Lactococcus lactis Strain Plasma Uniquely Induces IFN-α Production via Plasmacytoid Dendritic Cell Activation: A Comparative Study of Postbiotic Products
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strains
2.2. 16S rRNA Gene Sequencing
2.3. FITC Staining of Bacterial Strains
2.4. pDC Induction
2.5. pDC Phagocytosis Assay
2.6. IFN-α Production from pDCs
3. Results
3.1. Images from Laser Scanning Confocal Fluorescence Microscopy
3.2. IFN-α Production by pDCs Induced by Each Strain
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Harteloh, P.; van Mechelen, R. Mortality rates of the Spanish flu and coronavirus disease 2019 in The Netherlands: A historical comparison. J. Infect. Dis. 2024, 230, 38–44. [Google Scholar] [CrossRef]
- Mattiuzzi, C.; Lippi, G. Historical comparison between the death rate for Spanish flu and coronavirus disease 2019 in Italy. J. Infect. Dis. 2024, 229, 1928–1929. [Google Scholar] [CrossRef]
- GBD 2021 Demographics Collaborators. Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: A comprehensive demographic analysis for the global burden of disease study 2021. Lancet 2024, 403, 1989–2056. [Google Scholar]
- Bormann, M.; Brochhagen, L.; Alt, M.; Otte, M.; Thummler, L.; van de Sand, L.; Kraiselburd, I.; Thomas, A.; Gosch, J.; Brab, P.; et al. Immune responses in COVID-19 patients during breakthrough infection with SARS-CoV-2 variants Delta, Omicron-BA.1 and Omicron-BA.5. Front. Immunol. 2023, 14, 1150667. [Google Scholar] [CrossRef] [PubMed]
- Fiolet, T.; Kherabi, Y.; MacDonald, C.J.; Ghosn, J.; Peiffer-Smadja, N. Comparing COVID-19 vaccines for their characteristics, efficacy and effectiveness against SARS-CoV-2 and variants of concern: A narrative review. Clin. Microbiol. Infect. 2022, 28, 202–221. [Google Scholar] [PubMed]
- Nagano, M.; Tanabe, K.; Kamei, K.; Lim, S.; Nakamura, H.; Itoh, S. Public health and economic impact of periodic COVID-19 vaccination with BNT162b2 for old adults and high-risk patients in an illustrative prefecture of Japan: A budget impact analysis. Infect. Dis. Ther. 2024, 13, 2155–2177. [Google Scholar]
- Müller, U.; Steinhoff, U.; Reis, L.F.; Hemmi, S.; Pavlovic, J.; Zinkernagel, R.M.; Aguet, M. Functional role of type I and type II interferons in antiviral defense. Science 1994, 264, 1918–1921. [Google Scholar] [CrossRef]
- Hadjadj, J.; Yatim, N.; Barnabei, L.; Corneau, A.; Boussier, J.; Smith, N.; Péré, H.; Charbit, B.; Bondet, V.; Chenevier-Gobeaux, C.; et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science 2020, 369, 718–724. [Google Scholar] [CrossRef]
- Xu, N.; Pan, J.; Sun, L.; Zhou, C.; Huang, S.; Chen, M.; Zhang, J.; Zhu, T.; Li, J.; Zhang, H.; et al. Interferon α-2b spray shortened viral shedding time of SARS-CoV-2 Omicron variant: An open prospective cohort study. Front. Immunol. 2022, 13, 967716. [Google Scholar]
- Mitsuoka, T. Development of functional foods. Biosci. Microbiot. Food Health 2014, 33, 117–128. [Google Scholar] [CrossRef]
- Choi, D.W.; Jung, S.Y.; Kang, J.; Nam, Y.D.; Lim, S.I.; Kim, K.T.; Shin, H.S. Immune-enhancing effect of nanometric Lactobacillus plantarum nF1 (nLp-nF1) in a mouse model of cyclophosphamide-induced immunosuppression. J. Microbiol. Biotechnol. 2018, 28, 218–226. [Google Scholar] [CrossRef]
- Salminen, S.; Collado, M.C.; Endo, A.; Hill, C.; Lebeer, S.; Quigley, E.M.M.; Sanders, M.E.; Shamir, R.; Swann, J.R.; Szajewska, H.; et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 649–667. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Mukherjee, S.; Li, J.; Hou, W.; Pan, C.; Liu, J. Mucosal immunity-mediated modulation of the gut microbiome by oral delivery of probiotics into Peyer’s patches. Sci. Adv. 2021, 7, eabf0677. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, A.D.; Leoni, J.; Paz, M.L.; Maglio, D.H.G. Lipoteichoic acid from Lacticaseibacillus rhamnosus GG modulates dendritic cells and T cells in the gut. Nutrients 2022, 14, 723. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Bang, S.J.; Kim, J.Y.; Choi, E.J.; Heo, K.; Shim, J.J.; Lee, J.L. The probiotic strain Bifidobacterium animalis ssp. lactis HY8002 potentially improves the mucosal integrity of an altered intestinal microbial environment. Front. Microbiol. 2022, 13, 817591. [Google Scholar]
- Sato, T.; Hu, J.P.; Ohki, K.; Yamaura, M.; Washio, J.; Matsuyama, J.; Takahashi, N. Identification of mutans streptococci by restriction fragment length polymorphism analysis of polymerase chain reaction-amplified 16S ribosomal RNA genes. Oral Microbiol. Immunol. 2003, 18, 323–326. [Google Scholar] [CrossRef]
- Stackebrandt, E. Taxonomic parameters revisited: Tarnished gold standards. Microbiol. Today 2006, 4, 152–155. [Google Scholar]
- Medina, E.; Goldmann, O. In vivo and ex vivo protocols for measuring the killing of extracellular pathogens by macrophages. Curr. Protoc. Immunol. 2011, 92, 14.19.1–14.19.17. [Google Scholar] [CrossRef]
- Weingart, C.L.; Broitman-Maduro, G.; Dean, G.; Newman, S.; Peppler, M.; Weiss, A.A. Fluorescent labels influence phagocytosis of Bordetella pertussis by human neutrophils. Infect. Immun. 1999, 67, 4264–4267. [Google Scholar] [CrossRef]
- Jounai, K.; Ikado, K.; Sugimura, T.; Ano, Y.; Braun, J.; Fujiwara, D. Spherical lactic acid bacteria activate plasmacytoid dendritic cells immunomodulatory function via TLR9-dependent crosstalk with myeloid dendritic cells. PLoS ONE 2012, 7, e32588. [Google Scholar]
- Joffe, A.M.; Bakalar, M.H.; Fletcher, D.A. Macrophage phagocytosis assay with reconstituted target particles. Nat. Protoc. 2020, 15, 2230–2246. [Google Scholar] [CrossRef]
- Kanayama, M.; Kato, Y.; Tsuji, T.; Konoeda, Y.; Hashimoto, A.; Kanauchi, O.; Fujii, T.; Fujiwara, D. Enhancement of immune-modulative effect of lactic acid bacteria on plasmacytoid dendritic cells with sucrose palmitate. Sci. Rep. 2018, 8, 3147. [Google Scholar] [CrossRef]
- Reizis, B.; Bunin, A.; Ghosh, H.S.; Lewis, K.L.; Sisirak, V. Plasmacytoid dendritic cells: Recent progress and open questions. Annu. Rev. Immunol. 2011, 29, 163–183. [Google Scholar] [CrossRef]
- Krug, A.; Rothenfusser, S.; Hornung, V.; Jahrsdörfer, B.; Blackwell, S.; Ballas, Z.K.; Endres, S.; Krieg, A.M.; Hartmann, G. Identification of CpG oligonucleotide sequences with high induction of IFN-alpha/beta in plasmacytoid dendritic cells. Eur. J. Immunol. 2001, 31, 2154–2163. [Google Scholar] [CrossRef]
- Jounai, K.; Sugimura, T.; Ohshio, K.; Fujiwara, D. Oral administration of Lactococcus lactis subsp. lactis JCM5805 enhances lung immune response resulting in protection from murine parainfluenza virus infection. PLoS ONE 2015, 10, e0119055. [Google Scholar] [CrossRef] [PubMed]
- Swiecki, M.; Colonna, M. The multifaceted biology of plasmacytoid dendritic cells. Nat. Rev. Immunol. 2015, 15, 471–485. [Google Scholar] [CrossRef] [PubMed]
- Schoggins, J.W. Interferon-stimulated genes: Roles in viral pathogenesis. Curr. Opin. Virol. 2014, 6, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Wolf, A.J.; Liu, G.Y. Peptidoglycan recognition by the innate immune system. Nat. Rev. Immunol. 2023, 23, 283–298. [Google Scholar] [CrossRef]
- Bastos, P.A.D.; Wheeler, R.; Boneca, I.G. Kinetics and dynamics of peptidoglycan interactions with the mammalian host. FEMS Microbiol. Rev. 2021, 45, fuaa044. [Google Scholar]
- Kim, T.; Pazhoor, S.; Bao, M.; Zhang, Z.; Hanabuchi, S.; Facchinetti, V.; Bover, L.; Plumas, J.; Chaperot, L.; Qin, J.; et al. Aspartate-glutamate-alanine-histidine box motif (DEAH)/RNA helicase A helicase 36 senses microbial DNA and activates type I interferons. Immunity 2014, 39, 111–122. [Google Scholar]
- Li, D.; Wu, M. Pattern recognition receptors in health and diseases. Signal Transduct. Target. Ther. 2021, 6, 291. [Google Scholar] [CrossRef] [PubMed]
- Lichtner, M.; Mastroianni, C.M.; Rossi, R.; Russo, G.; Belvisi, V.; Marocco, R.; Mascia, C.; Del Borgo, C.; Mengoni, F.; Sauzullo, I.; et al. Severe and persistent depletion of circulating plasmacytoid dendritic cells in patients with 2009 pandemic H1N1 infection. PLoS ONE 2011, 6, e19872. [Google Scholar] [CrossRef]
- Moss, N.J.; Magaret, A.; Laing, K.J.; Kask, A.S.; Wang, M.; Mark, K.E.; Schiffer, J.T.; Wald, A.; Koelle, D.M. Peripheral blood CD4 T-cell and plasmacytoid dendritic cell (pDC) reactivity to herpes simplex virus 2 and pDC number do not correlate with the clinical or virologic severity of recurrent genital herpes. J. Virol. 2012, 86, 9952–9963. [Google Scholar] [CrossRef]
- Le Bon, A.; Tough, D.F. Links between innate and adaptive immunity via type I interferon. Cytokine Growth Factor Rev. 2002, 13, 95–109. [Google Scholar] [CrossRef]
- Thomas, J.M.; Pos, Z.; Reinboth, J.; Wang, R.Y.; Wang, E.; Frank, G.M.; Dong, T.; Liu, Y.J.; Gutman, G.A.; Braciale, T.J.; et al. Differential responses of plasmacytoid dendritic cells to influenza virus infection. PLoS ONE 2014, 9, e108703. [Google Scholar]
- Contoli, M.; Papi, A.; Tomassetti, L.; Rizzo, P.; Vieceli Dalla Sega, F.; Fortini, F.; Torsani, F.; Morandi, L.; Ronzoni, L.; Zucchetti, O.; et al. Blood interferon-a and severity, outcomes, and inflammatory profiles in hospitalized COVID-19 patients. Front. Immunol. 2021, 12, 648004. [Google Scholar] [CrossRef]
- Schuhenn, J.; Meister, T.L.; Todt, D.; Bracht, T.; Schork, K.; Billaud, J.N.; Elsner, C.; Heinen, N.; Karakoese, Z.; Haid, S.; et al. Differential interferon-a subtype induced immune signatures are associated with suppression of SARS-CoV-2 infection. Proc. Natl. Acad. Sci. USA 2022, 119, e2111600119. [Google Scholar] [CrossRef] [PubMed]
- Matos, A.D.R.; Wunderlich, K.; Schloer, S.; Schughart, K.; Geffers, R.; Seders, M.; Witt, M.; Christersson, A.; Wiewrodt, R.; Wiebe, K.; et al. Antiviral potential of human IFN-a subtypes against influenza A H3N2 infection in human lung explants reveals subtype-specific activities. Emerg. Microbes Infect. 2019, 8, 1763–1776. [Google Scholar] [CrossRef] [PubMed]
- Ianevski, A.; Yao, R.; Zusinaite, E.; Lello, L.S.; Wang, S.; Jo, E.; Yang, J.; Ravlo, E.; Wang, W.; Lysvand, H.; et al. Synergistic interferon-alpha-based combinations for treatment of SARS-CoV-2 and other viral infections. Viruses 2021, 13, 2489. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fujimura, S.; Kawamura, M.; Tamura, Y. Lactococcus lactis Strain Plasma Uniquely Induces IFN-α Production via Plasmacytoid Dendritic Cell Activation: A Comparative Study of Postbiotic Products. Microorganisms 2025, 13, 2261. https://doi.org/10.3390/microorganisms13102261
Fujimura S, Kawamura M, Tamura Y. Lactococcus lactis Strain Plasma Uniquely Induces IFN-α Production via Plasmacytoid Dendritic Cell Activation: A Comparative Study of Postbiotic Products. Microorganisms. 2025; 13(10):2261. https://doi.org/10.3390/microorganisms13102261
Chicago/Turabian StyleFujimura, Shigeru, Masato Kawamura, and Yurina Tamura. 2025. "Lactococcus lactis Strain Plasma Uniquely Induces IFN-α Production via Plasmacytoid Dendritic Cell Activation: A Comparative Study of Postbiotic Products" Microorganisms 13, no. 10: 2261. https://doi.org/10.3390/microorganisms13102261
APA StyleFujimura, S., Kawamura, M., & Tamura, Y. (2025). Lactococcus lactis Strain Plasma Uniquely Induces IFN-α Production via Plasmacytoid Dendritic Cell Activation: A Comparative Study of Postbiotic Products. Microorganisms, 13(10), 2261. https://doi.org/10.3390/microorganisms13102261