Legionella pneumophila-Induced NETs Do Not Bear LL-37 Peptides
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Bacterial Strains
2.3. Cell Types
2.3.1. Neutrophil
2.3.2. THP1 Cells
- Cell culture
- THP-1 differentiation
2.4. Stimulation and Inhibition Studies
2.4.1. Neutrophils’ Stimulation and NET Generation
2.4.2. Autophagy Study
2.4.3. NET Structures Generation and Isolation
2.5. Immunofluorescence
2.5.1. Neutrophil Seeding
2.5.2. Antibodies
2.5.3. Autophagy
2.5.4. Visualization
2.5.5. Quantification
2.6. RNA Extraction, cDNA Synthesis and qPCR
2.7. Bead-Based Multiplex Immunoassay
2.8. Statistical Analysis
3. Results
3.1. Inflammatory Cytokines Are Detected in the Circulation of LD Patients
3.2. Neutrophils Release NETs as a Response to L. pneumophila Ex Vivo and In Vitro
3.3. L. pneumophila-Induced NETs Are Unable to Express the Antimicrobial Peptide LL-37
3.4. L. pneumophila-Induced NETs Are Unable to Activate Autophagy
3.5. Dual Role of Macrolides in Legionella pneumophila Infection
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HI | Healthy individuals |
LD | Legionnaires’ disease |
IL | Interleukins |
NETs | Neutrophil Extracellular Traps |
References
- Jackson, E.; Crocker, T.; Smadel, J. Studies on Two Rickettsia-like Agents Probably Isolated from Guinea Pigs. Bacteriol. Proc. 1952, 52, 119. [Google Scholar]
- McDade, J.E.; Shepard, C.C.; Fraser, D.W.; Tsai, T.R.; Redus, M.A.; Dowdle, W.R. Legionnaires’ Disease: Isolation of a Bacterium and Demonstration of Its Role in Other Respiratory Disease. N. Engl. J. Med. 1977, 297, 1197–1203. [Google Scholar] [CrossRef] [PubMed]
- Del Piano, M.; La Palombara, P.; Nicosia, R.; Picchiotti, R. The Legionellosis. Boll. Dell’istituto Sieroter. Milan. 1984, 63, 87–99. [Google Scholar]
- Sanford, J.P. Legionnaires’ Disease—The First Thousand Days. N. Engl. J. Med. 1979, 300, 654–656. [Google Scholar] [CrossRef] [PubMed]
- Viasus, D.; Gaia, V.; Manzur-Barbur, C.; Carratalà, J. Legionnaires’ Disease: Update on Diagnosis and Treatment. Infect. Dis. Ther. 2022, 11, 973–986. [Google Scholar] [CrossRef]
- Yu, V.L.; Plouffe, J.F.; Pastoris, M.C.; Stout, J.E.; Schousboe, M.; Widmer, A.; Summersgill, J.; File, T.; Heath, C.M.; Paterson, D.L.; et al. Distribution of Legionella Species and Serogroups Isolated by Culture in Patients with Sporadic Community-Acquired Legionellosis: An International Collaborative Survey. J. Infect. Dis. 2002, 186, 127–128. [Google Scholar] [CrossRef]
- Brady, M.F.; Sundareshan, V. Legionnaires’ Disease. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Alexandropoulou, I.G.; Ntougias, S.; Konstantinidis, T.G.; Parasidis, T.A.; Panopoulou, M.; Constantinidis, T.C. Environmental Surveillance and Molecular Epidemiology of Waterborne Pathogen Legionella Pneumophila in Health-Care Facilities of Northeastern Greece: A 4-Year Survey. Environ. Sci. Pollut. Res. Int. 2015, 22, 7628–7640. [Google Scholar] [CrossRef]
- Alexandropoulou, I.G.; Konstantinidis, T.G.; Parasidis, T.A.; Nikolaidis, C.; Panopoulou, M.; Constantinidis, T.C. First Report of Legionella Pneumophila in Car Cabin Air Filters. Are These a Potential Exposure Pathway for Professional Drivers? Scand. J. Infect. Dis. 2013, 45, 948–952. [Google Scholar] [CrossRef]
- Brady, M.F.; Awosika, A.O.; Nguyen, A.D.; Sundareshan, V. Legionnaires Disease. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Zarogoulidis, P.; Alexandropoulou, I.; Romanidou, G.; Konstasntinidis, T.G.; Terzi, E.; Saridou, S.; Stefanis, A.; Zarogoulidis, K.; Constantinidis, T.C. Community-Acquired Pneumonia Due to Legionella Pneumophila, the Utility of PCR, and a Review of the Antibiotics Used. Int. J. Gen. Med. 2011, 4, 15–19. [Google Scholar] [CrossRef]
- Dalal, N.; Athwal, P.S.S.; Tharu, B.; Shah, P.; Shah, L. Legionnaires Disease Presenting as Diarrhea: A Case Report. Cureus 2020, 12, e10593. [Google Scholar] [CrossRef]
- Brusch, J.L. Legionnaire’s Disease: Cardiac Manifestations. Infect. Dis. Clin. N. Am. 2017, 31, 69–80. [Google Scholar] [CrossRef]
- Iliadi, V.; Staykova, J.; Iliadis, S.; Konstantinidou, I.; Sivykh, P.; Romanidou, G.; Vardikov, D.F.; Cassimos, D.; Konstantinidis, T.G. Legionella Pneumophila: The Journey from the Environment to the Blood. J. Clin. Med. 2022, 11, 6126. [Google Scholar] [CrossRef]
- Wagner, C.; Khan, A.S.; Kamphausen, T.; Schmausser, B.; Unal, C.; Lorenz, U.; Fischer, G.; Hacker, J.; Steinert, M. Collagen Binding Protein Mip Enables Legionella Pneumophila to Transmigrate through a Barrier of NCI-H292 Lung Epithelial Cells and Extracellular Matrix. Cell. Microbiol. 2007, 9, 450–462. [Google Scholar] [CrossRef]
- Trousil, J.; Frgelecová, L.; Kubíčková, P.; Řeháková, K.; Drašar, V.; Matějková, J.; Štěpánek, P.; Pavliš, O. Acute Pneumonia Caused by Clinically Isolated Legionella Pneumophila Sg 1, ST 62: Host Responses and Pathologies in Mice. Microorganisms 2021, 10, 179. [Google Scholar] [CrossRef]
- Borregaard, N. Neutrophils, from Marrow to Microbes. Immunity 2010, 33, 657–670. [Google Scholar] [CrossRef] [PubMed]
- Segal, A.W. How Neutrophils Kill Microbes. Annu. Rev. Immunol. 2005, 23, 197–223. [Google Scholar] [CrossRef] [PubMed]
- Mayadas, T.N.; Cullere, X.; Lowell, C.A. The Multifaceted Functions of Neutrophils. Annu. Rev. Pathol. Mech. Dis. 2014, 9, 181–218. [Google Scholar] [CrossRef] [PubMed]
- Brinkmann, V.; Reichard, U.; Goosmann, C.; Fauler, B.; Uhlemann, Y.; Weiss, D.S.; Weinrauch, Y.; Zychlinsky, A. Neutrophil Extracellular Traps Kill Bacteria. Science 2004, 303, 1532–1535. [Google Scholar] [CrossRef]
- Papayannopoulos, V.; Metzler, K.D.; Hakkim, A.; Zychlinsky, A. Neutrophil Elastase and Myeloperoxidase Regulate the Formation of Neutrophil Extracellular Traps. J. Cell Biol. 2010, 191, 677–691. [Google Scholar] [CrossRef]
- Konstantinidis, T.; Kambas, K.; Mitsios, A.; Panopoulou, M.; Tsironidou, V.; Dellaporta, E.; Kouklakis, G.; Arampatzioglou, A.; Angelidou, I.; Mitroulis, I.; et al. Immunomodulatory Role of Clarithromycin in Acinetobacter Baumannii Infection via Formation of Neutrophil Extracellular Traps. Antimicrob. Agents Chemother. 2016, 60, 1040–1048. [Google Scholar] [CrossRef]
- Svensson, D.; Nilsson, B.-O. Human Antimicrobial/Host Defense Peptide LL-37 May Prevent the Spread of a Local Infection through Multiple Mechanisms: An Update. Inflamm. Res. 2025, 74, 36. [Google Scholar] [CrossRef]
- Koutantou, M.; Konstantinidis, T.; Chochlakis, D.; Xingi, E.; Psaroulaki, A.; Tsiotis, G.; Kambas, K.; Angelakis, E. IL-1beta Expressing Neutrophil Extracellular Traps in Legionella Pneumophila Infection. Front. Immunol. 2025, 16, 1573151. [Google Scholar] [CrossRef] [PubMed]
- Ntinopoulou, M.; Cassimos, D.; Roupakia, E.; Kolettas, E.; Panopoulou, M.; Mantadakis, E.; Konstantinidis, T.; Chrysanthopoulou, A. Ιnterleukin-17A-Enriched Neutrophil Extracellular Traps Promote Immunofibrotic Aspects of Childhood Asthma Exacerbation. Biomedicines 2023, 11, 2104. [Google Scholar] [CrossRef] [PubMed]
- Chrysanthopoulou, A.; Mitroulis, I.; Apostolidou, E.; Arelaki, S.; Mikroulis, D.; Konstantinidis, T.; Sivridis, E.; Koffa, M.; Giatromanolaki, A.; Boumpas, D.T.; et al. Neutrophil Extracellular Traps Promote Differentiation and Function of Fibroblasts. J. Pathol. 2014, 233, 294–307. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Ntinopoulou, M.; Konstantinidis, T.; Chalkidou, A.; Papagianni, E.; Skeva, A.; Panopoulou, M.; Chrysanthopoulou, A. IL-1b-Bearing NETs: Bridging Inflammation to Early Cirrhosis in Hepatitis B. Int. J. Mol. Sci. 2025, 26, 5733. [Google Scholar] [CrossRef]
- Mitroulis, I.; Chrysanthopoulou, A.; Divolis, G.; Ioannidis, C.; Ntinopoulou, M.; Tasis, A.; Konstantinidis, T.; Antoniadou, C.; Soteriou, N.; Lallas, G.; et al. A Gene Expression Map of Host Immune Response in Human Brucellosis. Front. Immunol. 2022, 13, 951232. [Google Scholar] [CrossRef]
- Apostolidou, E.; Skendros, P.; Kambas, K.; Mitroulis, I.; Konstantinidis, T.; Chrysanthopoulou, A.; Nakos, K.; Tsironidou, V.; Koffa, M.; Boumpas, D.T.; et al. Neutrophil Extracellular Traps Regulate IL-1β-Mediated Inflammation in Familial Mediterranean Fever. Ann. Rheum. Dis. 2016, 75, 269–277. [Google Scholar] [CrossRef]
- Venetsanopoulou, A.I.; Ntinopoulou, M.; Papagianni, E.; Koletsos, N.; Voulgari, P.V.; Chrysanthopoulou, A. Neutrophil Extracellular Traps as Immunofibrotic Mediators in RA-ILD; Pilot Evaluation of the Nintedanib Therapy. Front. Immunol. 2024, 15, 1480594. [Google Scholar] [CrossRef]
- Dedicoat, M.; Venkatesan, P. The Treatment of Legionnaires’ Disease. J. Antimicrob. Chemother. 1999, 43, 747–752. [Google Scholar] [CrossRef]
- Pairman, L.; Beh, Y.T.; Maher, H.; Gardiner, S.J.; Chin, P.; Williman, J.; Chambers, S.T. A Retrospective Observational Cohort Study of Oral Azithromycin Treatment for Legionnaires’ Disease. J. Antimicrob. Chemother. 2025, 80, 1354–1361. [Google Scholar] [CrossRef]
- Jhelum, H.; Čerina, D.; Harbort, C.J.; Lindner, A.; Hanitsch, L.G.; Leistner, R.; Schröder, J.-T.; von Bernuth, H.; Stegemann, M.S.; Schürmann, M.; et al. Panton-Valentine Leukocidin-Induced Neutrophil Extracellular Traps Lack Antimicrobial Activity and Are Readily Induced in Patients with Recurrent PVL+-Staphylococcus Aureus Infections. J. Leukoc. Biol. 2024, 115, 222–234. [Google Scholar] [CrossRef]
- Neumann, A.; Völlger, L.; Berends, E.T.M.; Molhoek, E.M.; Stapels, D.A.C.; Midon, M.; Friães, A.; Pingoud, A.; Rooijakkers, S.H.M.; Gallo, R.L.; et al. Novel Role of the Antimicrobial Peptide LL-37 in the Protection of Neutrophil Extracellular Traps against Degradation by Bacterial Nucleases. J. Innate Immun. 2014, 6, 860–868. [Google Scholar] [CrossRef]
- Arampatzioglou, A.; Papazoglou, D.; Konstantinidis, T.; Chrysanthopoulou, A.; Mitsios, A.; Angelidou, I.; Maroulakou, I.; Ritis, K.; Skendros, P. Clarithromycin Enhances the Antibacterial Activity and Wound Healing Capacity in Type 2 Diabetes Mellitus by Increasing LL-37 Load on Neutrophil Extracellular Traps. Front. Immunol. 2018, 9, 2064. [Google Scholar] [CrossRef]
- van Harten, R.M.; Veldhuizen, E.J.A.; Haagsman, H.P.; Scheenstra, M.R. The Cathelicidin CATH-2 Efficiently Neutralizes LPS- and E. coli-Induced Activation of Porcine Bone Marrow Derived Macrophages. Vet. Immunol. Immunopathol. 2022, 244, 110369. [Google Scholar] [CrossRef]
- Rakebrandt, N.; Yassini, N.; Kolz, A.; Schorer, M.; Lambert, K.; Goljat, E.; Estrada Brull, A.; Rauld, C.; Balazs, Z.; Krauthammer, M.; et al. Innate Acting Memory Th1 Cells Modulate Heterologous Diseases. Proc. Natl. Acad. Sci. USA 2024, 121, e2312837121. [Google Scholar] [CrossRef]
LD n = 5 | HI n = 5 | p | |
---|---|---|---|
Age | 59.25 ± 16.6 | 50.4 ± 10.3 | 0.1 |
Male/Female | 3/2 | 3/2 | |
Laboratory findings | |||
WBC (K/μL) | 11.6 ± 8.9 | 6.4 ± 1.1 | 0.2 |
Neutrophil (%) | 75.6 ± 14.2 | 69.7 ± 5.7 | 0.5 |
Lymphocytes (%) | 17.8 ± 10 | 20.8 ± 3.9 | 0.6 |
Glu (mg/dL) | 125.5 ± 21.9 | 108.25 ± 10.2 | 0.4 |
Urea (mg/dL) | 66.5 ± 40.5 | 21.5 ± 3.7 | <0.001 |
Creatinin (mg/dL) | 2.3 ± 2.2 | 0.7 ± 0.1 | 0.2 |
eGFR (mL/min/1.7) | 62.25 ± 43.2 | 103.25 ± 11.1 | <0.001 |
SGOT (U/L) | 83.5 ± 44.1 | 30.5 ± 17.8 | 0.02 |
SGPT (U/L) | 141.7 ± 23.3 | 19.6 ± 15.7 | 0.01 |
LDH (U/L) | 1398.6 ± 78.8 | 206.4 ± 25.5 | 0.27 |
CPK (U/L) | 854.4 ± 890 | 82.5 ± 42.3 | <0.001 |
TP (g/dL) | 6.4 ± 0.3 | 6.7 ± 0.4 | 0.12 |
Albumin (g/dL) | 3.5 ± 0.18 | 3.7 ± 0.27 | 0.03 |
γ-GT (U/L) | 83.2 ± 29.6 | 24.4 ± 20.4 | 0.004 |
CRP (mg/dL) | 24.03 ± 2.3 | 0.9 ± 1.1 | <0.001 |
Procalcitonin (mg/dL) | 113.6 ± 374.9 | 0.2 ± 0.8 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iliadi, V.; Marti, S.; Skeva, A.; Marmanis, K.; Tsavdaridou, T.; Euthymiou, G.; Tryfonopoulou, E.; Themelidis, D.; Xanthopoulou, A.; Chlichlia, K.; et al. Legionella pneumophila-Induced NETs Do Not Bear LL-37 Peptides. Microorganisms 2025, 13, 2298. https://doi.org/10.3390/microorganisms13102298
Iliadi V, Marti S, Skeva A, Marmanis K, Tsavdaridou T, Euthymiou G, Tryfonopoulou E, Themelidis D, Xanthopoulou A, Chlichlia K, et al. Legionella pneumophila-Induced NETs Do Not Bear LL-37 Peptides. Microorganisms. 2025; 13(10):2298. https://doi.org/10.3390/microorganisms13102298
Chicago/Turabian StyleIliadi, Valeria, Stefania Marti, Aikaterini Skeva, Konstantinos Marmanis, Theofani Tsavdaridou, Georgios Euthymiou, Eleni Tryfonopoulou, Dimitrios Themelidis, Athina Xanthopoulou, Katerina Chlichlia, and et al. 2025. "Legionella pneumophila-Induced NETs Do Not Bear LL-37 Peptides" Microorganisms 13, no. 10: 2298. https://doi.org/10.3390/microorganisms13102298
APA StyleIliadi, V., Marti, S., Skeva, A., Marmanis, K., Tsavdaridou, T., Euthymiou, G., Tryfonopoulou, E., Themelidis, D., Xanthopoulou, A., Chlichlia, K., Koffa, M., Konstantinidis, T., & Panopoulou, M., on behalf of the Thrace Legionella Study Group. (2025). Legionella pneumophila-Induced NETs Do Not Bear LL-37 Peptides. Microorganisms, 13(10), 2298. https://doi.org/10.3390/microorganisms13102298