Tripartite Interactions in Biocontrol: Insights for Developing Yeast-Based Strategies
Abstract
1. Introduction
2. Established Roles of Yeasts in Biocontrol, Proteomic, and Metabolomic-Based Mechanisms in Yeast Biocontrol
3. Tripartite Cross-Talks in Yeast Biocontrol Through Blumeria graminis f.sp. hordei—Hordeum vulgare—Pseudozyma flocculosa Tripartite System
4. Learning from Tripartite Models of Trichoderma
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmad, M.F.; Ahmad, F.A.; Alsayegh, A.A.; Zeyaullah, M.; AlShahrani, A.M.; Muzammil, K.; Saati, A.A.; Wahab, S.; Elbendary, E.Y.; Kambal, N.; et al. Pesticides Impacts on Human Health and the Environment with Their Mechanisms of Action and Possible Countermeasures. Heliyon 2024, 10, e29128. [Google Scholar] [CrossRef]
- Villavicencio-Vásquez, M.; Espinoza-Lozano, F.; Espinoza-Lozano, L.; Coronel-León, J. Biological Control Agents: Mechanisms of Action, Selection, Formulation and Challenges in Agriculture. Front. Agron. 2025, 7, 1578915. [Google Scholar] [CrossRef]
- Afkhami, M.E.; Almeida, B.K.; Hernandez, D.J.; Kiesewetter, K.N.; Revillini, D.P. Tripartite Mutualisms as Models for Understanding Plant–Microbial Interactions. Curr. Opin. Plant Biol. 2020, 56, 28–36. [Google Scholar] [CrossRef]
- Sonosy, M.; Abo-Elabbas, F.; Elsayed, W. T34 Biocontrol ® (Trichoderma asperellum Strain, T34), a Biocontrol Agent Reducing Strawberry Fruit Rots. Egypt. Acad. J. Biol. Sci. F. Toxicol. Pest Control 2023, 15, 121–140. [Google Scholar] [CrossRef]
- Segarra, G.; Sant, D.; Trillas, M.I.; Casanova, E.; Noguera, R.; Castillo, S.; Borrero, C.; Avilés, M. Efficacy of the microbial control agent Trichoderma asperellum strain T34 amended to different growth media against soil and plant leaf pathogens. Acta Hortic. 2013, 1013, 515–520. [Google Scholar] [CrossRef]
- Lahlali, R.; Peng, G.; McGregor, L.; Gossen, B.D.; Hwang, S.F.; McDonald, M. Mechanisms of the Biofungicide Serenade (Bacillus subtilis QST713) in Suppressing Clubroot. Biocontrol Sci. Technol. 2011, 21, 1351–1362. [Google Scholar] [CrossRef]
- Kowalska, J.; Krzymińska, J.; Tyburski, J. Yeasts as a Potential Biological Agent in Plant Disease Protection and Yield Improvement—A Short Review. Agriculture 2022, 12, 1404. [Google Scholar] [CrossRef]
- Freimoser, F.M.; Rueda-Mejia, M.P.; Tilocca, B.; Migheli, Q. Biocontrol Yeasts: Mechanisms and Applications. World J. Microbiol. Biotechnol. 2019, 35, 154. [Google Scholar] [CrossRef] [PubMed]
- Dmytruk, O.; Yemets, A.; Dmytruk, K. Yeasts as Biofertilizers and Biocontrol Agents: Mechanisms and Applications. Biotech. Appl. Biochem. 2025, in press. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Montiel, L.G.; Droby, S.; Preciado-Rangel, P.; Rivas-García, T.; González-Estrada, R.R.; Gutiérrez-Martínez, P.; Ávila-Quezada, G.D. A Sustainable Alternative for Postharvest Disease Management and Phytopathogens Biocontrol in Fruit: Antagonistic Yeasts. Plants 2021, 10, 2641. [Google Scholar] [CrossRef]
- Agirman, B.; Carsanba, E.; Settanni, L.; Erten, H. Exploring Yeast-based Microbial Interactions: The next Frontier in Postharvest Biocontrol. Yeast 2023, 40, 457–475. [Google Scholar] [CrossRef]
- Van Der Heijden, M.G.A.; De Bruin, S.; Luckerhoff, L.; Van Logtestijn, R.S.P.; Schlaeppi, K. A Widespread Plant-Fungal-Bacterial Symbiosis Promotes Plant Biodiversity, Plant Nutrition and Seedling Recruitment. ISME J. 2016, 10, 389–399. [Google Scholar] [CrossRef]
- Shade, A.; Jacques, M.-A.; Barret, M. Ecological Patterns of Seed Microbiome Diversity, Transmission, and Assembly. Curr. Opin. Microbiol. 2017, 37, 15–22. [Google Scholar] [CrossRef]
- Vandenkoornhuyse, P.; Quaiser, A.; Duhamel, M.; Le Van, A.; Dufresne, A. The Importance of the Microbiome of the Plant Holobiont. New Phytol. 2015, 206, 1196–1206. [Google Scholar] [CrossRef] [PubMed]
- Thambugala, K.M.; Daranagama, D.A.; Phillips, A.J.L.; Kannangara, S.D.; Promputtha, I. Fungi vs. Fungi in Biocontrol: An Overview of Fungal Antagonists Applied Against Fungal Plant Pathogens. Front. Cell. Infect. Microbiol. 2020, 10, 604923. [Google Scholar] [CrossRef] [PubMed]
- Ayaz, M.; Zhao, J.-T.; Zhao, W.; Chi, Y.-K.; Ali, Q.; Ali, F.; Khan, A.R.; Yu, Q.; Yu, J.-W.; Wu, W.-C.; et al. Biocontrol of Plant Parasitic Nematodes by Bacteria and Fungi: A Multi-Omics Approach for the Exploration of Novel Nematicides in Sustainable Agriculture. Front. Microbiol. 2024, 15, 1433716. [Google Scholar] [CrossRef] [PubMed]
- Majumdar, A. Molecular Techniques for the Improvement of Microbial Biocontrol Agents against Plant Pathogens. Egypt. J. Biol. Pest. Control 2023, 33, 103. [Google Scholar] [CrossRef]
- Li, W.-C.; Lin, T.-C.; Chen, C.-L.; Liu, H.-C.; Lin, H.-N.; Chao, J.-L.; Hsieh, C.-H.; Ni, H.-F.; Chen, R.-S.; Wang, T.-F. Complete Genome Sequences and Genome-Wide Characterization of Trichoderma Biocontrol Agents Provide New Insights into Their Evolution and Variation in Genome Organization, Sexual Development, and Fungal-Plant Interactions. Microbiol. Spectr. 2021, 9, e0066321. [Google Scholar] [CrossRef]
- Millan, A.F.-S.; Gamir, J.; Larraya, L.; Farran, I.; Veramendi, J. Towards Understanding of Fungal Biocontrol Mechanisms of Different Yeasts Antagonistic to Botrytis Cinerea through Exometabolomic Analysis. Biol. Control 2022, 174, 105033. [Google Scholar] [CrossRef]
- Zhang, X.; Li, B.; Zhang, Z.; Chen, Y.; Tian, S. Antagonistic Yeasts: A Promising Alternative to Chemical Fungicides for Controlling Postharvest Decay of Fruit. JoF 2020, 6, 158. [Google Scholar] [CrossRef]
- Fernandez-San Millan, A.; Fernandez-Irigoyen, J.; Santamaria, E.; Larraya, L.; Ancin, M.; Farran, I.; Veramendi, J. Successful Biocontrol of Pichia spp. Strains against Botrytis Cinerea Infection in Apple Fruit: Unraveling Protection Mechanisms from Proteomic Insights. LWT 2024, 201, 116253. [Google Scholar] [CrossRef]
- Fernandez-San Millan, A.; Farran, I.; Larraya, L.; Ancin, M.; Arregui, L.M.; Veramendi, J. Plant Growth-Promoting Traits of Yeasts Isolated from Spanish Vineyards: Benefits for Seedling Development. Microbiol. Res. 2020, 237, 126480. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-San Millan, A.; Larraya, L.; Farran, I.; Ancin, M.; Veramendi, J. Successful Biocontrol of Major Postharvest and Soil-Borne Plant Pathogenic Fungi by Antagonistic Yeasts. Biol. Control 2021, 160, 104683. [Google Scholar] [CrossRef]
- Millan, A.F.-S.; Gamir, J.; Farran, I.; Larraya, L.; Veramendi, J. Identification of New Antifungal Metabolites Produced by the Yeast Metschnikowia Pulcherrima Involved in the Biocontrol of Postharvest Plant Pathogenic Fungi. Postharvest Biol. Technol. 2022, 192, 111995. [Google Scholar] [CrossRef]
- Roca-Couso, R.; Flores-Félix, J.D.; Rivas, R. Mechanisms of Action of Microbial Biocontrol Agents Against Botrytis Cinerea. J. Fungi 2021, 7, 1045. [Google Scholar] [CrossRef]
- Comitini, F.; Canonico, L.; Agarbati, A.; Ciani, M. Biocontrol and Probiotic Function of Non-Saccharomyces Yeasts: New Insights in Agri-Food Industry. Microorganisms 2023, 11, 1450. [Google Scholar] [CrossRef]
- Wu, F.; Wang, H.; Lin, Y.; Feng, S.; Li, X. Biocontrol Mechanisms of Antagonistic Yeasts on Postharvest Fruits and Vegetables and the Approaches to Enhance the Biocontrol Potential of Antagonistic Yeasts. Int. J. Food Microbiol. 2025, 430, 111038. [Google Scholar] [CrossRef]
- Qin, G.Z.; Tian, S.P.; Xu, Y.; Wan, Y.K. Enhancement of Biocontrol Efficacy of Antagonistic Yeasts by Salicylic Acid in Sweet Cherry Fruit. Physiol. Mol. Plant Pathol. 2003, 62, 147–154. [Google Scholar] [CrossRef]
- Xie, C.-Y.; Su, R.-R.; Wu, B.; Sun, Z.-Y.; Tang, Y.-Q. Response Mechanisms of Different Saccharomyces Cerevisiae Strains to Succinic Acid. BMC Microbiol. 2024, 24, 158. [Google Scholar] [CrossRef]
- Lian, H.; Li, R.; Ma, G.; Zhao, Z.; Zhang, T.; Li, M. The Effect of Trichoderma harzianum Agents on Physiological-Biochemical Characteristics of Cucumber and the Control Effect Against Fusarium Wilt. Sci. Rep. 2023, 13, 17606. [Google Scholar] [CrossRef]
- Cheng, Y.; McNally, D.J.; Labbé, C.; Voyer, N.; Belzile, F.; Bélanger, R.R. Insertional Mutagenesis of a Fungal Biocontrol Agent Led to Discovery of a Rare Cellobiose Lipid with Antifungal Activity. Appl. Environ. Microbiol. 2003, 69, 2595–2602. [Google Scholar] [CrossRef]
- Mimee, B.; Pelletier, R.; Bélanger, R.R. In Vitro Antibacterial Activity and Antifungal Mode of Action of Flocculosin, a Membrane-Active Cellobiose Lipid. J. Appl. Microbiol. 2009, 107, 989–996. [Google Scholar] [CrossRef]
- Mimee, B.; Labbé, C.; Pelletier, R.; Bélanger, R.R. Antifungal Activity of Flocculosin, a Novel Glycolipid Isolated from Pseudozyma flocculosa. Antimicrob. Agents Chemother. 2005, 49, 1597–1599. [Google Scholar] [CrossRef]
- Teichmann, B.; Lefebvre, F.; Labbé, C.; Bölker, M.; Linne, U.; Bélanger, R.R. Beta Hydroxylation of Glycolipids from Ustilago Maydis and Pseudozyma Flocculosa by an NADPH-Dependent β-Hydroxylase. Appl. Environ. Microbiol. 2011, 77, 7823–7829. [Google Scholar] [CrossRef]
- Teichmann, B.; Linne, U.; Hewald, S.; Marahiel, M.A.; Bölker, M. A Biosynthetic Gene Cluster for a Secreted Cellobiose Lipid with Antifungal Activity from Ustilago maydis. Mol. Microbiol. 2007, 66, 525–533. [Google Scholar] [CrossRef]
- Teichmann, B.; Labbé, C.; Lefebvre, F.; Bölker, M.; Linne, U.; Bélanger, R.R. Identification of a Biosynthesis Gene Cluster for Flocculosin a Cellobiose Lipid Produced by the Biocontrol Agent Pseudozyma flocculosa. Mol. Microbiol. 2011, 79, 1483–1495. [Google Scholar] [CrossRef] [PubMed]
- Laur, J.; Ramakrishnan, G.B.; Labbé, C.; Lefebvre, F.; Spanu, P.D.; Bélanger, R.R. Effectors Involved in Fungal–Fungal Interaction Lead to a Rare Phenomenon of Hyperbiotrophy in the Tritrophic System Biocontrol Agent–Powdery Mildew–Plant. New Phytol. 2018, 217, 713–725. [Google Scholar] [CrossRef] [PubMed]
- Romeis, T.; Brachmann, A.; Kahmann, R.; Kämper, J. Identification of a Target Gene for the bE–bW Homeodomain Protein Complex in Ustilago maydis. Mol. Microbiol. 2000, 37, 54–66. [Google Scholar] [CrossRef] [PubMed]
- Hacquard, S.; Kracher, B.; Maekawa, T.; Vernaldi, S.; Schulze-Lefert, P.; Ver Loren Van Themaat, E. Mosaic Genome Structure of the Barley Powdery Mildew Pathogen and Conservation of Transcriptional Programs in Divergent Hosts. Proc. Natl. Acad. Sci. USA 2013, 110, E2219–E2228. [Google Scholar] [CrossRef]
- Bindschedler, L.V.; McGuffin, L.J.; Burgis, T.A.; Spanu, P.D.; Cramer, R. Proteogenomics and in Silico Structural and Functional Annotation of the Barley Powdery Mildew Blumeria graminis f. sp. hordei. Methods 2011, 54, 432–441. [Google Scholar] [CrossRef]
- Bélanger, R.R.; Labbé, C.; Lefebvre, F.; Teichmann, B. Mode of Action of Biocontrol Agents: All That Glitters Is Not Gold. Can. J. Plant Pathol. 2012, 34, 469–478. [Google Scholar] [CrossRef]
- Hammami, W.; Castro, C.Q.; Rémus-Borel, W.; Labbé, C.; Bélanger, R.R. Ecological Basis of the Interaction between Pseudozyma flocculosa and Powdery Mildew Fungi. Appl. Environ. Microbiol. 2011, 77, 926–933. [Google Scholar] [CrossRef]
- Hajlaoui, M.R.; Benhamou, N.; Belanger, R.R. Cytochemical Study of the Antagonistic Activity of Sporothrix flocculosa on Rose Powdery Mildew, Sphaerotheca pannosa var. rosae. Phytopathology 1992, 82, 583–589. [Google Scholar] [CrossRef]
- Kredics, L.; Büchner, R.; Balázs, D.; Allaga, H.; Kedves, O.; Racić, G.; Varga, A.; Nagy, V.D.; Vágvölgyi, C.; Sipos, G. Recent Advances in the Use of Trichoderma-Containing Multicomponent Microbial Inoculants for Pathogen Control and Plant Growth Promotion. World J. Microbiol. Biotechnol. 2024, 40, 162. [Google Scholar] [CrossRef]
- Sood, M.; Kapoor, D.; Kumar, V.; Sheteiwy, M.S.; Ramakrishnan, M.; Landi, M.; Araniti, F.; Sharma, A. Trichoderma: The “Secrets” of a Multitalented Biocontrol Agent. Plants 2020, 9, 762. [Google Scholar] [CrossRef] [PubMed]
- Tyśkiewicz, R.; Nowak, A.; Ozimek, E.; Jaroszuk-Ściseł, J. Trichoderma: The Current Status of Its Application in Agriculture for the Biocontrol of Fungal Phytopathogens and Stimulation of Plant Growth. IJMS 2022, 23, 2329. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.A.A.; Najeeb, S.; Chen, J.; Wang, R.; Zhang, J.; Hou, J.; Liu, T. Insights into the Molecular Mechanism of Trichoderma Stimulating Plant Growth and Immunity Against Phytopathogens. Physiol. Plant. 2023, 175, e14133. [Google Scholar] [CrossRef]
- Joo, J.H.; Hussein, K.A. Biological Control and Plant Growth Promotion Properties of Volatile Organic Compound-Producing Antagonistic Trichoderma spp. Front. Plant Sci. 2022, 13, 897668. [Google Scholar] [CrossRef]
- Enriquez-Felix, E.E.; Pérez-Salazar, C.; Rico-Ruiz, J.G.; Calheiros De Carvalho, A.; Cruz-Morales, P.; Villalobos-Escobedo, J.M.; Herrera-Estrella, A. Argonaute and Dicer Are Essential for Communication Between Trichoderma atroviride and Fungal Hosts During Mycoparasitism. Microbiol. Spectr. 2024, 12, e0316523. [Google Scholar] [CrossRef]
- Harman, G.E.; Howell, C.R.; Viterbo, A.; Chet, I.; Lorito, M. Trichoderma Species—Opportunistic, Avirulent Plant Symbionts. Nat. Rev. Microbiol. 2004, 2, 43–56. [Google Scholar] [CrossRef]
- Tandon, A.; Fatima, T.; Anshu; Shukla, D.; Tripathi, P.; Srivastava, S.; Singh, P.C. Phosphate Solubilization by Trichoderma koningiopsis (NBRI-PR5) under Abiotic Stress Conditions. J. King Saud. Univ.-Sci. 2020, 32, 791–798. [Google Scholar] [CrossRef]
- El-Sharkawy, H.H.A.; Mostafa, N.A.; Yousef, S.A.M.; El-Blasy, S.A.S.; Badeea, O.A.E. Enhancing Trichoderma Efficacy in Managing Wheat Stem Rust Disease and Boosting Production Through the Application of Certain Chemical Inducers. BMC Plant Biol. 2025, 25, 562. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-C.; Ren, J.-J.; Zhao, H.-J.; Wang, X.-L.; Wang, T.-H.; Jin, S.-D.; Wang, Z.-H.; Li, C.; Liu, A.-R.; Lin, X.-M.; et al. Trichoderma harzianum Improves Defense Against Fusarium oxysporum by Regulating ROS and RNS Metabolism, Redox Balance, and Energy Flow in Cucumber Roots. Phytopathology 2019, 109, 972–982. [Google Scholar] [CrossRef]
- Nogueira-Lopez, G.; Greenwood, D.R.; Middleditch, M.; Winefield, C.; Eaton, C.; Steyaert, J.M.; Mendoza-Mendoza, A. The Apoplastic Secretome of Trichoderma virens During Interaction with Maize Roots Shows an Inhibition of Plant Defence and Scavenging Oxidative Stress Secreted Proteins. Front. Plant Sci. 2018, 9, 409. [Google Scholar] [CrossRef]
- Brotman, Y.; Landau, U.; Cuadros-Inostroza, Á.; Takayuki, T.; Fernie, A.R.; Chet, I.; Viterbo, A.; Willmitzer, L. Trichoderma-Plant Root Colonization: Escaping Early Plant Defense Responses and Activation of the Antioxidant Machinery for Saline Stress Tolerance. PLoS Pathog. 2013, 9, e1003221. [Google Scholar] [CrossRef]
- Shigenaga, A.M.; Berens, M.L.; Tsuda, K.; Argueso, C.T. Towards Engineering of Hormonal Crosstalk in Plant Immunity. Curr. Opin. Plant Biol. 2017, 38, 164–172. [Google Scholar] [CrossRef]
- Jaroszuk-Ściseł, J.; Tyśkiewicz, R.; Nowak, A.; Ozimek, E.; Majewska, M.; Hanaka, A.; Tyśkiewicz, K.; Pawlik, A.; Janusz, G. Phytohormones (Auxin, Gibberellin) and ACC Deaminase In Vitro Synthesized by the Mycoparasitic Trichoderma DEMTkZ3A0 Strain and Changes in the Level of Auxin and Plant Resistance Markers in Wheat Seedlings Inoculated with This Strain Conidia. IJMS 2019, 20, 4923. [Google Scholar] [CrossRef]
- Martínez-Medina, A.; Del Mar Alguacil, M.; Pascual, J.A.; Van Wees, S.C.M. Phytohormone Profiles Induced by Trichoderma Isolates Correspond with Their Biocontrol and Plant Growth-Promoting Activity on Melon Plants. J. Chem. Ecol. 2014, 40, 804–815. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Yap, M.; Behringer, G.; Hung, R.; Bennett, J.W. Volatile Organic Compounds Emitted by Trichoderma Species Mediate Plant Growth. Fungal Biol. Biotechnol. 2016, 3, 7. [Google Scholar] [CrossRef]
- Garnica-Vergara, A.; Barrera-Ortiz, S.; Muñoz-Parra, E.; Raya-González, J.; Méndez-Bravo, A.; Macías-Rodríguez, L.; Ruiz-Herrera, L.F.; López-Bucio, J. The Volatile 6-pentyl-2 H. -pyran-2-one from Trichoderma atroviride Regulates Arabidopsis thaliana Root Morphogenesis via Auxin Signaling and ETHYLENE INSENSITIVE 2 Functioning. New Phytol. 2016, 209, 1496–1512. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Guo, H.; Zhang, K.; Zhao, M.; Ruan, J.; Chen, J. Trichoderma and Its Role in Biological Control of Plant Fungal and Nematode Disease. Front. Microbiol. 2023, 14, 1160551. [Google Scholar] [CrossRef] [PubMed]
- Esquivel-Naranjo, E.U.; Mancilla-Diaz, H.; Marquez-Mazlin, R.; Alizadeh, H.; Kandula, D.; Hampton, J.; Mendoza-Mendoza, A. Light Regulates Secreted Metabolite Production and Antagonistic Activity in Trichoderma. JoF 2024, 11, 9. [Google Scholar] [CrossRef] [PubMed]
- Cortez-Lázaro, A.A.; Vázquez-Medina, P.J.; Caro-Degollar, E.M.; García Evangelista, J.V.; Cortez-Lázaro, R.A.; Rojas-Paz, J.L.; Legua-Cardenas, J.A.; Fernandez-Herrera, F.; Pesantes-Rojas, C.R.; Ocrospoma-Dueñas, R.W.; et al. Global Trends in Trichoderma Secondary Metabolites in Sustainable Agricultural Bioprotection. Front. Microbiol. 2025, 16, 1595946. [Google Scholar] [CrossRef] [PubMed]
- Guzmán-Guzmán, P.; Kumar, A.; De Los Santos-Villalobos, S.; Parra-Cota, F.I.; Orozco-Mosqueda, M.D.C.; Fadiji, A.E.; Hyder, S.; Babalola, O.O.; Santoyo, G. Trichoderma Species: Our Best Fungal Allies in the Biocontrol of Plant Diseases—A Review. Plants 2023, 12, 432. [Google Scholar] [CrossRef]
- Alfiky, A.; Weisskopf, L. Deciphering Trichoderma–Plant–Pathogen Interactions for Better Development of Biocontrol Applications. JoF 2021, 7, 61. [Google Scholar] [CrossRef]
- Umadevi, P.; Anandaraj, M. Proteomic Analysis of the Tripartite Interaction Between Black Pepper, Trichoderma harzianum and Phytophthora capsici Provides Insights into Induced Systemic Resistance Mediated by Trichoderma spp. Eur. J. Plant Pathol. 2019, 154, 607–620. [Google Scholar] [CrossRef]
- Gupta, K.J.; Mur, L.A.J.; Brotman, Y. Trichoderma asperelloides Suppresses Nitric Oxide Generation Elicited by Fusarium oxysporum in Arabidopsis Roots. MPMI 2014, 27, 307–314. [Google Scholar] [CrossRef]
- Marra, R.; Ambrosino, P.; Carbone, V.; Vinale, F.; Woo, S.L.; Ruocco, M.; Ciliento, R.; Lanzuise, S.; Ferraioli, S.; Soriente, I.; et al. Study of the Three-Way Interaction between Trichoderma atroviride, Plant and Fungal Pathogens by Using a Proteomic Approach. Curr. Genet. 2006, 50, 307–321. [Google Scholar] [CrossRef]
- Ruocco, M.; Lanzuise, S.; Vinale, F.; Marra, R.; Turrà, D.; Woo, S.L.; Lorito, M. Identification of a New Biocontrol Gene in Trichoderma atroviride: The Role of an ABC Transporter Membrane Pump in the Interaction with Different Plant-Pathogenic Fungi. MPMI 2009, 22, 291–301. [Google Scholar] [CrossRef]
- Ramírez-Valdespino, C.A.; Casas-Flores, S.; Olmedo-Monfil, V. Trichoderma as a Model to Study Effector-Like Molecules. Front. Microbiol. 2019, 10, 01030. [Google Scholar] [CrossRef]
- Jogaiah, S.; Abdelrahman, M.; Tran, L.P.; Ito, S. Different Mechanisms of Trichoderma virens-Mediated Resistance in Tomato against Fusarium Wilt Involve the Jasmonic and Salicylic Acid Pathways. Mol. Plant Pathol. 2018, 19, 870–882. [Google Scholar] [CrossRef]
- Macías-Rodríguez, L.; Guzmán-Gómez, A.; García-Juárez, P.; Contreras-Cornejo, H.A. Trichoderma atroviride Promotes Tomato Development and Alters the Root Exudation of Carbohydrates, Which Stimulates Fungal Growth and the Biocontrol of the Phytopathogen Phytophthora cinnamomi in a Tripartite Interaction System. FEMS Microbiol. Ecol. 2018, 94, fiy137. [Google Scholar] [CrossRef]
- Djonović, S.; Pozo, M.J.; Dangott, L.J.; Howell, C.R.; Kenerley, C.M. Sm1, a Proteinaceous Elicitor Secreted by the Biocontrol Fungus Trichoderma virens Induces Plant Defense Responses and Systemic Resistance. MPMI 2006, 19, 838–853. [Google Scholar] [CrossRef] [PubMed]
- Salas-Marina, M.A.; Isordia-Jasso, M.I.; Islas-Osuna, M.A.; Delgado-Sánchez, P.; Jiménez-Bremont, J.F.; Rodrà guez-Kessler, M.; Rosales-Saavedra, M.T.; Herrera-Estrella, A.; Casas-Flores, S. The Epl1 and Sm1 Proteins from Trichoderma atroviride and Trichoderma virens Differentially Modulate Systemic Disease Resistance against Different Life Style Pathogens in Solanum Lycopersicum. Front. Plant Sci. 2015, 6, 77. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Zhao, Q.; Li, W.; Gao, L.; Liu, G. Strain Improvement of Trichoderma harzianum for Enhanced Biocontrol Capacity: Strategies and Prospects. Front. Microbiol. 2023, 14, 1146210. [Google Scholar] [CrossRef] [PubMed]
- Ruocco, M.; Lanzuise, S.; Lombardi, N.; Woo, S.L.; Vinale, F.; Marra, R.; Varlese, R.; Manganiello, G.; Pascale, A.; Scala, V.; et al. Multiple Roles and Effects of a Novel Trichoderma Hydrophobin. MPMI 2015, 28, 167–179. [Google Scholar] [CrossRef]
- Brotman, Y.; Briff, E.; Viterbo, A.; Chet, I. Role of Swollenin, an Expansin-Like Protein from Trichoderma, in Plant Root Colonization. Plant Physiol. 2008, 147, 779–789. [Google Scholar] [CrossRef]
- Bolzonello, A.; Morbiato, L.; Tundo, S.; Sella, L.; Baccelli, I.; Echeverrigaray, S.; Musetti, R.; De Zotti, M.; Favaron, F. Peptide Analogs of a Trichoderma Peptaibol Effectively Control Downy Mildew in the Vineyard. Plant Dis. 2023, 107, 2643–2652. [Google Scholar] [CrossRef]
- Crutcher, F.K.; Moran-Diez, M.E.; Ding, S.; Liu, J.; Horwitz, B.A.; Mukherjee, P.K.; Kenerley, C.M. A Paralog of the Proteinaceous Elicitor SM1 Is Involved in Colonization of Maize Roots by Trichoderma virens. Fungal Biol. 2015, 119, 476–486. [Google Scholar] [CrossRef]
- Bar-Shimon, M.; Yehuda, H.; Cohen, L.; Weiss, B.; Kobeshnikov, A.; Daus, A.; Goldway, M.; Wisniewski, M.; Droby, S. Characterization of Extracellular Lytic Enzymes Produced by the Yeast Biocontrol Agent Candida Oleophila. Curr. Genet. 2004, 45, 140–148. [Google Scholar] [CrossRef]
- Kregiel, D.; Nowacka, M.; Rygala, A.; Vadkertiová, R. Biological Activity of Pulcherrimin from the Meschnikowia Pulcherrima Clade. Molecules 2022, 27, 1855. [Google Scholar] [CrossRef]
- Di Francesco, A.; Di Foggia, M.; Corbetta, M.; Baldo, D.; Ratti, C.; Baraldi, E. Biocontrol Activity and Plant Growth Promotion Exerted by Aureobasidium Pullulans Strains. J. Plant Growth Regul. 2021, 40, 1233–1244. [Google Scholar] [CrossRef]
- Kregiel, D.; Czarnecka-Chrebelska, K.H.; Schusterová, H.; Vadkertiová, R.; Nowak, A. The Metschnikowia Pulcherrima Clade as a Model for Assessing Inhibition of Candida spp. and the Toxicity of Its Metabolite, Pulcherrimin. Molecules 2023, 28, 5064. [Google Scholar] [CrossRef] [PubMed]
- Gier, S.; Schmitt, M.J.; Breinig, F. Analysis of Yeast Killer Toxin K1 Precursor Processing via Site-Directed Mutagenesis: Implications for Toxicity and Immunity. mSphere 2020, 5, e00979-19. [Google Scholar] [CrossRef] [PubMed]
- Lanhuang, B.; Yang, Q.; Godana, E.A.; Zhang, H. Efficacy of the Yeast Wickerhamomyces Anomalus in Biocontrol of Gray Mold Decay of Tomatoes and Study of the Mechanisms Involved. Foods 2022, 11, 720. [Google Scholar] [CrossRef]
- Marchand, P.A. BioControl Agents in Europe: Substitution Plant Protection Active Substances or a New Paradigm? Agrochemicals 2023, 2, 538–550. [Google Scholar] [CrossRef]
- Belay, Z.A.; James Caleb, O. Role of Integrated Omics in Unravelling Fruit Stress and Defence Responses During Postharvest: A Review. Food Chem. Mol. Sci. 2022, 5, 100118. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Sarsaiya, S.; Singh, R.; Gong, Q.; Wu, Q.; Shi, J. Omics Approaches in Understanding the Benefits of Plant-Microbe Interactions. Front. Microbiol. 2024, 15, 1391059. [Google Scholar] [CrossRef]
Biocontrol Agent | Effector/Protein (Type) | Function/Action | Target and Outcome | Reference |
---|---|---|---|---|
Trichoderma spp. | ||||
Trichoderma virens | Sm1 (cerato-platanin family) | Elicits systemic resistance; induces ROS and expression of a α-dioxygenase encoding genes | Enhanced resistance to fungal pathogens | [73] |
Trichoderma atroviride | Epl1/cerato-platanin (CP) | Elicitor: monomeric CP induces ISR (induce the expression of a peroxidase) | Enhanced resistance to fungal pathogens | [74] |
Trichoderma harzianum | Chitinases (Chi42/Chit42) | Mycoparasitism through degrading fungal cell walls; MAMPs for plant | Enhanced resistance to fungal pathogens | [75] |
Trichoderma longibrachiatum | Type II hydrophobin | Antifungal activity; plant growth promotion (PGP); ISR through ROS, superoxide dismutase, oxylipin, phytoalexin, and pathogenesis-related protein formation or activity. Stimulates root formation and growth. | Enhanced resistance to fungal pathogens and growth promotion | [76] |
Trichoderma reesei | Swollenin (expansin-like) | Alters lignocellulose-degrading enzyme system | Facilitates penetration, colonization, and ISR | [77] |
Trichoderma spp. | Peptaibols (peptaibol peptides) | Antifungal activity; membrane lysis and cytoplasmic granulation | Direct pathogen inhibition and defense elicitation | [78] |
Trichoderma virens | Sm2 (Sm1 paralog) | Root colonization, ISR modulation | Plant colonization and defense | [79] |
Trichoderma virens | Secreted apoplastic proteins/CWDEs | Cell-wall hydrolysis, ROS modulation | Root apoplast modulation and enhanced colonization | [54] |
Yeasts | ||||
Candida oleophila | CoEXG1 (exo-β-1,3-glucanase) | Cell-wall-degrading enzyme secretes at wound sites | Postharvest pathogen inhibition on fruit | [80] |
Metschnikowia pulcherrima | Pulcherrimin/pulcherriminic acid biosynthesis (PUL genes) | Induces antagonism through iron chelation | Pathogen suppression via iron starvation | [81] |
Aureobasidium pullulans | Pullulan, CWDEs, Siderophores, Aureobasidins | Induces biofilm formation through adhesion and direct antagonism, causing competition | Widely used on fruit to reduce molds | [82] |
Metschnikowia pulcherrima | Killer toxins/pulcherrimin-associated factors | Secretes antifungal proteins/toxins | Pathogen suppression | [83] |
Saccharomyces cerevisiae | Killer toxins (K1, K2, K28 family) | Cation-selective pore formation; disrupts ionic homeostasis and inhibits growth; arrests DNA synthesis through K28 | Pathogen inhibition | [84] |
Wickerhamomyces anomalus | - | rapid colonization of the wounds; alters defense enzymes PPO, POD, APX, and SOD | Postharvest and in situ antagonism | [85] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karunarathna, A.; Harishchandra, D.L.; Haituk, S.; Arayapichart, S.; Wongwan, T.; Cheewangkoon, R. Tripartite Interactions in Biocontrol: Insights for Developing Yeast-Based Strategies. Microorganisms 2025, 13, 2307. https://doi.org/10.3390/microorganisms13102307
Karunarathna A, Harishchandra DL, Haituk S, Arayapichart S, Wongwan T, Cheewangkoon R. Tripartite Interactions in Biocontrol: Insights for Developing Yeast-Based Strategies. Microorganisms. 2025; 13(10):2307. https://doi.org/10.3390/microorganisms13102307
Chicago/Turabian StyleKarunarathna, Anuruddha, Dulanjalee Lakmali Harishchandra, Sukanya Haituk, Saruta Arayapichart, Thitima Wongwan, and Ratchadawan Cheewangkoon. 2025. "Tripartite Interactions in Biocontrol: Insights for Developing Yeast-Based Strategies" Microorganisms 13, no. 10: 2307. https://doi.org/10.3390/microorganisms13102307
APA StyleKarunarathna, A., Harishchandra, D. L., Haituk, S., Arayapichart, S., Wongwan, T., & Cheewangkoon, R. (2025). Tripartite Interactions in Biocontrol: Insights for Developing Yeast-Based Strategies. Microorganisms, 13(10), 2307. https://doi.org/10.3390/microorganisms13102307