The Remediation of Arsenic-Contaminated Soil by Pteris vittata L. Facilitates the Recovery of Soil Bacterial Diversity and Network Complexity
Abstract
1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Soil Sampling
2.3. Determination of Total Arsenic and Bioavailable Arsenic in Soil
2.4. Soil Nutrient Determination
2.5. DNA Extraction and PCR Amplification
2.6. Determination of Operational Taxonomic Units
2.7. Construction of Molecular Ecological Networks
2.8. Statistical Analysis
3. Results
3.1. Total Arsenic and Bioavailable Arsenic Concentration
3.2. Soil Nutrients
3.3. Soil Bacterial Diversity
3.4. Soil Bacterial Communities
3.5. Soil Bacterial Molecular Ecological Networks
4. Discussion
4.1. Arsenic Concentrations and Soil Nutrients
4.2. Bacterial Diversity and Community Composition
4.3. Bacterial Molecular Ecological Networks
4.4. Practical Implications, Limitations, and Future Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Podgorski, J.; Berg, M. Global threat of arsenic in groundwater. Science 2020, 368, 845–850. [Google Scholar] [CrossRef] [PubMed]
- Al-Makishah, N.H.; Taleb, M.A.; Barakat, M.A. Arsenic bioaccumulation in arsenic-contaminated soil: A review. Chem. Pap. 2020, 74, 2743–2757. [Google Scholar] [CrossRef]
- Rehman, M.U.; Khan, R.; Khan, A.; Qamar, W.; Arafah, A.; Ahmad, A.; Ahmad, A.; Akhter, R.; Rinklebe, J.; Ahmad, P. Fate of arsenic in living systems: Implications for sustainable and safe food chains. J. Hazard. Mater. 2021, 417, 126050. [Google Scholar] [CrossRef]
- Patel, K.S.; Pandey, P.K.; Martín-Ramos, P.; Corns, W.T.; Varol, S.; Bhattacharya, P.; Zhu, Y. A review on arsenic in the environment: Contamination, mobility, sources, and exposure. RSC Adv. 2023, 13, 8803–8821. [Google Scholar] [CrossRef]
- Shrivastava, A.; Ghosh, D.; Dash, A.; Bose, S. Arsenic contamination in soil and sediment in India: Sources, effects, and remediation. Curr. Pollut. Rep. 2015, 1, 35–46. [Google Scholar] [CrossRef]
- Zemanová, V.; Pavlíková, D.; Hnilička, F.; Pavlík, M. Arsenic toxicity-induced physiological and metabolic changes in the shoots of Pteris cretica and Spinacia oleracea. Plants 2021, 10, 2009. [Google Scholar] [CrossRef]
- Huq, S.M.; Joardar, J.C.; Parvin, S.; Correll, R.; Naidu, R. Arsenic contamination in food-chain: Transfer of arsenic into food materials through groundwater irrigation. J. Health Popul. Nutr. 2006, 24, 305–316. [Google Scholar]
- Rahman, M.S.; Reza, A.H.M.S.; Siddique, M.A.B.; Akbor, M.A.; Hasan, M. Accumulation of arsenic and other metals in soil and human consumable foods of Meherpur district, southwestern Bangladesh, and associated health risk assessment. Environ. Sci. Eur. 2023, 3, 47. [Google Scholar] [CrossRef]
- Abdul, K.S.; Jayasinghe, S.S.; Chandana, E.P.; Jayasumana, C.; De Silva, P.M. Arsenic and human health effects: A review. Environ. Toxicol. Pharmacol. 2015, 4, 828–846. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Hamza, A.; Xie, Z.; Hussain, S.; Brestic, M.; Tahir, M.A.; Ulhassan, Z.; Yu, M.; Allakhverdiev, S.I.; Shabala, S. Arsenic transport and interaction with plant metabolism: Clues for improving agricultural productivity and food safety. Environ. Pollut. 2021, 290, 117987. [Google Scholar] [CrossRef]
- Ozturk, M.; Metin, M.; Altay, V.; Bhat, R.A.; Ejaz, M.; Gul, A.; Unal, B.T.; Hasanuzzaman, M.; Nibir, L.; Nahar, K.; et al. Arsenic and human health: Genotoxicity, epigenomic effects, and cancer signaling. Biol. Trace Elem. Res. 2022, 200, 988–1001. [Google Scholar] [CrossRef]
- Yu, Z.; Liu, X.; Zeng, X.; Yin, H.; Yu, R.; Zeng, W. Effect of arsenic pollution extent on microbial community in Shimen long-term arsenic-contaminated Soil. Water Air Soil. Pollut. 2020, 231, 340. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, M.; Xu, R.; Lin, H.; Sun, X.; Xu, F.; Gao, P.; Kong, T.; Xiao, E.; Yang, N.; et al. Arsenic and antimony co-contamination influences on soil microbial community composition and functions: Relevance to arsenic resistance and carbon, nitrogen, and sulfur cycling. Environ. Int. 2021, 153, 106522. [Google Scholar] [CrossRef]
- Ma, L.Q.; Komar, K.M.; Tu, C.; Zhang, W.; Cai, Y.; Kennelley, E.D. A fern that hyperaccumulates arsenic. Nature 2001, 409, 579. [Google Scholar] [CrossRef]
- Ma, J.; Lei, E.; Lei, M.; Liu, Y.; Chen, T. Remediation of arsenic contaminated soil using malposed intercropping of Pteris vittata L. and maize. Chemosphere 2018, 194, 737–744. [Google Scholar] [CrossRef]
- Xiao, E.; Cui, J.; Sun, W.; Jiang, S.; Huang, M.; Kong, D.; Wu, Q.; Xiao, T.; Sun, X.; Ning, Z. Root microbiome assembly of arsenic-hyperaccumulator Pteris vittata and its efficacy in arsenic requisition. Environ. Microbiol. 2021, 23, 1959–1971. [Google Scholar] [CrossRef] [PubMed]
- Matzen, S.; Fakra, S.; Nico, P.; Pallud, C. Pteria vittata arsenic accumulation only partially explains soil arsenic depletion during field-scale phytoextraction. Soil. Syst. 2020, 24, 71. [Google Scholar]
- Antenozio, M.L.; Giannelli, G.; Marabottini, R.; Brunetti, P.; Allevato, E.; Marzi, D.; Capobianco, G.; Bonifazi, G.; Serranti, S.; Visioli, G.; et al. Phytoextraction efficiency of Pteris vittata grown on a naturally As-rich soil and characterization of As-resistant rhizosphere bacteria. Sci. Rep. 2021, 11, 6794. [Google Scholar] [CrossRef] [PubMed]
- Kohda, Y.H.T.; Qian, Z.; Chien, M.F.; Miyauchi, K.; Endo, G.; Suzui, N.; Yin, Y.G.; Kawachi, N.; Ikeda, H.; Watabe, H.; et al. New evidence of arsenic translocation and accumulation in Pteris vittata from real-time imaging using positron-emitting 74As tracer. Sci. Rep. 2021, 11, 12149. [Google Scholar] [CrossRef]
- Jia, P.; Li, F.; Zhang, S.; Wu, G.; Wang, Y.; Li, J.T. Microbial community composition in the rhizosphere of Pteris vittata and its effects on arsenic phytoremediation under a natural arsenic contamination gradient. Front. Microbiol. 2022, 13, 989272. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.Y.; Sun, X.; Wang, C.; Wang, W.Y. Factors influencing arsenic accumulation by Pteris vittata: A comparative field study at two sites. Environ. Pollut. 2006, 141, 488–493. [Google Scholar] [CrossRef]
- Wang, G.; Wang, Z.; Zhao, F.; Chen, J.X.; Chen, Y. Calcium acetate enhances both drought tolerance and arsenic accumulation in Pteris vittata. Environ. Pollut. Bioavail. 2022, 35, 2161947. [Google Scholar] [CrossRef]
- Joos, L.; De Tender, C.; Holderbeke, A.; Clement, L.; Vandecasteele, B.; Debode, J. Exploring the microbial response as a potential bio-indicator for soil health: Insights from a controlled incubator experiment. Agr. Ecosyst. Environ. 2023, 356, 108634. [Google Scholar] [CrossRef]
- Bhaduri, D.; Sihi, D.; Bhowmik, A.; Verma, B.C.; Munda, S.; Dari, B. A review on effective soil health bio-indicators for ecosystem restoration and sustainability. Front. Microbiol. 2022, 13, 938481. [Google Scholar] [CrossRef]
- Bhattacharjee, H.; Rosen, B.P. Arsenic metabolism in prokaryotic and eukaryotic microbes. In Molecular Microbiology of Heavy Metals; Nies, D.H., Silver, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Firrincieli, A.; Presentato, A.; Favoino, G.; Marabottini, R.; Allevato, E.; Stazi, S.R.; Mugnozza, G.S.; Harfouche, A.; Petruccioli, M.; Turner, R.J.; et al. Identification of resistance genes and response to arsenic in rhodococcus aetherivorans BCP1. Front. Microbiol. 2019, 10, 888. [Google Scholar] [CrossRef]
- Abbas, S.Z.; Riaz, M.; Ramzan, N.; Zahid, M.T.; Shakoori, F.R.; Rafatullah, M. Isolation and characterization of arsenic resistant bacteria from wastewater. Braz. J. Microbiol. 2014, 45, 1309–1315. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Dai, W.; Yao, D.; Wang, N.; Liu, M.; Wang, L.; Tian, W.; Yan, P.; Huang, Z.; Wang, H. Arsenic pollution from human activities drives changes in soil microbial community characteristics. Environ. Microbiol. 2023, 25, 2592–2603. [Google Scholar] [CrossRef]
- Cornell, C.R.; Zhang, Y.; Ning, D.; Xiao, N.; Wagle, P.; Xiao, X.; Zhou, J. Land use conversion increases network complexity and stability of soil microbial communities in a temperate grassland. ISME J. 2023, 17, 2210–2220. [Google Scholar] [CrossRef]
- Qi, Q.; Hu, C.; Lin, J.; Wang, X.; Tang, C.; Dai, Z.; Xu, J. Contamination with multiple heavy metals decreases microbial diversity and favors generalists as the keystones in microbial occurrence networks. Environ. Pollut. 2022, 306, 119406. [Google Scholar] [CrossRef]
- Sun, C.; Wu, P.; Wang, G.; Kong, X. Heavy metal pollution decreases the stability of microbial co-occurrence networks in the rhizosphere of native plants. Front. Environ. Sci. 2022, 10, 979922. [Google Scholar] [CrossRef]
- Thébault, E.; Fontaine, C. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 2010, 329, 853–856. [Google Scholar] [CrossRef]
- Yuan, M.M.; Guo, X.; Wu, L.; Zhang, Y.; Xiao, N.; Ning, D.; Shi, Z.; Zhou, X.; Wu, L.; Yang, Y.; et al. Climate warming enhances microbial network complexity and stability. Nat. Clim. Change 2021, 11, 343–348. [Google Scholar] [CrossRef]
- Karimi, B.; Maron, P.A.; Boure, N.C.P.; Bernard, N.; Gilbert, D.; Ranjard, L. Microbial diversity and ecological networks as indicators of environmental quality. Environ. Chem. Lett. 2017, 15, 265–281. [Google Scholar] [CrossRef]
- Gupta, A.; Dubey, P.; Kumar, M.; Roy, A.; Sharma, D.; Khan, M.M.; Bajpai, A.B.; Shukla, R.P.; Pathak, N.; Hasanuzzaman, M. Consequences of arsenic contamination on plants and mycoremediation-mediated arsenic stress tolerance for sustainable agriculture. Plants 2022, 11, 3220. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources, 2nd ed.; World Soil Resources Reports No. 103; Food and Agriculture Organization of the United Nations: Rome, Italy, 2006; p. 128. [Google Scholar]
- Xiong, J.; Wu, L.; Tu, S.; Van Nostrand, J.D.; He, Z.; Zhou, J.; Wang, G. Microbial communities and functional genes associated with soil arsenic contamination and the rhizosphere of the arsenic-hyperaccumulating plant Pteris vittata L. Appl. Environ. Microbiol. 2010, 76, 7277–7284. [Google Scholar] [CrossRef]
- Li, Y.; Xiao, S.; Zhang, X.; Qu, J.; Ren, Y. A study on the soil passivation of nano-manganese dioxide-modified biochar under high-arsenic water irrigation. Appl. Sci. 2023, 13, 9606. [Google Scholar] [CrossRef]
- Vázquez, S.; Moreno, E.; Carpena, R.O. Bioavailability of metals and As from acidified multicontaminated soils: Use of white lupin to validate several extraction methods. Environ. Geochem. Health 2008, 30, 193–198. [Google Scholar] [CrossRef]
- GBW07405; Reference Material for the Chemical Composition of Soil and Stream Sediments. Institute of Geophysical and Geochemical Exploration: Langfang, China, 2019.
- Liu, J.; Li, F.; Tian, T.; Xiao, H. Unraveling the influence of litter identity, diversity and rhizodeposition on nematode communities. Plant Soil 2024, 505, 1–15. [Google Scholar] [CrossRef]
- Xu, L.; Dai, H.; Wei, S.; Skuza, L.; Shi, J. High-efficiency combination washing agents with eco-friendliness simultaneously removing Cd, Cu and Ni from soil of e-waste recycling site: A lab-scale experiment. Chemosphere 2024, 357, 142047. [Google Scholar] [CrossRef]
- Walters, W.; Hyde, E.R.; Berg-Lyons, D.; Ackermann, G.; Humphrey, G.; Parada, A.; Gilbert, J.A.; Jansson, J.K.; Caporaso, J.G.; Fuhrman, J.A.; et al. Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems 2016, 1, 1. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef]
- Edgar, R.C. UNOISE2: Improved error-correction for Illumina 16S and ITS amplicon sequencing. bioRxiv 2016. [Google Scholar] [CrossRef]
- Deng, Y.; Jiang, Y.H.; Yang, Y.F.; He, Z.L.; Luo, F.; Zhou, J.Z. Molecular ecological network analyses. BMC Bioinf. 2012, 13, 113. [Google Scholar] [CrossRef]
- Maslov, S.; Sneppen, K. Specificity and stability in topology of protein networks. Science 2002, 296, 910–913. [Google Scholar] [CrossRef] [PubMed]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Zhou, J.; Deng, Y.; Luo, F.; He, Z.; Yang, Y. Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO2. mBio 2021, 2, e00122-11. [Google Scholar]
- Pierce, M.L.; Moore, C.B. Adsorption of arsenite on amorphous iron hydroxide from dilute aqueous solution. Environ. Sci. Technol. 1982, 16, 214–216. [Google Scholar] [CrossRef]
- Smedley, P.L.; Kinniburgh, D.G. A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 2002, 17, 517–568. [Google Scholar] [CrossRef]
- Ghosh, A.K.; Bhattacharyya, P.; Pal, R. Effect of arsenic contamination on microbial biomass and its activities in arsenic-contaminated soils of Gangetic West Bengal, India. Environ. Int. 2004, 30, 491–499. [Google Scholar] [CrossRef]
- Subrahmanyam, G.; Hu, H.W.; Zheng, Y.M.; Archana, G.; He, J.Z.; Liu, Y.R. Response of ammonia oxidizing microbes to the stresses of arsenic and copper in two acidic alfisols. Appl. Soil. Ecol. 2014, 77, 59–67. [Google Scholar] [CrossRef]
- Chakraborty, A.; Islam, E. Temporal dynamics of total and free-living nitrogen-fixing bacterial community abundance and structure in soil with and without history of arsenic contamination during a rice growing season. Environ. Sci. Pollut. Res. 2018, 25, 4951–4962. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zeng, X.; Zhang, Y.; Zhang, N.; Xu, L.; Wu, C. Responses of potential ammonia oxidation and ammonia oxidizers community to arsenic stress in seven types of soil. J. Environ. Sci. 2023, 127, 15–29. [Google Scholar] [CrossRef]
- Das, S.; Jean, J.S.; Kar, S.; Chakraborty, S. Effect of arsenic contamination on bacterial and fungal biomass and enzyme activities in tropical arsenic-contaminated soils. Biol. Fertil. Soils. 2013, 49, 757–765. [Google Scholar] [CrossRef]
- Prasad, P.; George, J.; Masto, R.E.; Rout, T.K.; Ram, L.C.; Selvi, V.A. Evaluation of microbial biomass and activity in different soils exposed to increasing levels of arsenic pollution: A laboratory study. Soil Sediment. Contam. 2013, 22, 483–497. [Google Scholar] [CrossRef]
- Younas, T.; Umer, M.; Gondal, A.H.; Aziz, H.; Khan, M.S.; Jabbar, A.; Shahzad, H.; Panduro-Tenazoa, N.; Jamil, M.; Areche, F.O. A comprehensive review on impact of microorganisms on soil and plant. J. Bioresour. Manag. 2022, 9, 109–118. [Google Scholar]
- Matzen, S.; Pallud, C. Critical perspectives on soil geochemical properties limiting arsenic phytoextraction with hyperaccumulator Pteris vittata. Geosciences 2023, 13, 8. [Google Scholar] [CrossRef]
- Zou, L.; Lu, Y.; Dai, Y.; Khan, M.I.; Gustave, W.; Nie, J.; Liao, Y.; Tang, X.; Shi, J.; Xu, J. Spatial variation in microbial community in response to As and Pb contamination in paddy soils near a Pb-Zn mining site. Front. Environ. Sci. 2021, 9, 630668. [Google Scholar] [CrossRef]
- Zhang, C.; Xiao, X.; Zhao, Y.; Zhou, J.; Sun, B.; Liang, Y. Patterns of microbial arsenic detoxification genes in low-arsenic continental paddy soils. Environ. Res. 2021, 201, 111584. [Google Scholar] [CrossRef]
- Maron, P.A.; Sarr, A.; Kaisermann, A.; Lévêque, J.; Mathieu, O.; Guigue, J.; Karimi, B.; Bernard, L.; Dequiedt, S.; Terrat, S.; et al. High microbial diversity promotes soil ecosystem functioning. Appl. Environ. Microbiol. 2018, 84, e02738-17. [Google Scholar] [CrossRef]
- Guerra, C.A.; Bardgett, R.D.; Caon, L.; Crowther, T.W.; Delgado-Baquerizo, M.; Montanarella, L. Tracking, targeting, and conserving soil biodiversity. Science 2021, 371, 239–241. [Google Scholar] [CrossRef] [PubMed]
- Osburn, E.D.; Yang, G.; Rillig, M.; Strickland, M.S. Evaluating the role of bacterial diversity in supporting soil ecosystem functions under anthropogenic stress. ISME Commun. 2023, 3, 66. [Google Scholar] [CrossRef]
- Socolar, J.B.; Gilroy, J.J.; Kunin, W.E.; Edwards, D.P. How should beta-diversity inform biodiversity conservation? Trends Ecol. Evol. 2016, 31, 67–80. [Google Scholar] [CrossRef]
- Montoya, J.M.; Pimm, S.L.; Solé, R.V. Ecological networks and their fragility. Nature 2006, 442, 259–264. [Google Scholar] [CrossRef]
- Compson, Z.G.; Monk, W.A.; Curry, C.J.; Gravel, D.; Bush, A.; Baker, C.J.O.; Manir, M.S.A.; Riazanov, A.; Hajibabaei, M.; Shokralla, S.; et al. Chapter two-linking DNA metabarcoding and text mining to create network-based biomonitoring tools: A case study on boreal wetland macroinvertebrate communities. Adv. Ecol. Res. 2018, 59, 33–74. [Google Scholar]
- Faust, K.; Raes, J. Microbial interactions: From networks to models. Nat. Rev. Microbiol. 2012, 10, 538–550. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Zhong, S.; Luo, K.; Yang, S.; Xia, J.; Chen, Q. Effect of metal pollution on the distribution and co-occurrence pattern of bacterial, archaeal and fungal communities throughout the soil profiles. Chemosphere 2023, 315, 137692. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Chen, J.; Zhang, X.; Shi, W.; Li, J. Structural and functional characteristics of soil microbial communities in response to different ecological risk levels of heavy metals. Front. Microbiol. 2022, 13, 1072389. [Google Scholar] [CrossRef]
- Gouveia, A.G.; Salgueiro, B.A.; Ranmar, D.O.; Antunes, W.D.T.; Kirchweger, P.; Golani, O.; Wolf, S.G.; Elbaum, M.; Matias, P.M.; Romão, C.V. Unraveling the multifaceted resilience of arsenic resistant bacterium Deinococcus indicus. Front. Microbiol. 2023, 14, 1240798. [Google Scholar] [CrossRef] [PubMed]
- Rahman, A. Microbial Bioremediation and Characterization of Arsenic Resistant Bacteria. Master’s Thesis, University of Skövde, Skövde, Sweden, 2021. [Google Scholar]
- Jiao, S.; Xu, Y.; Zhang, J.; Hao, X.; Lu, Y. Core microbiota in agricultural soils and their potential associations with nutrient cycling. Msystems 2019, 4, e00313–e00318. [Google Scholar] [CrossRef]
- Ye, Z.; Wang, J.; Li, J.; Liu, G.; Dong, Q.; Zou, Y.; Chau, H.; Zhang, C. Different roles of core and noncore bacterial taxa in maintaining soil multinutrient cycling and microbial network stability in arid fertigation agroecosystems. J. Appl. Ecol. 2022, 59, 2154–2165. [Google Scholar] [CrossRef]
- Preetha, J.S.Y.; Arun, M.; Vidya, N.; Kowsalya, K.; Halka, J.; Ondrasek, G. Biotechnology advances in bioremediation of arsenic: A review. Molecules 2023, 28, 1474. [Google Scholar] [CrossRef] [PubMed]
- Cavaliere, M.; Feng, S.; Soyer, O.S.; Jiménez, J. Cooperation in microbial communities and their biotechnological applications. Environ. Microbiol. 2017, 19, 2949–2963. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Zhang, B.; Wang, E.; Zhu, B.; Yao, M.; Li, C.; Li, X. Soil total organic carbon/total nitrogen ratio as a key driver deterministically shapes diazotrophic community assemblages during the succession of biological soil crusts. Soil. Ecol. Lett. 2021, 3, 328–341. [Google Scholar] [CrossRef]
- Tao, E.; Huang, Y.; Hungate, B.A. Microbial carbon use efficiency promotes global soil carbon storage. Nature 2023, 618, 981–985. [Google Scholar] [CrossRef]
- Wu, D.; Bai, H.; Zhao, C.; Peng, M.; Chi, Q.; Dai, Y.; Gao, F.; Zhang, Q.; Huang, M.; Niu, B. The characteristics of soil microbial co-occurrence networks across a high-latitude forested wetland ecotone in China. Front. Microbiol. 2023, 14, 1160683. [Google Scholar] [CrossRef]
Total Arsenic Concentration (mg kg−1) | Bioavailable Arsenic Concentration (mg kg−1) | Total Organic Carbon (g kg−1) | Total Nitrogen (g kg−1) | Available Phosphorus (mg kg−1) | Available Potassium (mg kg−1) | Soil pH | Shannon Index | |
---|---|---|---|---|---|---|---|---|
Contaminate | F = 223.497 *** | F = 575.883 *** | F = 62.656 *** | F = 99.381 *** | F = 4.448 * | F = 3.92 * | F = 3.453 * | F = 8.691 *** |
Time | F = 3.848 * | ns | F = 3.195 * | ns | ns | ns | ns | F = 4.204 * |
Contaminate × Time | ns | ns | F = 3.287 * | ns | ns | ns | ns | ns |
Molecular Ecological Network | Random Network | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Time | Treatments | Gene Numbers | Similarity Threshold | R2 | Nodes | Links | Average Connectivity | Average Geodesic Distance | Average Clustering Coefficient | Modularity | Average Geodesic Distance | Average Clustering Coefficient | Modularity |
2021 | Contaminated soil | 799 | 0.890 | 0.936 | 395 | 427 | 2.162 | 7.446 | 0.084 | 0.877 | 6.292 ± 0.213 | 0.004 ± 0.003 | 0.784 ± 0.009 |
Restored Soil | 927 | 0.880 | 0.920 | 515 | 597 | 2.318 | 7.186 | 0.105 | 0.857 | 6.192 ± 0.142 | 0.004 ± 0.002 | 0.757 ± 0.007 | |
CK | 860 | 0.910 | 0.909 | 466 | 1601 | 6.871 | 5.183 | 0.153 | 0.587 | 3.245 ± 0.027 | 0.065 ± 0.006 | 0.327 ± 0.005 | |
2022 | Contaminated soil | 936 | 0.910 | 0.884 | 387 | 617 | 3.189 | 6.525 | 0.092 | 0.683 | 4.296 ± 0.068 | 0.019 ± 0.005 | 0.582 ± 0.007 |
Restored Soil | 901 | 0.890 | 0.918 | 503 | 862 | 3.427 | 6.115 | 0.144 | 0.706 | 4.085 ± 0.065 | 0.031 ± 0.006 | 0.552 ± 0.006 | |
CK | 999 | 0.930 | 0.865 | 513 | 2948 | 11.493 | 3.690 | 0.219 | 0.470 | 2.915 ± 0.021 | 0.106 ± 0.005 | 0.221 ± 0.003 | |
2023 | Contaminated soil | 944 | 0.910 | 0.937 | 404 | 557 | 2.757 | 6.555 | 0.144 | 0.750 | 4.763 ± 0.084 | 0.011 ± 0.004 | 0.652 ± 0.007 |
Restored Soil | 867 | 0.910 | 0.869 | 469 | 859 | 3.663 | 5.907 | 0.107 | 0.716 | 4.229 ± 0.051 | 0.018 ± 0.005 | 0.535 ± 0.006 | |
CK | 960 | 0.910 | 0.883 | 601 | 2104 | 7.002 | 4.576 | 0.092 | 0.562 | 3.367 ± 0.026 | 0.047 ± 0.004 | 0.328 ± 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Liu, J.; Tian, T.; Deng, B.; Xiao, H. The Remediation of Arsenic-Contaminated Soil by Pteris vittata L. Facilitates the Recovery of Soil Bacterial Diversity and Network Complexity. Microorganisms 2025, 13, 2316. https://doi.org/10.3390/microorganisms13102316
Li F, Liu J, Tian T, Deng B, Xiao H. The Remediation of Arsenic-Contaminated Soil by Pteris vittata L. Facilitates the Recovery of Soil Bacterial Diversity and Network Complexity. Microorganisms. 2025; 13(10):2316. https://doi.org/10.3390/microorganisms13102316
Chicago/Turabian StyleLi, Feng, Jinhua Liu, Tao Tian, Bin Deng, and Haifeng Xiao. 2025. "The Remediation of Arsenic-Contaminated Soil by Pteris vittata L. Facilitates the Recovery of Soil Bacterial Diversity and Network Complexity" Microorganisms 13, no. 10: 2316. https://doi.org/10.3390/microorganisms13102316
APA StyleLi, F., Liu, J., Tian, T., Deng, B., & Xiao, H. (2025). The Remediation of Arsenic-Contaminated Soil by Pteris vittata L. Facilitates the Recovery of Soil Bacterial Diversity and Network Complexity. Microorganisms, 13(10), 2316. https://doi.org/10.3390/microorganisms13102316