isolation from the Biopsy Samples
2.2.2. Real-Time PCR Using the AmpliSens® Helicobacter pylori-FRT PCR Kit
2.2.3. Next-Generation Sequencing
2.2.4. PCR-HRM for H. pylori ureA Gene Detection (Verification Method)
2.2.5. Bioinformatics/Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Cq | quantification cycle |
NGS | next-generation sequencing |
UTI | urinary tract infection |
PCR | polymerase chain reaction |
real-time PCR | real-time polymerase chain reaction |
References
- Kusters, J.G.; Van Vliet, A.H.M.; Kuipers, E.J. Pathogenesis of Helicobacter Pylori Infection. Clin. Microbiol. Rev. 2006, 19, 449. [Google Scholar] [CrossRef]
- Elshenawi, Y.; Hu, S.; Hathroubi, S. Biofilm of Helicobacter pylori: Life Cycle, Features, and Treatment Options. Antibiotics 2023, 12, 1260. [Google Scholar] [CrossRef]
- Patel, S.K.; Pratap, C.B.; Jain, A.K.; Gulati, A.K.; Nath, G. Diagnosis of Helicobacter Pylori: What Should Be the Gold Standard? World J. Gastroenterol. 2014, 20, 12847. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.C.; Malfertheiner, P.; Yu, H.T.; Kuo, C.L.; Chang, Y.Y.; Meng, F.T.; Wu, Y.X.; Hsiao, J.L.; Chen, M.J.; Lin, K.P.; et al. Global Prevalence of Helicobacter Pylori Infection and Incidence of Gastric Cancer Between 1980 and 2022. Gastroenterology 2024, 166, 605–619. [Google Scholar] [CrossRef]
- Cosgun, Y.; Yildirim, A.; Yucel, M.; Karakoc, A.E.; Koca, G.; Gonultas, A.; Gursoy, G.; Ustun, H.; Korkmaz, M. Evaluation of Invasive and Noninvasive Methods for the Diagnosis of Helicobacter Pylori Infection. Asian Pac. J. Cancer Prev. 2016, 17, 5265. [Google Scholar] [CrossRef]
- Bogiel, T.; Mikucka, A.; Szaflarska-Popławska, A.; Grzanka, D. Usefulness of Molecular Methods for Helicobacter Pylori Detection in Pediatric Patients and Their Correlation with Histopathological Sydney Classification. Int. J. Mol. Sci. 2022, 24, 179. [Google Scholar] [CrossRef]
- Wang, Y.K.; Kuo, F.C.; Liu, C.J.; Wu, M.C.; Shih, H.Y.; Wang, S.S.W.; Wu, J.Y.; Kuo, C.H.; Huang, Y.K.; Wu, D.C. Diagnosis of Helicobacter Pylori Infection: Current Options and Developments. World J. Gastroenterol. 2015, 21, 11221. [Google Scholar] [CrossRef]
- Nguyen, J.; Kotilea, K.; Bontems, P.; Miendje Deyi, V.Y. Helicobacter Pylori Infections in Children. Antibiotics 2023, 12, 1440. [Google Scholar] [CrossRef] [PubMed]
- Brandi, G.; Biavati, B.; Calabrese, C.; Granata, M.; Nannetti, A.; Mattarelli, P.; Di Febo, G.; Saccoccio, G.; Biasco, G. Urease-Positive Bacteria Other than Helicobacter Pylori in Human Gastric Juice and Mucosa. Am. J. Gastroenterol. 2006, 101, 1756–1761. [Google Scholar] [CrossRef] [PubMed]
- Kayali, S.; Aloe, R.; Bonaguri, C.; Gaiani, F.; Manfredi, M.; Leandro, G.; Fornaroli, F.; Di Mario, F.; De’angelis, G.L. Non-Invasive Tests for the Diagnosis of Helicobacter Pylori: State of the Art. Acta Biomed. Atenei Parm. 2018, 89, 58. [Google Scholar] [CrossRef]
- Tong, S.Y.C.; Giffard, P.M. Microbiological Applications of High-Resolution Melting Analysis. J. Clin. Microbiol. 2012, 50, 3418. [Google Scholar] [CrossRef] [PubMed]
- Haumaier, F.; Schneider-Fuchs, A.; Backert, S.; Vieth, M.; Sterlacci, W.; Wöhrl, B.M. Rapid Detection of Quinolone Resistance Mutations in GyrA of Helicobacter Pylori by Real-Time PCR. Pathogens 2022, 11, 59. [Google Scholar] [CrossRef] [PubMed]
- Maghami, A.A.; Mobarez, A.M.; Yadegar, A.; Nikkhah, M.; Sadeghi, A.; Mousazadeh, M. Evaluation of Optimized Real Time-PCR HRM Assay and SPR-Based Biosensor for Noninvasive Isolation of H. Pylori and Clarithromycin Resistance 23S-SNP Subtype. Diagn. Microbiol. Infect. Dis. 2025, 111, 116722. [Google Scholar] [CrossRef]
- Wang, Y.; Gong, X.; Lai, Q.; Fang, H.; Yang, X.; Li, X.; Liu, D.S.; Xie, Y. The Accuracy of Melting Curve–Based Multiplex Real-Time PCR for Diagnosing Helicobacter Pylori Resistance to Clarithromycin and Levofloxacin in Stool Specimens. Helicobacter 2025, 30, e70012. [Google Scholar] [CrossRef]
- Nahm, J.H.; Kim, W.K.; Kwon, Y.; Kim, H. Detection of Helicobacter Pylori with Clarithromycin Re-sistance-Associated Mutations Using Peptide Nucleic Acid Probe-Based Melting Point Analysis. Helicobacter 2019, 24, e12634. [Google Scholar] [CrossRef]
- Binmaeil, H.; Hanafiah, A.; Rose, I.M.; Ali, R.A.R. Development and Validation of Multiplex Quantitative PCR Assay for Detection of Helicobacter Pylori and Mutations Conferring Resistance to Clarithromycin and Levofloxacin in Gastric Biopsy. Infect. Drug Resist. 2021, 14, 4129–4145. [Google Scholar] [CrossRef]
- Gallardo Padilla, M.; León Falconi, J.L.; Sánchez-Nebreda Arias, R.; Gómez Santos, C.; Muñoz Egea, M.d.C.; Orden Izquierdo, E.l. Impact of the Use of Molecular Techniques (PCR) on Detection and Eradication Success against Helicobacter Pylori. An. Pediatr. (Engl. Ed.) 2022, 96, 190–195. [Google Scholar] [CrossRef]
- Bulajic, M.; Panic, N.; Stimec, B.; Isaksson, B.; Jesenofsky, R.; Schneider-Brachert, W.; Löhr, J.-M. PCR in Helicobacter Spp. Diagnostic in Extragastric Malignancies of Digestive System. Eur. J. Gastroenterol. Hepatol. 2012, 24, 117–125. [Google Scholar] [CrossRef]
- Homan, M.; Jones, N.L.; Bontems, P.; Carroll, M.W.; Czinn, S.J.; Gold, B.D.; Goodman, K.; Harris, P.R.; Jerris, R.; Kalach, N.; et al. Updated Joint ESPGHAN/NASPGHAN Guidelines for Management of Helicobacter Pylori Infection in Children and Adolescents (2023). J. Pediatr. Gastroenterol. Nutr. 2024, 79, 758–785. [Google Scholar] [CrossRef]
- Pohl, D.; Keller, P.M.; Bordier, V.; Wagner, K. Review of Current Diagnostic Methods and Advances in Helicobacter Pylori Diagnostics in the Era of next Generation Sequencing. World J. Gastroenterol. 2019, 25, 4629–4660. [Google Scholar] [CrossRef] [PubMed]
- Subsomwong, P.; Doohan, D.; Fauzia, K.A.; Akada, J.; Matsumoto, T.; Yee, T.T.; Htet, K.; Waskito, L.A.; Tuan, V.P.; Uchida, T.; et al. Next-Generation Sequencing-Based Study of Helicobacter Pylori Isolates from Myanmar and Their Susceptibility to Antibiotics. Microorganisms 2022, 10, 196. [Google Scholar] [CrossRef]
- Hathroubi, S.; Zerebinski, J.; Ottemann, K.M. Helicobacter Pylori Biofilm Involves a Multigene Stress-Biased Response, Including a Structural Role for Flagella. mBio 2018, 9, e01973-18. [Google Scholar] [CrossRef] [PubMed]
- Estibariz, I.; Overmann, A.; Ailloud, F.; Krebes, J.; Josenhans, C.; Suerbaum, S. The Core Genome M5C Methyltransferase JHP1050 (M.Hpy99III) Plays an Important Role in Orchestrating Gene Expression in Helicobacter Pylori. Nucleic Acids Res. 2019, 47, 2336–2348. [Google Scholar] [CrossRef]
- Bischler, T.; Hsieh, P.; Resch, M.; Liu, Q.; Tan, H.S.; Foley, P.L.; Hartleib, A.; Sharma, C.M.; Belasco, J.G. Identification of the RNA Pyrophosphohydrolase RppH of Helicobacter Pylori and Global Analysis of Its RNA Targets. J. Biol. Chem. 2017, 292, 1934–1950. [Google Scholar] [CrossRef] [PubMed]
- Redko, Y.; Galtier, E.; Arnion, H.; Darfeuille, F.; Sismeiro, O.; Coppée, J.-Y.; Médigue, C.; Weiman, M.; Cruveiller, S.; De Reuse, H. RNase J Depletion Leads to Massive Changes in MRNA Abundance in Helicobacter Pylori. RNA Biol. 2016, 13, 243–253. [Google Scholar] [CrossRef]
- Loh, J.T.; Beckett, A.C.; Scholz, M.B.; Cover, T.L. High-Salt Conditions Alter Transcription of Helicobacter Pylori Genes Encoding Outer Membrane Proteins. Infect. Immun. 2018, 86, e00626-17. [Google Scholar] [CrossRef]
- Han, B.; Zhang, Z.; Xie, Y.; Hu, X.; Wang, H.; Xia, W.; Wang, Y.; Li, H.; Wang, Y.; Sun, H. Multi-Omics and Temporal Dynamics Profiling Reveal Disruption of Central Metabolism in Helicobacter Pylori on Bismuth Treatment. Chem. Sci. 2018, 9, 7488–7497. [Google Scholar] [CrossRef]
- Vannini, A.; Pinatel, E.; Costantini, P.E.; Pelliciari, S.; Roncarati, D.; Puccio, S.; De Bellis, G.; Peano, C.; Danielli, A. Comprehensive Mapping of the Helicobacter Pylori NikR Regulon Provides New Insights in Bacterial Nickel Responses. Sci. Rep. 2017, 7, 45458. [Google Scholar] [CrossRef]
- Marcus, E.A.; Sachs, G.; Scott, D.R. Acid-regulated Gene Expression of Helicobacter Pylori: Insight into Acid Protection and Gastric Colonization. Helicobacter 2018, 23, e12490. [Google Scholar] [CrossRef]
- Sanger, F.; Nicklen, S.; Coulson, A.R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 1977, 74, 5463–5467. [Google Scholar] [CrossRef]
- Hu, T.; Chitnis, N.; Monos, D.; Dinh, A. Next-generation sequencing technologies: An overview. Hum. Immunol. 2021, 82, 801–811. [Google Scholar] [CrossRef]
- van Dijk, E.L.; Jaszczyszyn, Y.; Naquin, D.; Thermes, C. The Third Revolution in Sequencing Technology. Trends Genet. 2018, 34, 666–681. [Google Scholar] [CrossRef]
- Hilt, E.E.; Ferrieri, P. Next Generation and Other Sequencing Technologies in Diagnostic Microbiology and Infectious Diseases. Genes 2022, 13, 1566. [Google Scholar] [CrossRef]
- 16S Metagenomic Sequencing Library Preparation; Preparing 16S Ribosomal RNA Gene Amplicons for the Illumina MiSeq System. Available online: https://support.illumina.com/downloads/16s_metagenomic_sequencing_library_preparation.html?utm_source=chatgpt.com (accessed on 14 October 2020).
- Krawczyk, A.; Salamon, D.; Kowalska-Duplaga, K.; Zapała, B.; Książek, T.; Drażniuk-Warchoł, M.; Gosiewski, T. Changes in the Gut Mycobiome in Pediatric Patients in Relation to the Clinical Activity of Crohn’s Disease. World J. Gastroenterol. 2023, 29, 2172. [Google Scholar] [CrossRef]
- Salamon, D.; Zapała, B.; Krawczyk, A.; Potasiewicz, A.; Nikiforuk, A.; Stój, A.; Gosiewski, T. Comparison of ISeq and MiSeq as the Two Platforms for 16S RRNA Sequencing in the Study of the Gut of Rat Microbiome. Appl. Microbiol. Biotechnol. 2022, 106, 7671–7681. [Google Scholar] [CrossRef]
- Lo, C.C.; Lai, K.H.; Peng, N.J.; Lo, G.H.; Tseng, H.H.; Lin, C.K.; Shie, C.B.; Wu, C.M.; Chen, Y.S.; Huang, W.K.; et al. Polymerase Chain Reaction: A Sensitive Method for Detecting Helicobacter Pylori Infection in Bleeding Peptic Ulcers. World J. Gastroenterol. 2005, 11, 3909. [Google Scholar] [CrossRef]
- Noh, J.H.; Ahn, J.Y.; Choi, J.; Park, Y.S.; Na, H.K.; Lee, J.H.; Jung, K.W.; Kim, D.H.; Choi, K.D.; Song, H.J.; et al. Real-Time Polymerase Chain Reaction for the Detection of Helicobacter Pylori and Clarithromycin Resistance. Gut Liver 2023, 17, 375–381. [Google Scholar] [CrossRef]
- Trung, T.T.; Minh, T.A.; Anh, N.T. Value of CIM, CLO Test and Multiplex PCR for the Diagnosis of Helicobacter Pylori Infection Status in Patients with Gastritis and Gastric Ulcer. Asian Pac. J. Cancer Prev. 2019, 20, 3497–3503. [Google Scholar] [CrossRef] [PubMed]
- Ajayi, A.; Jolaiya, T.; Smith, S.I. Direct Detection of Helicobacter Pylori from Biopsies of Patients in Lagos, Nigeria Using Real-Time PCR-a Pilot Study. BMC Res. Notes 2021, 14, 90. [Google Scholar] [CrossRef]
- Silva-Fernandes, I.J.D.L.; De Oliveira, E.S.; Santos, J.C.; Ribeiro, M.L.; Ferrasi, A.C.; Pardini, M.I.D.M.C.; Burbano, R.M.R.; Rabenhorst, S.H.B. The Intricate Interplay between MSI and Polymorphisms of DNA Repair Enzymes in Gastric Cancer H.Pylori Associated. Mutagenesis 2017, 32, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.; Zhou, H.; Han, Q.; Sun, T.; Nie, C.; Hong, J.; Wei, R.; Leonteva, A.; Han, X.; Wang, J.; et al. Relationship between DLEC1 and PBX3 Promoter Methylation and the Risk and Prognosis of Gastric Cancer in Peripheral Blood Leukocytes. J. Cancer Res. Clin. Oncol. 2020, 146, 1115–1124. [Google Scholar] [CrossRef] [PubMed]
- Azadeh Jouneghani, M.; Keshavarzi, F.; Haghnazari, N.; Hooshmandi, Z.; Amini, S. The Investigation of the Association Between the Bcl-2 3′-UTR Rs1564483 Polymorphism and MiR-296-3p in the Development of Breast and Gastric Cancers. Clin. Med. Insights Oncol. 2023, 17, 11795549231207835. [Google Scholar] [CrossRef] [PubMed]
- Isomoto, H.; Sakaguchi, T.; Inamine, T.; Takeshita, S.; Fukuda, D.; Ohnita, K.; Kanda, T.; Matsushima, K.; Honda, T.; Sugihara, T.; et al. SNP Rs2920280 in PSCA Is Associated with Susceptibility to Gastric Mucosal Atrophy and Is a Promising Biomarker in Japanese Individuals with Helicobacter Pylori Infection. Diagnostics 2022, 12, 1988. [Google Scholar] [CrossRef]
- Han, X.; Liu, T.; Zhai, J.; Liu, C.; Wang, W.; Nie, C.; Wang, Q.; Zhu, X.; Zhou, H.; Tian, W. Association between EPHA5 Methylation Status in Peripheral Blood Leukocytes and the Risk and Prognosis of Gastric Cancer. PeerJ 2022, 10, e13774. [Google Scholar] [CrossRef]
- Zhou, H.; Nie, C.; Tian, W.; Han, X.; Wang, J.; Du, X.; Wang, Q.; Zhu, X.; Xiang, G.; Zhao, Y. Joint Effects Between CDKN2B/P15 Methylation and Environmental Factors on the Susceptibility to Gastric Cancer. Dig. Dis. Sci. 2023, 68, 3009–3017. [Google Scholar] [CrossRef] [PubMed]
- Kuang, Z.; Huang, H.; Chen, L.; Shang, Y.; Huang, S.; Liu, J.; Chen, J.; Xie, X.; Chen, M.; Wu, L.; et al. Development of a High-Resolution Melting Method for the Detection of Clarithromycin-Resistant Helicobacter Pylori in the Gastric Microbiome. Antibiotics 2024, 13, 975. [Google Scholar] [CrossRef]
- Beheshtirouy, S.; Eyvazi, S.; Tarhriz, V. Evaluation of Mutations in 23S RRNA, RdxA and FrxA Genes of Helicobacter Pylori in Paraffin-Embedded Gastric Biopsy Specimens from Iranian Gastric Cancer and Gastritis Patients. J. Gastrointest. Cancer 2021, 52, 207–211. [Google Scholar] [CrossRef]
- Ngui, R.; Lim, Y.A.L.; Chua, K.H. Rapid Detection and Identification of Human Hookworm Infections through High Resolution Melting (HRM) Analysis. PLoS ONE 2012, 7, e41996. [Google Scholar] [CrossRef]
- Lamien-Meda, A.; Schneider, R.; Walochnik, J.; Auer, H.; Wiedermann, U.; Leitsch, D. A Novel 5-Plex QPCR-HRM Assay Detecting Human Diarrheal Parasites. Gut Pathog. 2020, 12, 27. [Google Scholar] [CrossRef]
- Kafi, H.; Emaneini, M.; Halimi, S.; Rahdar, H.A.; Jabalameli, F.; Beigverdi, R. Multiplex High-Resolution Melting Assay for Simultaneous Detection of Five Key Bacterial Pathogens in Urinary Tract Infections: A Pilot Study. Front. Microbiol. 2022, 13, 1049178. [Google Scholar] [CrossRef]
- Zhao, M.; Qi, S.; Sun, Y.; Zheng, X. Comparison of Polymerase Chain Reaction and Next-Generation Sequencing with Conventional Urine Culture for the Diagnosis of Urinary Tract Infections: A Meta-Analysis. Open Med. 2024, 19, 20240921. [Google Scholar] [CrossRef]
- Mattox, A.K.; D’Souza, G.; Khan, Z.; Allen, H.; Henson, S.; Seiwert, T.Y.; Koch, W.; Pardoll, D.M.; Fakhry, C. Comparison of next Generation Sequencing, Droplet Digital PCR, and Quantitative Real-Time PCR for the Earlier Detection and Quantification of HPV in HPV-Positive Oropharyngeal Cancer. Oral Oncol. 2022, 128, 105805. [Google Scholar] [CrossRef]
- Szlachta-McGinn, A.; Douglass, K.M.; Chung, U.Y.R.; Jackson, N.J.; Nickel, J.C.; Ackerman, A.L. Molecular Diagnostic Methods Versus Conventional Urine Culture for Diagnosis and Treatment of Urinary Tract Infection: A Systematic Review and Meta-Analysis. Eur. Urol. Open Sci. 2022, 44, 113–124. [Google Scholar] [CrossRef]
- Dixon, M.; Stefil, M.; McDonald, M.; Bjerklund-Johansen, T.E.; Naber, K.; Wagenlehner, F.; Mouraviev, V. Metagenomics in Diagnosis and Improved Targeted Treatment of UTI. World J. Urol. 2020, 38, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Deebel, N.; Casals, R.; Dutta, R.; Mirzazadeh, M. A New Gold Rush: A Review of Current and Developing Diagnostic Tools for Urinary Tract Infections. Diagnostics 2021, 11, 479. [Google Scholar] [CrossRef]
- Thorell, K.; Bengtsson-Palme, J.; Liu, O.H.-F.; Palacios Gonzales, R.V.; Nookaew, I.; Rabeneck, L.; Paszat, L.; Graham, D.Y.; Nielsen, J.; Lundin, S.B.; et al. In Vivo Analysis of the Viable Microbiota and Helicobacter Pylori Transcriptome in Gastric Infection and Early Stages of Carcinogenesis. Infect. Immun. 2017, 85, e00031-17. [Google Scholar] [CrossRef]
- Min, B.J.; Seo, M.E.; Bae, J.H.; Kim, J.W.; Kim, J.H. Development and Validation of Next-Generation Sequencing Panel for Personalized Helicobacter Pylori Eradication Treatment Targeting Multiple Species. Front. Cell. Infect. Microbiol. 2024, 14, 1379790. [Google Scholar] [CrossRef]
- Brown, J.R.; Bharucha, T.; Breuer, J. Encephalitis Diagnosis Using Metagenomics: Application of next Generation Sequencing for Undiagnosed Cases. J. Infect. 2018, 76, 225–240. [Google Scholar] [CrossRef] [PubMed]
- Jearth, V.; Rath, M.M.; Chatterjee, A.; Kale, A.; Panigrahi, M.K. Drug-Resistant Helicobacter pylori: Diagnosis and Evidence-Based Approach. Diagnostics 2023, 13, 2944. [Google Scholar] [CrossRef]
- Salahi-Niri, A.; Nabavi-Rad, A.; Monaghan, T.M.; Rokkas, T.; Doulberis, M.; Sadeghi, A.; Zali, M.R.; Yamaoka, Y.; Tacconelli, E.; Yadegar, A. Global prevalence of Helicobacter pylori antibiotic resistance among children in the world health organization regions between 2000 and 2023: A systematic review and meta-analysis. BMC Med. 2024, 22, 598. [Google Scholar] [CrossRef] [PubMed]
Sample No. | Real-Time PCR (Cq Value) | PCR-HRM for ureA Gene Presence | NGS Result (Non-Chimeric Read Outs Number) |
---|---|---|---|
1 | + (23.04) | + | + (13,434) |
2 | + (24.30) | + | + (7768) |
3 | + (22.52) | + | + (24,498) |
4 | + (19.47) | + | + (42,925) |
5 | + (22.45) | + | + (7824) |
9 | + (22.70) | + | + (17,751) |
27 | + (18.86) | + | + (13,204) |
29 | + (17.51) | + | + (33,954) |
31 | + (32.21) | + | − |
32 | + (22.70) | + | + (21,780) |
40 | + (22.77) | + | + (12,640) |
41 | + (20.45) | + | + (9145) |
42 | + (20.47) | + | + (18,912) |
44 | + (20.87) | + | + (8903) |
45 | + (22.92) | + | − |
48 | + (25.65) | + | + (9619) |
Method | Result | |
---|---|---|
Positive | Negative | |
real-time PCR | 16 * | 24 |
NGS | 14 | 26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bogiel, T.; Szaflarska-Popławska, A.; Grzanka, D.; Woźniak, M.; Gosiewski, T.; Krawczyk, A. Comparison of Next-Generation Sequencing, Real-Time PCR and HRM-PCR for Helicobacter pylori Detection in Pediatric Biopsies. Microorganisms 2025, 13, 2344. https://doi.org/10.3390/microorganisms13102344
Bogiel T, Szaflarska-Popławska A, Grzanka D, Woźniak M, Gosiewski T, Krawczyk A. Comparison of Next-Generation Sequencing, Real-Time PCR and HRM-PCR for Helicobacter pylori Detection in Pediatric Biopsies. Microorganisms. 2025; 13(10):2344. https://doi.org/10.3390/microorganisms13102344
Chicago/Turabian StyleBogiel, Tomasz, Anna Szaflarska-Popławska, Dariusz Grzanka, Marcin Woźniak, Tomasz Gosiewski, and Agnieszka Krawczyk. 2025. "Comparison of Next-Generation Sequencing, Real-Time PCR and HRM-PCR for Helicobacter pylori Detection in Pediatric Biopsies" Microorganisms 13, no. 10: 2344. https://doi.org/10.3390/microorganisms13102344
APA StyleBogiel, T., Szaflarska-Popławska, A., Grzanka, D., Woźniak, M., Gosiewski, T., & Krawczyk, A. (2025). Comparison of Next-Generation Sequencing, Real-Time PCR and HRM-PCR for Helicobacter pylori Detection in Pediatric Biopsies. Microorganisms, 13(10), 2344. https://doi.org/10.3390/microorganisms13102344