Listeria monocytogenes: A Foodborne Pathogen with Implications for One Health and the Brazilian Context
Abstract
1. Introduction
2. Listeria and Pathogenic Strains
Sources of Contamination and Clinical Presentations in Humans and Animals
3. Pathogenesis of Listeria Monocytogenes and Dissemination Pathways
3.1. Pathogenicity Mechanisms and Virulence Markers
3.1.1. Bacterial Stress Response and Virulence Mechanisms
3.1.2. Survival in Acidic Environments
3.1.3. Effects of the Pathogen on the Gut Endogenous Microbiota
3.1.4. Gut Barrier
3.1.5. Adaptation to Osmotic Stress and Bile Salts in Listeria Monocytogenes
3.1.6. Other Pathways of Infection
3.1.7. Microbial Biofilms
4. Detection Methods, Control Strategies, and Brazilian Legislation
- (a)
- Ready-to-eat foods (except for infants or special purposes): Listeria monocytogenes: n = 5, c = 0, m = 102 CFU/g or mL, M = —.
- (b)
- Ready-to-eat foods intended for infants or special purposes: Listeria monocytogenes: n = 10, c = 0, m = absence in 25 g or mL, M = —.
5. Overview of Listeria Monocytogenes in Brazil’s Public Health Context
6. Final Considerations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
§ | Paragraph |
°C | Degrees Celsius |
ABNT | Brazilian Association of Technical Standards |
ActA | Actin assembly-inducing protein |
ADI | Arginine deiminase |
ALOA | Listeria Ottaviani and Agosti Agar |
ANVISA | Brazilian Health Regulatory Agency |
AOAC | Association of Official Analytical Chemists |
Art. | Article |
Aw | Water activity |
BAM | Bacteriological analytical manual |
BBB | Blood–brain barrier |
betL | Gene encoding a glycine betaine |
BLEB | Buffered Listeria enrichment broth |
c | Maximum allowable number of sample units |
CC | Bacterial clones |
CFUs | Colony-forming units |
CNS | Central nervous system |
CspA | Cold-shock proteins |
eDNA | Extracellular DNA |
ELFA | Enzyme-linked fluorescent assay |
ELISA | Enzyme-linked immunosorbent assay |
EPS | Extracellular polymeric substance |
ESP | Public health event |
FBDs | Foodborne diseases |
FDA | Food and Drug Administration |
GABA | Gama-aminobutyric acid |
GadD | Glutamate decarboxylase |
GadT | GAD Transporters |
GALT | Intestine-specific immune mechanism |
gbu | Glycine betaine |
HCl | Hydrochloric acid |
HIV | Human Immunodeficiency Virus |
Hsp60 | LAP receptor |
IKKα | IκB kinase |
InlA, InlB, In1C and In1P | Internalins |
LAMP | Loop-mediated isothermal amplification |
LAP | Listeria adhesion protein |
LIPI-1, LIPI-3, and LIPI-4 | Pathogenicity islands |
LLO | Cytolysin listeriolysin O |
m | Maximum acceptable value per sample |
M | Unacceptable value per sample. |
MAPA | Ministry of Agriculture, Livestock and Supply |
MLCK | Myosin light chain kinase |
n | Number of sample units |
NF-κB | Nuclear factor kappaB |
NH3 | Ammonia |
PC-PLC | Broad-spectrum phospholipase C |
PCR | Polymerase chain reaction |
PI-PLC | Phosphatidylinositol-specific phospholipase C |
POAO | Products derived from animals |
PrfA | Transcriptional regulator |
QACs | Quaternary ammonium compounds |
QS | Quorum sensing |
RDC | Collegiate board resolution |
RTE | Ready-to-eat |
RT-PCR | Real-time polymerase chain reaction |
TSAYE | Tryptone soy yeast extract agar |
References
- Sinha, S.; Hackl, L.S.; Huey, S.L.; Lambertini, E.; Nordhagen, S.; Bennett, A.M.; Shrestha, N.; Cole, N.L.; Finkelstein, J.L.; Mehta, S. Overview of foodborne hazards associated with inflammation and metabolic health. BMC Glob. Public Health 2025, 3, 31. [Google Scholar] [CrossRef]
- Todd, E.C.D. Foodborne diseases: Overview of biological hazards and foodborne diseases. Encycl. Food Saf. 2014, 1, 221–242. [Google Scholar] [CrossRef]
- Ravindhiran, R.; Sivarajan, K.; Sekar, J.N.; Murugesan, R.; Dhandapani, K. Listeria monocytogenes an emerging pathogen: A comprehensive overview on listeriosis, virulence determinants, detection, and anti-Listerial interventions. Microb. Ecol. 2023, 86, 2231–2251. [Google Scholar] [CrossRef] [PubMed]
- WHO—World Health Organization. Available online: https://www.who.int/news-room/fact-sheets/detail/listeriosis (accessed on 23 April 2025).
- Quereda, J.J.; Morón-García, A.; Palacios-Gorba, C.; Dessaux, C.; García-Del Portillo, F.; Pucciarelli, M.G.; Ortega, A.D. Pathogenicity and virulence of Listeria monocytogenes: A trip from environmental to medical microbiology. Virulence 2021, 12, 2509–2545. [Google Scholar] [CrossRef]
- Orsi, R.H.; den Bakker, H.C.; Wiedmann, M. Listeria monocytogenes lineages: Genomics, evolution, ecology, and phenotypic characteristics. Int. J. Med. Microbiol. 2011, 301, 79–96. [Google Scholar] [CrossRef]
- Disson, O.; Moura, A.; Lecuit, M. Making sense of the biodiversity and virulence of Listeria monocytogenes. Trends Microbiol. 2021, 29, 811–823. [Google Scholar] [CrossRef]
- Mantovam, V.B.; Dos Santos, D.F.; Giola Junior, L.C.; Landgraf, M.; Pinto, U.M.; Todorov, S.D. Listeria monocytogenes, Salmonella spp., and Staphylococcus aureus: Threats to the food industry and public health. Foodborne Pathog. Dis. 2025; online ahead of print. [Google Scholar] [CrossRef]
- Papadochristopoulos, A.; Kerry, J.P.; Fegan, N.; Burgess, C.M.; Duffy, G. Potential Use of Selected Natural Anti-Microbials to Control Listeria monocytogenes in Vacuum Packed Beef Burgers and Their Impact on Quality Attributes. Microorganisms 2025, 13, 910. [Google Scholar] [CrossRef]
- Buchanan, R.L.; Gorris, L.G.M.; Hayman, M.M.; Jackson, T.C.; Whiting, R.C. A review of Listeria monocytogenes: An update on outbreaks, virulence, dose-response, ecology, and risk assessments. Food Control 2017, 75, 1–13. [Google Scholar] [CrossRef]
- Desai, A.N.; Anyoha, A.; Madoff, L.C.; Lassmann, B. Changing epidemiology of Listeria monocytogenes outbreaks, sporadic cases, and recalls globally: A review of ProMED reports from 1996 to 2018. Int. J. Infect. Dis. 2019, 84, 48–53. [Google Scholar] [CrossRef]
- Colagiorgi, A.; Bruini, I.; Di Ciccio, P.A.; Zanardi, E.; Ghidini, S.; Ianieri, A. Listeria monocytogenes biofilms in the wonderland of food industry. Pathogens 2017, 6, 41. [Google Scholar] [CrossRef] [PubMed]
- Reis, J.O.; Teixeira, L.A.C.; Cunha-Neto, A.; Castro, V.S.; Figueiredo, E.E.S. Listeria monocytogenes in beef: A hidden risk. Res. Microbiol. 2024, 175, 104215. [Google Scholar] [CrossRef] [PubMed]
- Hua, Z.; Zhu, M.J. Comprehensive strategies for controlling Listeria monocytogenes biofilms on food-contact surfaces. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13348. [Google Scholar] [CrossRef]
- Manyi-Loh, C.E.; Lues, R. Listeria monocytogenes and listeriosis: The global enigma. Foods 2025, 14, 1266. [Google Scholar] [CrossRef]
- Li, H.; Sheng, H.; Zhao, J.; Zhang, X.; Li, M.; Zhao, L.; Li, L.; Zhang, X.; Yang, B.; Fanning, S.; et al. Emerging threats: Listeria monocytogenes with acquired multidrug resistance from food in China, 2012–2022. Int. J. Food Microbiol. 2025, 439, 111236. [Google Scholar] [CrossRef]
- Castello, A.; Alio, V.; Torresi, M.; Centorotola, G.; Chiaverini, A.; Pomilio, F.; Arrigo, I.; Giammanco, A.; Fasciana, T.; Ortoffi, M.F.; et al. Molecular characterization and antimicrobial resistance evaluation of Listeria monocytogenes strains from food and human samples. Pathogens 2025, 14, 294. [Google Scholar] [CrossRef]
- Tsitsos, A.; Peratikos, P.; Damianos, A.; Kyritsi, M.A.; Arsenos, G.; Hadjichristodoulou, C.; Soultos, N.; Gousia, P.; Economou, V. Prevalence, molecular characterization, antibiotic resistance, and investigation of transmission pathways of Listeria monocytogenes strains isolated along the beef production chain. Food Microbiol. 2025, 129, 104745. [Google Scholar] [CrossRef]
- Paiva, J.; Silva, V.; Poeta, P.; Saraiva, C. Antimicrobial resistance profile and biofilm formation of Listeria monocytogenes isolated from meat. Antibiotics 2025, 14, 454. [Google Scholar] [CrossRef]
- Dincer, E. Detection of Listeria species by conventional culture-dependent and alternative rapid detection methods in retail ready-to-eat foods in Turkey. J. Microbiol. Biotechnol. 2024, 34, 349–357. [Google Scholar] [CrossRef]
- Fox, E.M.; Wall, P.G.; Fanning, S. Control of Listeria species food safety at a poultry food production facility. Food Microbiol. 2015, 51, 81–86. [Google Scholar] [CrossRef]
- Oliveira, M.; Barbosa, J.; Teixeira, P. Listeria monocytogenes gut interactions and listeriosis: Gut modulation and pathogenicity. Microbiol. Res. 2025, 297, 128187. [Google Scholar] [CrossRef] [PubMed]
- Holch, A.; Webb, K.; Lukjancenko, O.; Ussery, D.; Rosenthal, B.M.; Gram, L. Genome sequencing identifies two nearly unchanged strains of persistent Listeria monocytogenes isolated at two different fish processing plants sampled 6 years apart. Appl. Environ. Microbiol. 2013, 79, 2944–2951. [Google Scholar] [CrossRef] [PubMed]
- Badge, A.K.; Bankar, N.J.; Poddar, A.; Mishra, V.H.; Nair, N.; Borbora, S. Advancement in technologies and practices to control Listeria monocytogenes contamination within the food processing environment. Niger. Postgrad. Med. J. 2025, 32, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Roberts, B.N.; Chakravarty, D.; Gardner, J.C., 3rd; Ricke, S.C.; Donaldson, J.R. Listeria monocytogenes response to anaerobic environments. Pathogens 2020, 9, 210. [Google Scholar] [CrossRef]
- Yu, M.; Jiang, C.; Meng, Y.; Wang, F.; Qian, J.; Fei, F.; Yin, Z.; Zhao, W.; Zhao, Y.; Liu, H. Effect of low temperature on the resistance of Listeria monocytogenes and Escherichia coli O157:H7 to acid electrolyzed water. Food Res. Int. 2023, 168, 112776. [Google Scholar] [CrossRef]
- Vasileiadi, N.; Tsironi, T.; Mandilara, G.D. Assessing Listeria monocytogenes growth in artificially inoculated sea-farmed product-raw sea bass (Dicentrarchus labrax) fillet, produced in Greece. Microorganisms 2024, 12, 1970. [Google Scholar] [CrossRef]
- Bucur, F.I.; Grigore-Gurgu, L.; Crauwels, P.; Riedel, C.U.; Nicolau, A.I. Resistance of Listeria monocytogenes to stress conditions encountered in food and food processing environments. Front. Microbiol. 2018, 9, 2700. [Google Scholar] [CrossRef]
- Cordero, N.; Maza, F.; Navea-Perez, H.; Aravena, A.; Marquez-Fontt, B.; Navarrete, P.; Figueroa, G.; González, M.; Latorre, M.; Reyes-Jara, A. Different transcriptional responses from slow and fast growth rate strains of Listeria monocytogenes adapted to low temperature. Front. Microbiol. 2016, 7, 229. [Google Scholar] [CrossRef]
- Liu, M.; Ding, Y.; Ye, Q.; Wu, S.; Gu, Q.; Chen, L.; Zhang, Y.; Wei, X.; Deng, M.; Zhang, J.; et al. Cold-tolerance mechanisms in foodborne pathogens: Escherichia coli and Listeria monocytogenes as examples. Crit. Rev. Food Sci. Nutr. 2025, 65, 2031–2045. [Google Scholar] [CrossRef]
- Smith, J.L.; Liu, Y.; Paoli, G.C. How does Listeria monocytogenes combat acid conditions? Can. J. Microbiol. 2013, 59, 141–152. [Google Scholar] [CrossRef]
- Branson, S.R.; Broadbent, J.R.; Carpenter, C.E. Internal pH and acid anion accumulation in Listeria monocytogenes and Escherichia coli exposed to lactic or acetic acids at mildly acidic pH. Front. Microbiol. 2022, 12, 803271. [Google Scholar] [CrossRef]
- Arcari, T.; Feger, M.L.; Guerreiro, D.N.; Wu, J.; O’Byrne, C.P. Comparative review of the responses of Listeria monocytogenes and Escherichia coli to low pH stress. Genes 2020, 11, 1330. [Google Scholar] [CrossRef] [PubMed]
- Castrica, M.; Andoni, E.; Intraina, I.; Curone, G.; Copelotti, E.; Massacci, F.R.; Terio, V.; Colombo, S.; Balzaretti, C.M. Prevalence of Listeria monocytogenes and Salmonella spp. in different ready-to-eat foods from large retailers and canteens over a 2-year period in Northern Italy. Int. J. Environ. Res. Public Health 2021, 18, 10568. [Google Scholar] [CrossRef] [PubMed]
- Karthikeyan, A.; Tabassum, N.; Mani, A.K.; Javaid, A.; Kim, T.H.; Oh, D.K.; Kim, Y.M.; Jung, W.K.; Khan, F. Targeting motility of Listeria monocytogenes: Alternative strategies to control foodborne illness. Microb. Pathog. 2025, 202, 107427. [Google Scholar] [CrossRef] [PubMed]
- Linke, K.; Rückerl, I.; Brugger, K.; Karpiskova, R.; Walland, J.; Muri-Klinger, S.; Tichy, A.; Wagner, M.; Stessl, B. Reservoirs of Listeria species in three environmental ecosystems. Appl. Environ. Microbiol. 2014, 80, 5583–5592. [Google Scholar] [CrossRef]
- Hafner, L.; Pichon, M.; Burucoa, C.; Nusser, S.H.A.; Moura, A.; Garcia-Garcera, M.; Lecuit, M. Listeria monocytogenes faecal carriage is common and depends on the gut microbiota. Nat. Commun. 2021, 12, 6826. [Google Scholar] [CrossRef]
- Oliveira, A.H.; Tiensuu, T.; Guerreiro, D.; Tükenmez, H.; Dessaux, C.; García-Del Portillo, F.; O’Byrne, C.; Johansson, J. The virulence and infectivity of Listeria monocytogenes are not substantially altered by elevated SigB activity. Infect. Immun. 2023, 91, e00571-22. [Google Scholar] [CrossRef]
- McCollum, J.T.; Cronquist, A.B.; Silk, B.J.; Jackson, K.A.; O’Connor, K.A.; Cosgrove, S.; Gossack, J.P.; Parachini, S.S.; Jain, N.S.; Ettestad, P.; et al. Multistate outbreak of listeriosis associated with cantaloupe. N. Engl. J. Med. 2013, 369, 944–953. [Google Scholar] [CrossRef]
- EFSA—European Food Safety Authority; European Centre for Disease Prevention and Control. The European Union One Health 2018 zoonoses report. EFSA J. 2019, 17, e05926. [Google Scholar] [CrossRef]
- Redding, M.; Bolten, S.; Gu, G.; Luo, Y.; Micallef, S.A.; Millner, P.; Nou, X. Growth and inactivation of Listeria monocytogenes in sterile extracts of fruits and vegetables: Impact of the intrinsic factors pH, sugar and organic acid content. Int. J. Food Microbiol. 2023, 386, 110043. [Google Scholar] [CrossRef]
- Pedersen, A.M.; Belstrøm, D. The role of natural salivary defences in maintaining a healthy oral microbiota. J. Dent. 2019, 80, S3–S12. [Google Scholar] [CrossRef]
- Olsen, I. Mucus is more than just a physical barrier for trapping oral microorganisms. J. Oral Microbiol. 2020, 12, 1788352. [Google Scholar] [CrossRef] [PubMed]
- FAO/WHO—World Health Organization. Available online: https://www.fao.org/food/food-safety-quality/scientific-advice/jemra/risk-assessments/listeria0/en/ (accessed on 23 May 2025).
- Pouillot, R.; Kiermeier, A.; Guillier, L.; Cadavez, V.; Sanaa, M. Updated Parameters for Listeria monocytogenes Dose–Response Model Considering Pathogen Virulence and Age and Sex of Consumer. Foods 2024, 13, 751. [Google Scholar] [CrossRef]
- Farber, J.M.; Ross, W.H.; Harwig, J. Health risk assessment of Listeria monocytogenes in Canada. Int. J. Food Microbiol. 1996, 30, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Johnsen, B.O.; Lingaas, E.; Torfoss, D.; Strøm, E.H.; Nordøy, I. A large outbreak of Listeria monocytogenes infection with short incubation period in a tertiary care hospital. J. Infect. 2010, 61, 465–470. [Google Scholar] [CrossRef] [PubMed]
- Heiman, K.E.; Garalde, V.B.; Gronostaj, M.; Jackson, K.A.; Beam, S.; Joseph, L.; Saupe, A.; Ricotta, E.; Waechter, H.; Wellman, A.; et al. Multistate outbreak of listeriosis caused by imported cheese and evidence of cross-contamination of other cheeses, USA, 2012. Epidemiol. Infect. 2016, 144, 2698–2708. [Google Scholar] [CrossRef]
- Pérez-Trallero, E.; Zigorraga, C.; Artieda, J.; Alkorta, M.; Marimón, J.M. Two outbreaks of Listeria monocytogenes infection, Northern Spain. Emerg. Infect. Dis. 2014, 20, 2155–2157. [Google Scholar] [CrossRef]
- Pouillot, R.; Gallagher, D.; Tang, J.; Hoelzer, K.; Kause, J.; Dennis, S.B. Listeria monocytogenes in retail delicatessens: An interagency risk assessment—Model and baseline results. J. Food Prot. 2015, 78, 134–145. [Google Scholar] [CrossRef]
- Grif, K.; Patscheider, G.; Dierich, M.P.; Allerberger, F. Incidence of fecal carriage of Listeria monocytogenes in three healthy volunteers: A one-year prospective stool survey. Eur. J. Clin. Microbiol. Infect. Dis. 2003, 22, 16–20. [Google Scholar] [CrossRef]
- Velge, P.; Roche, S.M. Variability of Listeria monocytogenes virulence: A result of the evolution between saprophytism and virulence? Future Microbiol. 2010, 5, 1799–1821. [Google Scholar] [CrossRef]
- Castro, H.; Jaakkonen, A.; Hakkinen, M.; Korkeala, H.; Lindström, M. Occurrence, persistence, and contamination routes of Listeria monocytogenes genotypes on three Finnish dairy cattle farms: A longitudinal study. Appl. Environ. Microbiol. 2018, 84, e02000-17. [Google Scholar] [CrossRef]
- Gómez-Laguna, J.; Cardoso-Toset, F.; Meza-Torres, J.; Pizarro-Cerdá, J.; Quereda, J.J. Virulence potential of Listeria monocytogenes strains recovered from pigs in Spain. Vet. Rec. 2020, 187, e101. [Google Scholar] [CrossRef] [PubMed]
- Farber, J.; Pagotto, F.; Scherf, C. Incidence and Behavior of Listeria monocytogenes in Meat Products. In Listeria, Listeriosis, and Food Safety, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2007; pp. 503–570. [Google Scholar]
- Kim, S.W.; Haendiges, J.; Keller, E.N.; Myers, R.; Kim, A.; Lombard, J.E.; Karns, J.S.; Van Kessel, J.A.S.; Haley, B.J. Genetic diversity and virulence profiles of Listeria monocytogenes recovered from bulk tank milk, milk filters, and milking equipment from dairies in the United States (2002 to 2014). PLoS ONE 2018, 13, e0197053. [Google Scholar] [CrossRef] [PubMed]
- Edwards, D.; Dunlop, D.J. Food Microbiology, 5th ed.; Doyle, M.P., Diez-Gonzalez, F., Hill, C., Eds.; ASM Press: Washington, DC, USA, 2019; p. 1093. [Google Scholar]
- Ferreira, V.; Wiedmann, M.; Teixeira, P.; Stasiewicz, M.J. Listeria monocytogenes persistence in food-associated environments: Epidemiology, strain characteristics, and implications for public health. J. Food Prot. 2014, 77, 150–170. [Google Scholar] [CrossRef] [PubMed]
- D’Orazio, S.E.F. Innate and adaptive immune responses during Listeria monocytogenes infection. Microbiol. Spectr. 2019, 7, 10–1128. [Google Scholar] [CrossRef]
- Aureli, P.; Fiorucci, G.C.; Caroli, D.; Marchiaro, G.; Novara, O.; Leone, L.; Salmaso, S. An outbreak of febrile gastroenteritis associated with corn contaminated by Listeria monocytogenes. N. Engl. J. Med. 2000, 342, 1236–1241. [Google Scholar] [CrossRef]
- Sim, J.; Hood, D.; Finnie, L.; Wilson, M.; Graham, C.; Brett, M.; Hudson, J.A. Series of incidents of Listeria monocytogenes non-invasive febrile gastroenteritis involving ready-to-eat meats. Lett. Appl. Microbiol. 2002, 35, 409–413. [Google Scholar] [CrossRef]
- Carrique-Mas, J.J.; Hökeberg, I.; Andersson, Y.; Arneborn, M.; Tham, W.; Danielsson-Tham, M.L.; Osterman, B.; Leffler, M.; Steen, M.; Eriksson, E.; et al. Febrile gastroenteritis after eating on-farm manufactured fresh cheese—An outbreak of listeriosis? Epidemiol. Infect. 2003, 130, 79–86. [Google Scholar] [CrossRef]
- Ooi, S.T.; Lorber, B. Gastroenteritis due to Listeria monocytogenes. Clin. Infect. Dis. 2005, 40, 1327–1332. [Google Scholar] [CrossRef]
- Goulet, V.; King, L.A.; Vaillant, V.; de Valk, H. What is the incubation period for listeriosis? BMC Infect. Dis. 2013, 13, 11. [Google Scholar] [CrossRef]
- Maurella, C.; Gallina, S.; Ru, G.; Adriano, D.; Bellio, A.; Bianchi, D.M.; Chiavacci, L.; Crescio, M.I.; Croce, M.; D’Errico, V. Outbreak of febrile gastroenteritis caused by Listeria monocytogenes 1/2A in sliced cold beef ham, Italy, May 2016. Eurosurveillance 2018, 23, 17-00155. [Google Scholar] [CrossRef]
- Schlech, W.F. Epidemiology and clinical manifestations of Listeria monocytogenes infection. Microbiol. Spectr. 2019, 7, 10–1128. [Google Scholar] [CrossRef]
- Rogalla, D.; Bomar, P.A. Listeria Monocytogenes. Available online: https://www.ncbi.nlm.nih.gov/books/NBK534838/ (accessed on 22 May 2025).
- Charlier, C.; Perrodeau, É.; Leclercq, A.; Cazenave, B.; Pilmis, B.; Henry, B.; Lopes, A.; Maury, M.M.; Moura, A.; Goffinet, F.; et al.; et al. Clinical features and prognostic factors of listeriosis: The MONALISA national prospective cohort study. Lancet Infect. Dis. 2017, 17, 510–519. [Google Scholar] [CrossRef] [PubMed]
- Lecuit, M. Listeria monocytogenes, a model in infection biology. Cell Microbiol. 2020, 22, e13186. [Google Scholar] [CrossRef] [PubMed]
- Doganay, M. Listeriosis: Clinical presentation. FEMS Immunol. Med. Microbiol. 2003, 35, 173–175. [Google Scholar] [CrossRef] [PubMed]
- Girard, D.; Leclercq, A.; Laurent, E.; Lecuit, M.; de Valk, H.; Goulet, V. Pregnancy-related listeriosis in France, 1984 to 2011, with a focus on 606 cases from 1999 to 2011. Euro Surveill. 2014, 19, 20909. [Google Scholar] [CrossRef]
- Koopmans, M.M.; Brouwer, M.C.; Vázquez-Boland, J.A.; van de Beek, D. Human listeriosis. Clin. Microbiol. Rev. 2023, 36, e0006019. [Google Scholar] [CrossRef]
- McLauchlin, J.; Low, J.C. Primary cutaneous listeriosis in adults: An occupational disease of veterinarians and farmers. Vet. Rec. 1994, 135, 615–617. [Google Scholar]
- Zelenik, K.; Avberšek, J.; Pate, M.; Lušicky, M.; Krt, B.; Ocepek, M.; Zdovc, I. Cutaneous listeriosis in a veterinarian with the evidence of zoonotic transmission—A case report. Zoonoses Public Health 2014, 61, 238–241. [Google Scholar] [CrossRef]
- World Organisation for Animal Health. Available online: https://www.oie.int/en/standard-setting/terrestrial-manual/ (accessed on 31 May 2025).
- Oevermann, A.; Di Palma, S.; Doherr, M.G.; Abril, C.; Zurbriggen, A.; Vandevelde, M. Neuropathogenesis of naturally occurring encephalitis caused by Listeria monocytogenes in ruminants. Brain Pathol. 2010, 20, 378–390. [Google Scholar] [CrossRef]
- Erratum for Henke, D.; Rupp, S.; Gaschen, V.; Stoffel, M.H.; Frey, J.; Vandevelde, M.; Oevermann, A. Listeria monocytogenes spreads within the brain by actin-based intra-axonal migration. Infect. Immun. 2016, 84, 866. [Google Scholar] [CrossRef]
- Clark, R.G.; Gill, J.M.; Swanney, S. Listeria monocytogenes gastroenteritis in sheep. N. Z. Vet. J. 2004, 52, 46–47. [Google Scholar] [CrossRef]
- Laven, R.A.; Lawrence, K.R. An outbreak of iritis and uveitis in dairy cattle at pasture associated with the supplementary feeding of baleage. N. Z. Vet. J. 2006, 54, 151–152. [Google Scholar] [CrossRef]
- Stein, H.; Stessl, B.; Brunthaler, R.; Loncaric, I.; Weissenböck, H.; Ruczizka, U.; Ladinig, A.; Schwarz, L. Listeriosis in fattening pigs caused by poor quality silage—A case report. BMC Vet. Res. 2018, 14, 362. [Google Scholar] [CrossRef]
- Johansson, J.; Freitag, N.E. Regulation of Listeria monocytogenes Virulence. Microbiol. Spectr. 2019, 7. [Google Scholar] [CrossRef]
- Meireles, D.; Pombinho, R.; Cabanes, D. Signals behind Listeria monocytogenes virulence mechanisms. Gut Microbes 2024, 16, 2369564. [Google Scholar] [CrossRef] [PubMed]
- Lowe, D.E.; Robbins, J.R.; Bakardjiev, A.I. Animal and human tissue models of vertical Listeria monocytogenes transmission and implications for other pregnancy-associated infections. Infect. Immun. 2018, 86, e00801-17. [Google Scholar] [CrossRef] [PubMed]
- Lamond, N.M.; Freitag, N.E. Vertical Transmission of Listeria monocytogenes: Probing the Balance between Protection from Pathogens and Fetal Tolerance. Pathogens 2018, 7, 52. [Google Scholar] [CrossRef] [PubMed]
- Drolia, R.; Bhunia, A.K. Crossing the intestinal barrier via Listeria adhesion protein and Internalin A. Trends Microbiol. 2019, 27, 408–425. [Google Scholar] [CrossRef]
- Schnupf, P.; Portnoy, D.A. Listeriolysin O: A phagosome-specific lysin. Microbes Infect. 2007, 9, 1176–1187. [Google Scholar] [CrossRef]
- Grubmüller, S.; Schauer, K.; Goebel, W.; Fuchs, T.M.; Eisenreich, W. Analysis of carbon substrates used by Listeria monocytogenes during growth in J774A.1 macrophages suggests a bipartite intracellular metabolism. Front. Cell. Infect. Microbiol. 2014, 4, 156. [Google Scholar] [CrossRef]
- Rajabian, T.; Gavicherla, B.; Heisig, M.; Müller-Altrock, S.; Goebel, W.; Gray-Owen, S.D.; Ireton, K. The bacterial virulence factor InlC perturbs apical cell junctions and promotes cell-to-cell spread of Listeria. Nat. Cell Biol. 2009, 11, 1212–1218. [Google Scholar] [CrossRef] [PubMed]
- Pillich, H.; Puri, M.; Chakraborty, T. ActA of Listeria monocytogenes and Its Manifold Activities as an Important Listerial Virulence Factor. Curr. Top. Microbiol. Immunol. 2017, 399, 113–132. [Google Scholar] [CrossRef] [PubMed]
- Cahoon, L.A.; Freitag, N.E. Listeria monocytogenes virulence factor secretion: Don’t leave the cell without a chaperone. Front. Cell Infect. Microbiol. 2014, 4, 13. [Google Scholar] [CrossRef] [PubMed]
- Freeman, M.J.; Eral, N.J.; Sauer, J.-D. Listeria monocytogenes requires phosphotransferase systems to facilitate intracellular growth and virulence. PLoS Pathog. 2025, 21, e1012492. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, P.; Liang, L.; Guo, J.; Chen, Y. Application of metabolomics analysis to aid in understanding the pathogenicity of different lineages and different serotypes of Listeria monocytogenes. Int. J. Food Microbiol. 2022, 373, 109694. [Google Scholar] [CrossRef]
- Burall, L.S.; Grim, C.J.; Mammel, M.K.; Datta, A.R. A comprehensive evaluation of the genetic relatedness of Listeria monocytogenes serotype 4b variant strains. Front. Public Health 2017, 5, 241. [Google Scholar] [CrossRef]
- Painset, A.; Björkman, J.T.; Kiil, K.; Guillier, L.; Mariet, J.-F.; Félix, B.; Amar, C.; Rotariu, O.; Roussel, S.; Perez-Reche, F.; et al. LiSEQ—Whole-genome sequencing of a cross-sectional survey of Listeria monocytogenes in ready-to-eat foods and human clinical cases in Europe. Microb. Genom. 2019, 5, e000257. [Google Scholar] [CrossRef]
- Zhou, X.; Guo, Y.; Pan, Y.; Zhao, Y.; Liu, H. Phenotypic heterogeneity and pathogenicity of Listeria monocytogenes under complex salinities of bile salts and sodium salts stress. Arch. Microbiol. 2025, 207, 101. [Google Scholar] [CrossRef]
- Pracser, N.; Zaiser, A.; Ciolacu, L.; Roch, F.F.; Quijada, N.M.; Thalguter, S.; Dzieciol, M.; Conrady, B.; Wagner, M.; Rychli, K. The type of food influences the behaviour of Listeria monocytogenes in a food-gastrointestinal-infection model. NPJ Sci. Food 2025, 9, 79. [Google Scholar] [CrossRef]
- NicAogáin, K.; O’Byrne, C.P. The role of stress and stress adaptations in determining the fate of the bacterial pathogen Listeria monocytogenes in the food chain. Front. Microbiol. 2016, 7, 1865. [Google Scholar] [CrossRef]
- Guerreiro, D.N.; Arcari, T.; O’Byrne, C.P. The σB-Mediated General Stress Response of Listeria monocytogenes: Life and Death Decision Making in a Pathogen. Front. Microbiol. 2020, 11, 1505. [Google Scholar] [CrossRef]
- Burgess, C.M.; Gianotti, A.; Gruzdev, N.; Holah, J.; Knøchel, S.; Lehner, A.; Margas, E.; Schmitz Esser, S.; Sela Saldinger, S.; Tresse, O. The response of foodborne pathogens to osmotic and desiccation stresses in the food chain. Int. J. Food Microbiol. 2016, 221, 37–53. [Google Scholar] [CrossRef]
- Hingston, P.; Chen, J.; Allen, K.; Truelstrup Hansen, L.; Wang, S. Strand specific RNA-sequencing and membrane lipid profiling reveals growth phase-dependent cold stress response mechanisms in Listeria monocytogenes. PLoS ONE 2017, 12, e0180123. [Google Scholar] [CrossRef]
- Chan, Y.C.; Raengpradub, S.; Boor, K.J.; Wiedmann, M. Microarray-based characterization of the Listeria monocytogenes cold regulon in log- and stationary-phase cells. Appl. Environ. Microbiol. 2007, 73, 6484–6498. [Google Scholar] [CrossRef] [PubMed]
- Mattila, M.; Lindström, M.; Somervuo, P.; Markkula, A.; Korkeala, H. Role of flhA and motA in growth of Listeria monocytogenes at low temperatures. Int. J. Food Microbiol. 2011, 148, 177–183. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, S.; Burkhardt III, W. Efficacy of electrolyzed oxidizing water against Listeria monocytogenes and Morganella morganii on conveyor belt and raw fish surfaces. Food Control. 2012, 24, 214–219. [Google Scholar] [CrossRef]
- Martínez-Suárez, J.V.; Ortiz, S.; López-Alonso, V. Potential impact of the resistance to quaternary ammonium disinfectants on the persistence of Listeria monocytogenes in food processing environments. Front. Microbiol. 2016, 7, 638. [Google Scholar] [CrossRef]
- Jiang, X.; Ren, S.; Geng, Y.; Yu, T.; Li, Y.; Liu, L.; Liu, G.; Wang, H.; Shi, L. The sug operon involves in resistance to quaternary ammonium compounds in Listeria monocytogenes EGD-e. Appl. Microbiol. Biotechnol. 2020, 104, 7093–7104. [Google Scholar] [CrossRef]
- Kovacevic, J.; Ziegler, J.; Wałecka-Zacharska, E.; Reimer, A.; Kitts, D.D.; Gilmour, M.W. Tolerance of Listeria monocytogenes to quaternary ammonium sanitizers is mediated by a novel efflux pump encoded by emrE. Appl. Environ. Microbiol. 2016, 82, 939–953. [Google Scholar] [CrossRef]
- Rodríguez-López, P.; Rodríguez-Herrera, J.J.; Vázquez-Sánchez, D.; López Cabo, M. Current Knowledge on Listeria monocytogenes Biofilms in Food-Related Environments: Incidence, Resistance to Biocides, Ecology and Biocontrol. Foods 2018, 7, 85. [Google Scholar] [CrossRef] [PubMed]
- Kropac, A.C.; Eshwar, A.K.; Stephan, R.; Tasara, T. New insights on the role of the pLMST6 plasmid in Listeria monocytogenes biocide tolerance and virulence. Front. Microbiol. 2019, 10, 1538. [Google Scholar] [CrossRef] [PubMed]
- Jensen, A.K.; Simonsen, J.; Ethelberg, S. Use of proton pump inhibitors and the risk of listeriosis: A nationwide registry-based case-control study. Clin. Infect. Dis. 2017, 64, 845–851. [Google Scholar] [CrossRef]
- Gahan, C.G.M.; Hill, C. Listeria monocytogenes: Survival and adaptation in the gastrointestinal tract. Front. Cell Infect. Microbiol. 2014, 4, 9. [Google Scholar] [CrossRef]
- Wemekamp-Kamphuis, H.H.; Wouters, J.A.; de Leeuw, P.P.L.A.; Hain, T.; Chakraborty, T.; Abee, T. Identification of sigma factor sigma B-controlled genes and their impact on acid stress, high hydrostatic pressure, and freeze survival in Listeria monocytogenes EGD-e. Appl. Environ. Microbiol. 2004, 70, 3457–3466. [Google Scholar] [CrossRef]
- Ryan, S.; Begley, M.; Gahan, C.G.M.; Hill, C. Molecular characterization of the arginine deiminase system in Listeria monocytogenes: Regulation and role in acid tolerance. Environ. Microbiol. 2009, 11, 432–445. [Google Scholar] [CrossRef]
- Chen, J.; Cheng, C.; Xia, Y.; Zhao, H.; Fang, C.; Shan, Y.; Wu, B.; Fang, W. Lmo0036, an ornithine and putrescine carbamoyltransferase in Listeria monocytogenes, participates in arginine deiminase and agmatine deiminase pathways and mediates acid tolerance. Microbiology 2011, 157, 3150–3161. [Google Scholar] [CrossRef]
- Cheng, C.; Dong, Z.; Han, X.; Sun, J.; Wang, H.; Jiang, L.; Yang, Y.; Ma, T.; Chen, Z.; Yu, J.; et al. Listeria monocytogenes 10403S arginine repressor ArgR finely tunes arginine metabolism regulation under acidic conditions. Front. Microbiol. 2017, 8, 145. [Google Scholar] [CrossRef]
- Rolhion, N.; Chassaing, B. When pathogenic bacteria meet the intestinal microbiota. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2016, 371, 20150504. [Google Scholar] [CrossRef]
- Archambaud, C.; Nahori, M.-A.; Soubigou, G.; Bécavin, C.; Laval, L.; Lechat, P.; Smokvina, T.; Langella, P.; Lecuit, M.; Cossart, P. Impact of lactobacilli on orally acquired listeriosis. Proc. Natl. Acad. Sci. USA 2012, 109, 16684–16689. [Google Scholar] [CrossRef]
- Becattini, S.; Littmann, E.R.; Carter, R.A.; Kim, S.G.; Morjaria, S.M.; Ling, L.; Gyaltshen, Y.; Fontana, E.; Taur, Y.; Leiner, I.M.; et al. Commensal microbes provide first line defense against Listeria monocytogenes infection. J. Exp. Med. 2017, 214, 1973–1989. [Google Scholar] [CrossRef]
- Nikitas, G.; Deschamps, C.; Disson, O.; Niault, T.; Cossart, P.; Lecuit, M. Transcytosis of Listeria monocytogenes across the intestinal barrier upon specific targeting of goblet cell accessible E-cadherin. J. Exp. Med. 2011, 208, 2263–2277. [Google Scholar] [CrossRef]
- Kühbacher, A.; Emmenlauer, M.; Rämo, P.; Kafai, N.; Dehio, C.; Cossart, P.; Pizarro-Cerdá, J. Genome-wide siRNA screen identifies complementary signaling pathways involved in Listeria infection and reveals different actin nucleation mechanisms during Listeria cell invasion and actin comet tail formation. mBio 2015, 6, e00598-15. [Google Scholar] [CrossRef]
- Jagadeesan, B.; Koo, O.K.; Kim, K.-P.; Burkholder, K.M.; Mishra, K.K.; Aroonnual, A.; Bhunia, A.K. LAP, an alcohol acetaldehyde dehydrogenase enzyme in Listeria, promotes bacterial adhesion to enterocyte-like Caco-2 cells only in pathogenic species. Microbiology 2010, 156, 2782–2795. [Google Scholar] [CrossRef] [PubMed]
- Burkholder, K.M.; Bhunia, A.K. Listeria monocytogenes uses Listeria adhesion protein (LAP) to promote bacterial transepithelial translocation and induces expression of LAP receptor Hsp60. Infect. Immun. 2010, 78, 5062–5073. [Google Scholar] [CrossRef] [PubMed]
- Drolia, R.; Tenguria, S.; Durkes, A.C.; Turner, J.R.; Bhunia, A.K. Listeria Adhesion Protein Induces Intestinal Epithelial Barrier Dysfunction for Bacterial Translocation. Cell Host Microbe 2018, 23, 470–484.e7. [Google Scholar] [CrossRef] [PubMed]
- Pizarro-Cerdá, J.; Cossart, P. Listeria monocytogenes: Cell Biology of Invasion and Intracellular Growth. Microbiol. Spectr. 2018, 6. [Google Scholar] [CrossRef]
- Prokop, A.; Gouin, E.; Villiers, V.; Nahori, M.-A.; Vincentelli, R.; Duval, M.; Cossart, P.; Dussurget, O. OrfX, a Nucleomodulin Required for Listeria monocytogenes Virulence. mBio 2017, 8, e01550-17. [Google Scholar] [CrossRef]
- Radoshevich, L.; Cossart, P. Listeria monocytogenes: Towards a complete picture of its physiology and pathogenesis. Nat. Rev. Microbiol. 2018, 16, 32–46. [Google Scholar] [CrossRef]
- Bavdek, A.; Kostanjšek, R.; Antonini, V.; Lakey, J.H.; Dalla Serra, M.; Gilbert, R.J.C.; Anderluh, G. pH dependence of listeriolysin O aggregation and pore-forming ability. FEBS J. 2012, 279, 126–141. [Google Scholar] [CrossRef]
- Portman, J.L.; Huang, Q.; Reniere, M.L.; Iavarone, A.T.; Portnoy, D.A. Activity of the pore-forming virulence factor listeriolysin O is reversibly inhibited by naturally occurring S-glutathionylation. Infect. Immun. 2017, 85, e00959-16. [Google Scholar] [CrossRef]
- Alonzo, F., 3rd; Port, G.C.; Cao, M.; Freitag, N.E. The posttranslocation chaperone PrsA2 contributes to multiple facets of Listeria monocytogenes pathogenesis. Infect. Immun. 2009, 77, 2612–2623. [Google Scholar] [CrossRef]
- Ignatov, D.; Vaitkevicius, K.; Durand, S.; Cahoon, L.; Sandberg, S.S.; Liu, X.; Kallipolitis, B.H.; Rydén, P.; Freitag, N.; Condon, C.; et al. An mRNA-mRNA interaction couples expression of a virulence factor and its chaperone in Listeria monocytogenes. Cell Rep. 2020, 30, 4027–4040.e7. [Google Scholar] [CrossRef] [PubMed]
- Gahan, C.G.M.; Hill, C. Gastrointestinal phase of Listeria monocytogenes infection. J. Appl. Microbiol. 2005, 98, 1345–1353. [Google Scholar] [CrossRef] [PubMed]
- Okada, Y.; Makino, S.; Okada, N.; Asakura, H.; Yamamoto, S.; Igimi, S. Identification and analysis of the osmotolerance associated genes in Listeria monocytogenes. Food Addit. Contam. Part A 2008, 25, 1089–1094. [Google Scholar] [CrossRef] [PubMed]
- Cremers, C.M.; Knoefler, D.; Vitvitsky, V.; Banerjee, R.; Jakob, U. Bile salts act as effective protein-unfolding agents and instigators of disulfide stress in vivo. Proc. Natl. Acad. Sci. USA 2014, 111, E1610–E1619. [Google Scholar] [CrossRef]
- Dowd, G.C.; Joyce, S.A.; Hill, C.; Gahan, C.G.M.G. Investigation of the mechanisms by which Listeria monocytogenes grows in porcine gallbladder bile. Infect. Immun. 2011, 79, 369–379. [Google Scholar] [CrossRef]
- Begley, M.; Gahan, C.G.M.; Hill, C. The interaction between bacteria and bile. FEMS Microbiol. Rev. 2005, 29, 625–651. [Google Scholar] [CrossRef]
- Sleator, R.D.; Wemekamp-Kamphuis, H.H.; Gahan, C.G.M.; Abee, T.; Hill, C. A PrfA-regulated bile exclusion system (BilE) is a novel virulence factor in Listeria monocytogenes. Mol. Microbiol. 2005, 55, 1183–1195. [Google Scholar] [CrossRef]
- Dussurget, O.; Cabanes, D.; Dehoux, P.; Lecuit, M.; Buchrieser, C.; Glaser, P.; Cossart, P.; European Listeria Genome Consortium. Listeria monocytogenes bile salt hydrolase is a PrfA-regulated virulence factor involved in the intestinal and hepatic phases of listeriosis. Mol. Microbiol. 2002, 45, 1095–1106. [Google Scholar] [CrossRef]
- Sue, D.; Boor, K.J.; Wiedmann, M. Sigma(B)-dependent expression patterns of compatible solute transporter genes opuCA and lmo1421 and the conjugated bile salt hydrolase gene bsh in Listeria monocytogenes. Microbiolog 2003, 149, 3247–3256. [Google Scholar] [CrossRef]
- Ridlon, J.M.; Harris, S.C.; Bhowmik, S.; Kang, D.-J.; Hylemon, P.B. Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes 2016, 7, 22–39. [Google Scholar] [CrossRef] [PubMed]
- Guariglia-Oropeza, V.; Orsi, R.H.; Guldimann, C.; Wiedmann, M.; Boor, K.J. The Listeria monocytogenes Bile Stimulon under Acidic Conditions Is Characterized by Strain-Specific Patterns and the Upregulation of Motility, Cell Wall Modification Functions, and the PrfA Regulon. Front. Microbiol. 2018, 9, 120. [Google Scholar] [CrossRef] [PubMed]
- Cossart, P. Illuminating the Landscape of Host-Pathogen Interactions with the Bacterium Listeria monocytogenes. Proc. Natl. Acad. Sci. USA 2011, 108, 19484–19491. [Google Scholar] [CrossRef]
- Jones, G.S.; Bussell, K.M.; Myers-Morales, T.; Fieldhouse, A.M.; Bou Ghanem, E.N.; D’Orazio, S.E.F. Intracellular Listeria monocytogenes Comprises a Minimal but Vital Fraction of the Intestinal Burden Following Foodborne Infection. Infect. Immun. 2015, 83, 3146–3156. [Google Scholar] [CrossRef]
- Melton-Witt, J.A.; Rafelski, S.M.; Portnoy, D.A.; Bakardjiev, A.I. Oral Infection with Signature-Tagged Listeria monocytogenes Reveals Organ-Specific Growth and Dissemination Routes in Guinea Pigs. Infect. Immun. 2012, 80, 720–732. [Google Scholar] [CrossRef]
- Toledo-Arana, A.; Dussurget, O.; Nikitas, G.; Sesto, N.; Guet-Revillet, H.; Balestrino, D.; Loh, E.; Gripenland, J.; Tiensuu, T.; Vaitkevicius, K.; et al. The Listeria Transcriptional Landscape from Saprophytism to Virulence. Nature 2009, 459, 950–956. [Google Scholar] [CrossRef]
- Quereda, J.J.; García-Del Portillo, F.; Pucciarelli, M.G. Listeria monocytogenes Remodels the Cell Surface in the Blood-Stage. Environ. Microbiol. Rep. 2016, 8, 641–648. [Google Scholar] [CrossRef]
- Quereda, J.J.; Ortega, A.D.; Pucciarelli, M.G.; García-Del Portillo, F. The Listeria Small RNA Rli27 Regulates a Cell Wall Protein inside Eukaryotic Cells by Targeting a Long 5′-UTR Variant. PLoS Genet. 2014, 10, e1004765. [Google Scholar] [CrossRef]
- Gouin, E.; Adib-Conquy, M.; Balestrino, D.; Nahori, M.-A.; Villiers, V.; Colland, F.; Dramsi, S.; Dussurget, O.; Cossart, P. The Listeria monocytogenes InlC Protein Interferes with Innate Immune Responses by Targeting the IκB Kinase Subunit IKKα. Proc. Natl. Acad. Sci. USA 2010, 107, 17333–17338. [Google Scholar] [CrossRef]
- Lebreton, A.; Lakisic, G.; Job, V.; Fritsch, L.; Tham, T.N.; Camejo, A.; Matteï, P.-J.; Regnault, B.; Nahori, M.-A.; Cabanes, D.; et al. A Bacterial Protein Targets the BAHD1 Chromatin Complex to Stimulate Type III Interferon Response. Science 2011, 331, 1319–1321. [Google Scholar] [CrossRef]
- Boneca, I.G.; Dussurget, O.; Cabanes, D.; Nahori, M.-A.; Sousa, S.; Lecuit, M.; Psylinakis, E.; Bouriotis, V.; Hugot, J.-P.; Giovannini, M.; et al. A Critical Role for Peptidoglycan N-Deacetylation in Listeria Evasion from the Host Innate Immune System. Proc. Natl. Acad. Sci. USA 2007, 104, 997–1002. [Google Scholar] [CrossRef] [PubMed]
- Blériot, C.; Dupuis, T.; Jouvion, G.; Eberl, G.; Disson, O.; Lecuit, M. Liver-Resident Macrophage Necroptosis Orchestrates Type 1 Microbicidal Inflammation and Type-2-Mediated Tissue Repair during Bacterial Infection. Immunity 2015, 42, 145–158. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Zhao, H.; Zheng, B.; Li, D.; Yuan, Y.; Han, Q.; Tian, Z.; Zhang, J. TLR2 Promotes Monocyte/Macrophage Recruitment Into the Liver and Microabscess Formation to Limit the Spread of Listeria monocytogenes. Front. Immunol. 2019, 10, 1388. [Google Scholar] [CrossRef] [PubMed]
- Witter, A.R.; Okunnu, B.M.; Berg, R.E. The Essential Role of Neutrophils during Infection with the Intracellular Bacterial Pathogen Listeria monocytogenes. J. Immunol. 2016, 197, 1557–1565. [Google Scholar] [CrossRef]
- Qiu, Z.; Khairallah, C.; Sheridan, B.S. Listeria monocytogenes: A Model Pathogen Continues to Refine Our Knowledge of the CD8 T Cell Response. Pathogens 2018, 7, 55. [Google Scholar] [CrossRef]
- Oevermann, A.; Zurbriggen, A.; Vandevelde, M. Rhombencephalitis caused by Listeria monocytogenes in humans and ruminants: A zoonosis on the rise? Interdiscip. Perspect. Infect. Dis. 2010, 2010, 632513. [Google Scholar] [CrossRef]
- Disson, O.; Lecuit, M. Targeting of the central nervous system by Listeria monocytogenes. Virulence 2012, 3, 213–221. [Google Scholar] [CrossRef]
- Karlsson, W.K.; Harboe, Z.B.; Roed, C.; Monrad, J.B.; Lindelof, M.; Larsen, V.A.; Kondziella, D. Early trigeminal nerve involvement in Listeria monocytogenes rhombencephalitis: Case series and systematic review. J. Neurol. 2017, 264, 1875–1884. [Google Scholar] [CrossRef]
- Pägelow, D.; Chhatbar, C.; Beineke, A.; Liu, X.; Nerlich, A.; van Vorst, K.; Rohde, M.; Kalinke, U.; Förster, R.; Halle, S.; et al. The olfactory epithelium as a port of entry in neonatal neurolisteriosis. Nat. Commun. 2018, 9, 4269. [Google Scholar] [CrossRef]
- Gründler, T.; Quednau, N.; Stump, C.; Orian-Rousseau, V.; Ishikawa, H.; Wolburg, H.; Schroten, H.; Tenenbaum, T.; Schwerk, C. The surface proteins InlA and InlB are interdependently required for polar basolateral invasion by Listeria monocytogenes in a human model of the blood-cerebrospinal fluid barrier. Microbes Infect. 2013, 15, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, P.; Halvorsen, E.M.; Ammendolia, D.A.; Mor-Vaknin, N.; O’Riordan, M.X.D.; Brumell, J.H.; Markovitz, D.M.; Higgins, D.E. Invasion of the Brain by Listeria monocytogenes Is Mediated by InlF and Host Cell Vimentin. mBio 2018, 9, e00160-18. [Google Scholar] [CrossRef] [PubMed]
- Maury, M.M.; Tsai, Y.-H.; Charlier, C.; Touchon, M.; Chenal-Francisque, V.; Leclercq, A.; Criscuolo, A.; Gaultier, C.; Roussel, S.; Brisabois, A.; et al. Uncovering Listeria monocytogenes Hypervirulence by Harnessing Its Biodiversity. Nat. Genet. 2016, 48, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Boland, J.A.; Krypotou, E.; Scortti, M. Listeria Placental Infection. mBio 2017, 8, e00949-17. [Google Scholar] [CrossRef]
- Charlier, C.; Disson, O.; Lecuit, M. Maternal-neonatal listeriosis. Virulence 2020, 11, 391–397. [Google Scholar] [CrossRef]
- Faralla, C.; Rizzuto, G.A.; Lowe, D.E.; Kim, B.; Cooke, C.; Shiow, L.R.; Bakardjiev, A.I. InlP, a New Virulence Factor with Strong Placental Tropism. Infect. Immun. 2016, 84, 3584–3596. [Google Scholar] [CrossRef]
- Faralla, C.; Bastounis, E.E.; Ortega, F.E.; Light, S.H.; Rizzuto, G.; Gao, L.; Marciano, D.K.; Nocadello, S.; Anderson, W.F.; Robbins, J.R.; et al. Listeria monocytogenes InlP interacts with afadin and facilitates basement membrane crossing. PLoS Pathog. 2018, 14, e1007094. [Google Scholar] [CrossRef]
- Coppola, F.; Fratianni, F.; Bianco, V.; Wang, Z.; Pellegrini, M.; Coppola, R.; Nazzaro, F. New methodologies as opportunities in the study of bacterial biofilms, including food-related applications. Microorganisms 2025, 13, 1062. [Google Scholar] [CrossRef]
- Zawiasa, A.; Schmidt, M.; Olejnik-Schmidt, A. Phage-based control of Listeria innocua in the food industry: A strategy for preventing Listeria monocytogenes persistence in biofilms. Viruses 2025, 17, 482. [Google Scholar] [CrossRef]
- Tuytschaever, T.; Raes, K.; Sampers, I. Biofilm detection in the food industry: Challenges in identifying biofilm EPS markers and analytical techniques with insights for Listeria monocytogenes. Int. J. Food Microbiol. 2025, 432, 111091. [Google Scholar] [CrossRef]
- Liu, X.; Xia, X.; Liu, Y.; Li, Z.; Shi, T.; Zhang, H.; Dong, Q. Recent advances on the formation, detection, resistance mechanism, and control technology of Listeria monocytogenes biofilm in food industry. Food Res. Int. 2024, 180, 114067. [Google Scholar] [CrossRef]
- Diaz, M.; Aird, H.; Le Viet, T.; Gutiérrez, A.V.; Larke-Mejia, N.; Omelchenko, O.; Moragues-Solanas, L.; Fritscher, J.; Som, N.; McLauchlin, J.; et al. Microbial composition and dynamics in environmental samples from a ready-to-eat food production facility with a long-term colonization of Listeria monocytogenes. Food Microbiol. 2025, 125, 104649. [Google Scholar] [CrossRef]
- Voglauer, E.M.; Alteio, L.V.; Pracser, N.; Thalguter, S.; Quijada, N.M.; Wagner, M.; Rychli, K. Listeria monocytogenes colonises established multispecies biofilms and resides within them without altering biofilm composition or gene expression. Microbiol. Res. 2025, 292, 127997. [Google Scholar] [CrossRef] [PubMed]
- Costerton, J.W.; Stewart, P.S.; Greenberg, E.P. Bacterial biofilms: A common cause of persistent infections. Science 1999, 284, 1318–1322. [Google Scholar] [CrossRef] [PubMed]
- Donlan, R.M.; Costerton, J.W. Biofilms: Survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 2002, 15, 167–193. [Google Scholar] [CrossRef] [PubMed]
- Parsek, M.R.; Greenberg, E.P. Sociomicrobiology: The connections between quorum sensing and biofilms. Trends Microbiol. 2005, 13, 27–33. [Google Scholar] [CrossRef]
- Kaplan, J.B. Biofilm dispersal: Mechanisms, clinical implications, and potential therapeutic uses. J. Dent. Res. 2010, 89, 205–218. [Google Scholar] [CrossRef]
- Fazeli-Nasab, B.; Sayyed, R.Z.; Mojahed, L.S.; Rahmani, A.F.; Ghafari, M.; Antonius, S. Biofilm production: A strategic mechanism for survival of microbes under stress conditions. Biocatal. Agric. Biotechnol. 2022, 42, 102337. [Google Scholar] [CrossRef]
- Branda, S.S.; Vik, Å.; Friedman, L.; Kolter, R. Biofilms: The matrix revisited. Trends Microbiol. 2005, 13, 20–26. [Google Scholar] [CrossRef]
- Abraham, W.R. Controlling biofilms of gram-positive pathogenic bacteria. Curr. Med. Chem. 2006, 13, 1509–1524. [Google Scholar] [CrossRef]
- Das, T.; Sehar, S.; Manefield, M. The roles of extracellular DNA in the structural integrity of extracellular polymeric substance and bacterial biofilm development. Environ. Microbiol. Rep. 2013, 5, 778–786. [Google Scholar] [CrossRef] [PubMed]
- Billings, N.; Birjiniuk, A.; Samad, T.S.; Doyle, P.S.; Ribbeck, K. Material properties of biofilms—A review of methods for understanding permeability and mechanics. Rep. Prog. Phys. 2015, 78, 036601. [Google Scholar] [CrossRef]
- Wang, X.; Xue, J.; Zhu, H.; Chen, S.; Wang, Y.; Xiao, Z.; Luo, Y. Advances in biofilm characterization: Utilizing rheology and atomic force microscopy in foods and related fields. Adv. Compos. Hybrid Mater. 2024, 7, 143. [Google Scholar] [CrossRef]
- Arthur, M.; Afari, E.L.; Alexa, E.A.; Zhu, M.J.; Gaffney, M.T.; Celayeta, J.M.F.; Burgess, C.M. Recent advances in examining the factors influencing the efficacy of biocides against Listeria monocytogenes biofilms in the food industry: A systematic review. Compr. Rev. Food Sci. Food Saf. 2025, 24, e70083. [Google Scholar] [CrossRef]
- Vallim, D.C.; Hofer, C.B.; Lisbôa, R.C.; Barbosa, A.V.; Rusak, L.A.; Falavina dos Reis, C.M.; Hofer, E. Twenty years of Listeria in Brazil: Occurrence of Listeria species and Listeria monocytogenes serovars in food samples in Brazil between 1990 and 2012. Sci. World J. 2015, 2015, 540204. [Google Scholar] [CrossRef]
- ABNT—Associação Brasileira de Normas Técnicas. Available online: https://www.abntcolecao.com.br/normavw.aspx?Q=M21jUUJDWXVsYnQ2alhkTkNmajhlajlkaVlYRVZEaTVobmtka0xsUUxWZz0= (accessed on 19 June 2025).
- ABNT—Associação Brasileira de Normas Técnicas. Available online: https://www.abntcolecao.com.br/normavw.aspx?Q=RWJ4NDJsVGZlejNaaXJTaHU5d0F6cHFlaHVBYXV0ampLQmFBdlVmM21Maz0= (accessed on 19 June 2025).
- ISO—International Organization for Standardization. Available online: https://www.iso.org/standard/60313.html (accessed on 30 June 2025).
- Garrido-Maestu, A.; Lamas, A.; Fornés, D.T.; Rodríguez, M.P. The use of multiplex real-time pcr for the simultaneous detection of foodborne bacterial pathogens. Methods Mol. Biol. 2025, 2852, 19–31. [Google Scholar] [CrossRef]
- Costa, P.V.; Nascimento, J.S.; Costa, L.E.O.; Ferreira, P.B.M.; Brandão, M.L.L. Listeria monocytogenes: Challenges of microbiological control of food in Brazil. Food Sci. Technol. Camp. 2022, 42, 19. [Google Scholar] [CrossRef]
- Hitchins, A.D.; Jinneman, K.; Chen, Y. Detection of Listeria monocytogenes in foods and environmental samples, and enumeration of Listeria monocytogenes in foods. In FDA’s Bacteriological Analytical Manual (BAM); FDA, Ed.; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2022; pp. 3–20. [Google Scholar]
- AOAC—Association of Official Analytical Chemists. Available online: https://www.aoac.org/official-methods-of-analysis/ (accessed on 18 June 2025).
- Reis, C.M.F. Avaliação das Metodologias Automatizadas VITEK 2 e MALDI-TOF/MS na Identificação de Cepas Atípicas de Listeria spp. Isoladas de Alimentos em Diferentes Regiões do Brasil. Master’s Thesis, Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Rio de Janeiro, Brazil, 2020. [Google Scholar]
- Jadhav, S.; Bhave, M.; Palombo, E.A. Methods used for the detection and subtyping of Listeria monocytogenes. J. Microbiol. Methods 2012, 88, 327–341. [Google Scholar] [CrossRef] [PubMed]
- Välimaa, A.-L.; Tilsala-Timisjärvi, A.; Virtanen, E. Rapid detection and identification methods for Listeria monocytogenes in the food chain—A review. Food Control 2015, 55, 103–114. [Google Scholar] [CrossRef]
- Liu, A.; Shen, L.; Zen, Z.; Sun, M.; Liu, Y.; Liu, S.; Li, C.; Wang, X. A mini review of the methods for Listeria monocytogenes detection. Food Anal. Methods 2018, 11, 215–223. [Google Scholar] [CrossRef]
- Gupta, P.; Adhikari, A. Novel approaches to environmental monitoring and control of Listeria monocytogenes in food production facilities. Foods 2022, 11, 1760. [Google Scholar] [CrossRef]
- Gasanov, U.; Hughes, D.; Hansbro, P.M. Methods for the isolation and identification of Listeria spp. and Listeria monocytogenes: A review. FEMS Microbiol. Rev. 2005, 29, 851–875. [Google Scholar] [CrossRef]
- Osek, J.; Lachtara, B.; Wieczorek, K. Listeria monocytogenes in foods—From culture identification to whole-genome characteristics. Food Sci. Nutr. 2022, 10, 2825–2854. [Google Scholar] [CrossRef] [PubMed]
- Fernández Blanco, A.; Hernández Pérez, M.; Moreno Trigos, Y.; García-Hernández, J. Development of optical label-free biosensor method in detection of Listeria monocytogenes from food. Sensors 2023, 23, 5570. [Google Scholar] [CrossRef] [PubMed]
- Fagerlund, A.; Møretrø, T.; Jensen, M.R.; Langsrud, S.; Moen, B. Early detection and population dynamics of Listeria monocytogenes in naturally contaminated drains from a meat processing plant. Front. Microbiol. 2025, 16, 1541481. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Jia, K.; Ran, J.; Du, Y.; Yu, X.; Cao, X.; Peng, L.; Chen, W.; Fang, R.; Li, Z. Rapid detection of Salmonella and Listeria monocytogenes in fresh beef using loop-mediated isothermal amplification. Foodborne Pathog. Dis. 2025; online ahead of print. [Google Scholar] [CrossRef]
- Kang, Q.; Zhang, S.; Ma, C.; Guo, R.; Yu, X.; Lin, T.; Pang, W.; Liu, Y.; Jiao, J.; Xu, M.; et al. A dual-mode colorimetric and fluorescence biosensor based on a nucleic acid multiplexing platform for the detection of Listeria monocytogenes. Anal. Chem. 2025, 97, 1853–1860. [Google Scholar] [CrossRef]
- Moppert, I.; Kim, E.; Yang, S.M.; Park, S.H. Development of multiplex PCR for detection of foodborne pathogens in fresh produce. Lett. Appl. Microbiol. 2025, 78, ovaf038. [Google Scholar] [CrossRef]
- Rawool, D.B.; Doijad, S.P.; Poharkar, K.V.; Negi, M.; Kale, S.B.; Malik, S.V.; Kurkure, N.V.; Chakraborty, T.; Barbuddhe, S.B. A multiplex PCR for detection of Listeria monocytogenes and its lineages. J. Microbiol. Methods 2016, 130, 144–147. [Google Scholar] [CrossRef]
- Tu, Z.; Choi, D.; Chen, Y.; Yu, J.H.; Huynh, T.N. The food fermentation fungus Aspergillus oryzae is a source of natural antimicrobials against Listeria monocytogenes. J. Dairy Sci. 2025, 108, 3444–3454. [Google Scholar] [CrossRef]
- Furlaneto, M.C.; Furlaneto-Maia, L. Antimicrobial nanoparticle-containing food packaging films for controlling Listeria spp.: An overview. Int. J. Food Microbiol. 2025, 427, 110959. [Google Scholar] [CrossRef]
- MAPA—Ministério da Agricultura e Pecuária. Available online: https://www.gov.br/agricultura/pt-br/assuntos/inspecao/produtos-animal/controle-de-patogenos/listeria-monocytogenes (accessed on 19 June 2025).
- ANVISA—Agência Nacional de Vigilância Sanitária, INº 161, 2022. Available online: https://www.cidasc.sc.gov.br/inspecao/files/2024/10/IN-No-161-DE-1o-DE-JULHO-DE-2022-Alterada-pela-IN-N%C2%B0-313-DE-4-DE-SETEMBRO-DE-2024.pdf (accessed on 19 June 2025).
- López, B.R.C.; Gómez Lozano, D.; Herrera Marteache, A.; Conchello Moreno, P.; Rota García, C. Control of persistent Listeria monocytogenes in the meat industry: From detection to prevention. Foods 2025, 14, 1519. [Google Scholar] [CrossRef]
- Portaria de Consolidação GM/MS nº 4, Dated 28 September 2017. Available online: http://www.portalsinan.saude.gov.br/images/documentos/Legislacoes/Portaria_Consolidacao_4_28_SETEMBRO_2017.pdf (accessed on 19 June 2025).
- Portaria GM/MS Nº 6.734, dated March 18, 2025. Available online: https://bvsms.saude.gov.br/bvs/saudelegis/gm/2025/prt6734_31_03_2025.html (accessed on 19 June 2025).
- Centers for Disease Control and Prevention. Surveillance for Listeria infections. Available online: https://www.cdc.gov/listeria/php/surveillance/surveillance.html (accessed on 18 September 2025).
- European Centre for Disease Prevention and Control. Listeriosis. Annual Epidemiological Report for 2023. Available online: https://www.ecdc.europa.eu/en/publications-data/listeriosis-annual-epidemiological-report-2023 (accessed on 18 September 2025).
- Lomonaco, S.; Nucera, D.; Filipello, V. The evolution and epidemiology of Listeria monocytogenes in Europe and the United States. Infect. Genet. Evol. 2015, 35, 172–183. [Google Scholar] [CrossRef] [PubMed]
- Camargo, A.C.; Moura, A.; Avillan, J.; Herman, N.; McFarland, A.P.; Sreevatsan, S.; Call, D.R.; Woodward, J.J.; Lecuit, M.; Nero, L.A. Whole-genome sequencing reveals Listeria monocytogenes diversity and allows identification of long-term persistent strains in Brazil. Environ. Microbiol. 2019, 21, 4478–4487. [Google Scholar] [CrossRef] [PubMed]
- Mantilla, S.P.S.; Franco, R.M.; Oliveira, L.A.T.; Santos, É.B.; Gouvêa, R. Ocorrência de Listeria spp. em amostras de carne bovina moída comercializadas no município de Niterói, RJ, Brasil. Ciênc. Agrotec. 2007, 31, 1225–1230. [Google Scholar] [CrossRef]
- Monteiro, L.R.L.; Mesquita, A.J.D.; Borges André, M.C.D.P.; Cardoso, J.L. Molecular characterization of Listeria monocytogenes isolated from animal products in a city of Northern Brazil. Cienc. Rural 2013, 43, e16. [Google Scholar] [CrossRef]
- Mendonça, K.S.; Michael, G.B.; Nalério, É.S.; Mendonça, M.; Cardoso, M.R.I.; Silva, W.P. Genotypic profile of Listeria monocytogenes isolated in refrigerated chickens in southern Rio Grande do Sul, Brazil. Cienc. Rural 2016, 46, 132. [Google Scholar] [CrossRef]
- Silva, A.S.; Duarte, E.A.A.; Oliveira, T.A.S.; Evangelista-Barreto, N.S. Identification of Listeria monocytogenes in cattle meat using biochemical methods and amplification of the hemolysin gene. An. Acad. Bras. Cienc. 2020, 92, e20180557. [Google Scholar] [CrossRef]
- Soares, V.M.; Padilha, M.B.; Guerra, M.E.M.; Schneider, F.A.; Gasparetto, R.; Santos, E.A.R.; Tadielo, L.E.; Brum, M.C.S.; Traesel, C.K.; Pereira, J.G. Identification of Salmonella spp., Listeria monocytogenes, and indicator microorganisms in commercialized raw meats and fresh sausages from Uruguaiana, Rio Grande do Sul, Brazil. Cienc. Rural 2021, 51, e20200569. [Google Scholar] [CrossRef]
- Cavalcanti, A.A.; Limeira, C.H.; Siqueira, I.N.; Lima, A.C.; Medeiros, F.J.P.; Souza, J.G.; Medeiros, N.G.A.; Oliveira Filho, A.A.; Melo, M.A. The prevalence of Listeria monocytogenes in meat products in Brazil: A systematic literature review and meta-analysis. Res. Vet. Sci. 2022, 145, 169–176. [Google Scholar] [CrossRef]
- MAPA—Ministério da Agricultura e Pecuária, Secretaria de Defesa Agropecuária, Departamento de Inspeção de Produtos de Origem Animal, Coordenação Geral de Programas Especiais. Anuário dos Programas de Controle de Alimentos de Origem Animal do DIPOA—Volume 6 (2015), 1st ed.; MAPA/SDA/DIPOA: Brasília, DF, Brazil, 2020; Volume 6, pp. 1–44. [Google Scholar]
- MAPA—Ministério da Agricultura e Pecuária, Secretaria de Defesa Agropecuária, Departamento de Inspeção de Produtos de Origem Animal, Coordenação Geral de Programas Especiais. Anuário dos Programas de Controle de Alimentos de Origem Animal do DIPOA—Volume 10 (2015), 1st ed.; MAPA/SDA/DIPOA: Brasília, DF, Brazil, 2024; Volume 10, pp. 1–63. [Google Scholar]
Diagnostic Method | Advantages | Disadvantages |
---|---|---|
Classical culture/ISO 11290-1 and 11290-2 (ABNT) | -Gold standard for isolation -Allows subsequent strain typing -Internationally standardized methodology | -Time-consuming (up to 6 days) -Requires two enrichment steps -Relatively high costs -Sensitive to competing contaminants -Produce live bacterial colonies |
BAM/FDA | -Standardized method, freely available -Biochemical confirmation -Allows outbreak traceability | -Time-consuming (24–48 h enrichment + subsequent steps) -Requires prior isolation -Multiple and complex steps -Produce live bacterial colonies |
AOAC/LAMP | -Rapid (results in 24 h) -High sensitivity -Can be applied after enrichment | -Requires specialized equipment -Requires DNA extraction -Does not produce live bacterial colonies |
PCR/Multiplex PCR | -Rapid and specific -Multiplex allows detection of multiple genes or pathogens simultaneously -Faster than classical culture | -Does not allow bacterial isolation -Sample inhibitors possible -Cost of reagents -Does not produce live bacterial colonies |
qPCR/RT-PCR | -Quantitative detection -High sensitivity -Faster than culture-based methods | -Requires calibration and controls -Does not produce live bacterial colonies -Expensive equipment |
DNA Microarrays/Biosensors | -Allows analysis of multiple targets simultaneously -Useful for environmental or food monitoring | -High cost -Requires specialized infrastructure -Complex data interpretation -Does not produce live bacterial colonies |
ELISA/ELFA/Immunomagnetic separation | -Simple to use -Detects specific antigens or viable cells | -Lower sensitivity compared to PCR -Time-consuming -Possibility of cross-reactivity -Does not produce live bacterial colonies |
Spectroscopy/Spectrometry | -Emerging rapid methods -Potential for direct analysis in food | -Methods still under development -Expensive equipment -Requires robust validation -Does not produce live bacterial colonies |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Sousa, F.G.; Fraga, R.M.L.; Mendes, A.C.R.; Souza, R.C.; Beier, S.L. Listeria monocytogenes: A Foodborne Pathogen with Implications for One Health and the Brazilian Context. Microorganisms 2025, 13, 2280. https://doi.org/10.3390/microorganisms13102280
de Sousa FG, Fraga RML, Mendes ACR, Souza RC, Beier SL. Listeria monocytogenes: A Foodborne Pathogen with Implications for One Health and the Brazilian Context. Microorganisms. 2025; 13(10):2280. https://doi.org/10.3390/microorganisms13102280
Chicago/Turabian Stylede Sousa, Felipe Gaia, Rosely Maria Luzia Fraga, Ana Cristina Ribeiro Mendes, Rogério Carvalho Souza, and Suzane Lilian Beier. 2025. "Listeria monocytogenes: A Foodborne Pathogen with Implications for One Health and the Brazilian Context" Microorganisms 13, no. 10: 2280. https://doi.org/10.3390/microorganisms13102280
APA Stylede Sousa, F. G., Fraga, R. M. L., Mendes, A. C. R., Souza, R. C., & Beier, S. L. (2025). Listeria monocytogenes: A Foodborne Pathogen with Implications for One Health and the Brazilian Context. Microorganisms, 13(10), 2280. https://doi.org/10.3390/microorganisms13102280