The Potential of Probiotics in Reducing Ventilator-Associated Pneumonia: A Literature-Based Analysis
Abstract
:1. Introduction
2. The Impact of Probiotics on Respiratory Health and VAP
2.1. Probiotics, Prebiotics, and Synbiotics
2.2. The Role of Probiotics in Respiratory Health and Ventilator-Associated Pneumonia
2.2.1. Reduction in Pathogenic Colonization and Lowered VAP Risk
2.2.2. Stabilization of Gut Microbiota and Prevention of Bacterial Translocation
2.2.3. Enhancement of Immune Function and Modulation of Inflammatory Responses
2.2.4. Maintenance of Intestinal Barrier Integrity and Prevention of Pathogen Translocation
3. Efficacy of Probiotics and Synbiotics in VAP Prevention: Clinical Insights
3.1. Influence of Study Design and Patient Characteristics on Probiotic and Synbiotic Effectiveness
3.2. Impact of Dosage and Administration Strategies on VAP Outcomes
4. Weighing the Evidence: Systematic Reviews and Meta-Analysis on Probiotics and Synbiotics for VAP Reduction
4.1. Effectiveness of Probiotics and Synbiotics in Reducing VAP Incidence
4.2. Limitations and Heterogeneity in Existing Studies
4.3. Clinical and Economic Considerations
4.4. Conclusion and Future Directions for Systematic Reviews and Meta-Analyses
5. Future Directions in Probiotics and Synbiotics for VAP Prevention
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kalil, A.C.; Metersky, M.L.; Klompas, M.; Muscedere, J.; Sweeney, D.A.; Palmer, L.B.; Napolitano, L.M.; O’Grady, N.P.; Bartlett, J.G.; Carratalà, J.; et al. Management of Adults With Hospital-acquired and Ventilator-associated Pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin. Infect. Dis. 2016, 63, e61–e111. [Google Scholar] [CrossRef] [PubMed]
- Meduri, G.U. Diagnosis and differential diagnosis of ventilator-associated pneumonia. Clin. Chest Med. 1995, 16, 61–93. [Google Scholar] [CrossRef] [PubMed]
- Wunderink, R.G.; Woldenberg, L.S.; Zeiss, J.; Day, C.M.; Ciemins, J.; Lacher, D.A. The radiologic diagnosis of autopsy-proven ventilator-associated pneumonia. Chest 1992, 101, 458–463. [Google Scholar] [CrossRef]
- Metersky, M.L.; Kalil, A.C. Management of Ventilator-Associated Pneumonia: Guidelines. Infect. Dis. Clin. N. Am. 2024, 38, 87–101. [Google Scholar] [CrossRef]
- Rosenthal, V.D.; Memish, Z.A.; Bearman, G. Preventing ventilator-associated pneumonia: A position paper of the International Society for Infectious Diseases, 2024 update. Int. J. Infect. Dis. 2025, 151, 107305. [Google Scholar] [CrossRef]
- Siempos, I.I.; Ntaidou, T.K.; Falagas, M.E. Impact of the administration of probiotics on the incidence of ventilator-associated pneumonia: A meta-analysis of randomized controlled trials. Crit. Care Med. 2010, 38, 954–962. [Google Scholar] [CrossRef] [PubMed]
- Cheema, H.A.; Shahid, A.; Ayyan, M.; Mustafa, B.; Zahid, A.; Fatima, M.; Ehsan, M.; Athar, F.; Duric, N.; Szakmany, T. Probiotics for the Prevention of Ventilator-Associated Pneumonia: An Updated Systematic Review and Meta-Analysis of Randomised Controlled Trials. Nutrients 2022, 14, 1600. [Google Scholar] [CrossRef]
- Vergin, F. Antibiotics and probiotics. Hippokrates 1954, 25, 116–119. [Google Scholar]
- Silva, D.R.; Sardi, J.d.C.O.; de Souza Pitangui, N.; Roque, S.M.; da Silva, A.C.B.; Rosalen, P.L. Probiotics as an alternative antimicrobial therapy: Current reality and future directions. J. Funct. Foods 2020, 73, 104080. [Google Scholar] [CrossRef]
- Gibson, G.R.; Roberfroid, M.B. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J. Nutr. 1995, 125, 1401–1412. [Google Scholar] [CrossRef]
- Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D.; et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491–502. [Google Scholar] [CrossRef]
- Markowiak, P.; Śliżewska, K. Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients 2017, 9, 1021. [Google Scholar] [CrossRef] [PubMed]
- Yadav, M.K.; Kumari, I.; Singh, B.; Sharma, K.K.; Tiwari, S.K. Probiotics, prebiotics and synbiotics: Safe options for next-generation therapeutics. Appl. Microbiol. Biotechnol. 2022, 106, 505–521. [Google Scholar] [CrossRef]
- Klarin, B.; Molin, G.; Jeppsson, B.; Larsson, A. Use of the probiotic Lactobacillus plantarum 299 to reduce pathogenic bacteria in the oropharynx of intubated patients: A randomised controlled open pilot study. Crit. Care 2008, 12, R136. [Google Scholar] [CrossRef] [PubMed]
- Klarin, B.; Adolfsson, A.; Torstensson, A.; Larsson, A. Can probiotics be an alternative to chlorhexidine for oral care in the mechanically ventilated patient? A multicentre, prospective, randomised controlled open trial. Crit. Care 2018, 22, 272. [Google Scholar] [CrossRef] [PubMed]
- Morrow, L.E.; Kollef, M.H.; Casale, T.B. Probiotic prophylaxis of ventilator-associated pneumonia: A blinded, randomized, controlled trial. Am. J. Respir. Crit. Care Med. 2010, 182, 1058–1064. [Google Scholar] [CrossRef]
- Cook, D.J.; Johnstone, J.; Marshall, J.C.; Lauzier, F.; Thabane, L.; Mehta, S.; Dodek, P.M.; McIntyre, L.; Pagliarello, J.; Henderson, W.; et al. Probiotics: Prevention of Severe Pneumonia and Endotracheal Colonization Trial-PROSPECT: A pilot trial. Trials 2016, 17, 377. [Google Scholar] [CrossRef]
- Tsilika, M.; Thoma, G.; Aidoni, Z.; Tsaousi, G.; Fotiadis, K.; Stavrou, G.; Malliou, P.; Chorti, A.; Massa, H.; Antypa, E.; et al. A four-probiotic preparation for ventilator-associated pneumonia in multi-trauma patients: Results of a randomized clinical trial. Int. J. Antimicrob. Agents 2022, 59, 106471. [Google Scholar] [CrossRef]
- Forestier, C.; Guelon, D.; Cluytens, V.; Gillart, T.; Sirot, J.; De Champs, C. Oral probiotic and prevention of Pseudomonas aeruginosa infections: A randomized, double-blind, placebo-controlled pilot study in intensive care unit patients. Crit. Care 2008, 12, R69. [Google Scholar] [CrossRef]
- Shimizu, K.; Yamada, T.; Ogura, H.; Mohri, T.; Kiguchi, T.; Fujimi, S.; Asahara, T.; Yamada, T.; Ojima, M.; Ikeda, M.; et al. Synbiotics modulate gut microbiota and reduce enteritis and ventilator-associated pneumonia in patients with sepsis: A randomized controlled trial. Crit. Care 2018, 22, 239. [Google Scholar] [CrossRef]
- Giamarellos-Bourboulis, E.J.; Bengmark, S.; Kanellakopoulou, K.; Kotzampassi, K. Pro- and synbiotics to control inflammation and infection in patients with multiple injuries. J. Trauma 2009, 67, 815–821. [Google Scholar] [CrossRef]
- Shimizu, K.; Ogura, H.; Kabata, D.; Shintani, A.; Tasaki, O.; Ojima, M.; Ikeda, M.; Shimazu, T. Association of prophylactic synbiotics with reduction in diarrhea and pneumonia in mechanically ventilated critically ill patients: A propensity score analysis. J. Infect. Chemother. 2018, 24, 795–801. [Google Scholar] [CrossRef] [PubMed]
- Kasiri, F.; Soltani, R.; Khorvash, F.; Ataei, B.; Nasirian, M.; Hakamifard, A. Evaluation of Synbiotics in the Prevention of Ventilator-Associated Pneumonia: A Randomized, Triple-Blind, Placebo-Controlled Clinical Trial. Int. J. Prev. Med. 2023, 14, 124. [Google Scholar] [CrossRef] [PubMed]
- Johnstone, J.; Meade, M.; Lauzier, F.; Marshall, J.; Duan, E.; Dionne, J.; Arabi, Y.M.; Heels-Ansdell, D.; Thabane, L.; Lamarche, D.; et al. Effect of Probiotics on Incident Ventilator-Associated Pneumonia in Critically Ill Patients: A Randomized Clinical Trial. JAMA 2021, 326, 1024–1033. [Google Scholar] [CrossRef] [PubMed]
- Lau, V.I.; Xie, F.; Fowler, R.A.; Rochwerg, B.; Johnstone, J.; Lauzier, F.; Marshall, J.C.; Basmaji, J.; Henderson, W.; Khwaja, K.; et al. Health economic evaluation alongside the Probiotics to Prevent Severe Pneumonia and Endotracheal Colonization Trial (E-PROSPECT): A cost-effectiveness analysis. Can. J. Anaesth. 2022, 69, 1515–1526. [Google Scholar] [CrossRef]
- Knight, D.J.; Gardiner, D.; Banks, A.; Snape, S.E.; Weston, V.C.; Bengmark, S.; Girling, K.J. Effect of synbiotic therapy on the incidence of ventilator associated pneumonia in critically ill patients: A randomised, double-blind, placebo-controlled trial. Intensiv. Care Med. 2009, 35, 854–861. [Google Scholar] [CrossRef]
- Zeng, J.; Wang, C.T.; Zhang, F.S.; Qi, F.; Wang, S.F.; Ma, S.; Wu, T.J.; Tian, H.; Tian, Z.T.; Zhang, S.L.; et al. Effect of probiotics on the incidence of ventilator-associated pneumonia in critically ill patients: A randomized controlled multicenter trial. Intensiv. Care Med. 2016, 42, 1018–1028. [Google Scholar] [CrossRef]
- Mahmoodpoor, A.; Hamishehkar, H.; Asghari, R.; Abri, R.; Shadvar, K.; Sanaie, S. Effect of a Probiotic Preparation on Ventilator-Associated Pneumonia in Critically Ill Patients Admitted to the Intensive Care Unit: A Prospective Double-Blind Randomized Controlled Trial. Nutr. Clin. Pr. 2019, 34, 156–162. [Google Scholar] [CrossRef]
- Barraud, D.; Blard, C.; Hein, F.; Marçon, O.; Cravoisy, A.; Nace, L.; Alla, F.; Bollaert, P.E.; Gibot, S. Probiotics in the critically ill patient: A double blind, randomized, placebo-controlled trial. Intensiv. Care Med. 2010, 36, 1540–1547. [Google Scholar] [CrossRef]
- Bo, L.; Li, J.; Tao, T.; Bai, Y.; Ye, X.; Hotchkiss, R.S.; Kollef, M.H.; Crooks, N.H.; Deng, X. Probiotics for preventing ventilator-associated pneumonia. Cochrane Database Syst. Rev. 2014, 2014, Cd009066. [Google Scholar] [CrossRef]
- Su, M.; Jia, Y.; Li, Y.; Zhou, D.; Jia, J. Probiotics for the Prevention of Ventilator-Associated Pneumonia: A Meta-Analysis of Randomized Controlled Trials. Respir. Care 2020, 65, 673–685. [Google Scholar] [CrossRef] [PubMed]
- Lau, V.I.; Rochwerg, B.; Xie, F.; Johnstone, J.; Basmaji, J.; Balakumaran, J.; Iansavichene, A.; Cook, D.J. Probiotics in hospitalized adult patients: A systematic review of economic evaluations. Can. J. Anaesth. 2020, 67, 247–261. [Google Scholar] [CrossRef]
- Sharif, S.; Greer, A.; Skorupski, C.; Hao, Q.; Johnstone, J.; Dionne, J.C.; Lau, V.; Manzanares, W.; Eltorki, M.; Duan, E.; et al. Probiotics in Critical Illness: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Crit. Care Med. 2022, 50, 1175–1186. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.K.; Paul, S.; Dutta, C. Geography, Ethnicity or Subsistence-Specific Variations in Human Microbiome Composition and Diversity. Front. Microbiol. 2017, 8, 1162. [Google Scholar] [CrossRef] [PubMed]
- McClave, S.A.; Taylor, B.E.; Martindale, R.G.; Warren, M.M.; Johnson, D.R.; Braunschweig, C.; McCarthy, M.S.; Davanos, E.; Rice, T.W.; Cresci, G.A.; et al. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically Ill Patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). JPEN J. Parenter. Enter. Nutr. 2016, 40, 159–211. [Google Scholar] [CrossRef]
- Wan, K.; Liang, H.; Yan, G.; Zou, B.; Huang, C.; Jiang, M. A quality assessment of evidence-based guidelines for the prevention and management of ventilator-associated pneumonia: A systematic review. J. Thorac. Dis. 2019, 11, 2795–2807. [Google Scholar] [CrossRef]
- Klompas, M.; Branson, R.; Cawcutt, K.; Crist, M.; Eichenwald, E.C.; Greene, L.R.; Lee, G.; Maragakis, L.L.; Powell, K.; Priebe, G.P.; et al. Strategies to prevent ventilator-associated pneumonia, ventilator-associated events, and nonventilator hospital-acquired pneumonia in acute-care hospitals: 2022 Update. Infect. Control Hosp. Epidemiol. 2022, 43, 687–713. [Google Scholar] [CrossRef]
Study (Year) | Study Design | Sample Size | Patient Population | Probiotic Strain(s)/Synbiotics | Control Group | Reference |
---|---|---|---|---|---|---|
Forestier et al. (2008) | RCT ¶ (prospective, randomized, double-blind, placebo-controlled pilot study) | 208 | ICU ‡ >18 years old and hospital stay > 48 h | Probiotics: Lactobacillus casei rhamnosus | Placebo | [19] |
Klarin et al. (2008) | RCT ¶ (randomized controlled open pilot study) | 44 | ICU ‡ >18 years old and MV § time > 24 h | Probiotics: Lactobacillus plantarum 299 (LP299) | CHX † solution oral care | [14] |
Knight et al. (2009) | RCT ¶ (prospective, randomized, double-blind, placebo-controlled trial) | 259 | ICU ‡ >16 years old and MV § time > 48 h | Synbiotic 2000 FORTE (Pediococcus pentosaceus, Leuconostoc mesenteroides, Lactobacillus paracasei subsp. paracasei Lactobacillus plantarum) | Placebo | [26] |
Giamarellos- Bourboulis et al. (2009) | RCT ¶ (randomized, Double-blind, placebo-controlled, multicenter clinical trial) | 72 | ICU ‡ Severe multiple injuries with MV § | Synbiotic 2000 FORTE (Pediococcus pentosaceus, Leuconostoc mesenteroides, Lactobacillus paracasei subsp. paracasei Lactobacillus plantarum) | Placebo | [21] |
Barraud et al. (2010) | RCT ¶ (randomized, Double-blind, placebo-controlled trial) | 167 | ICU ‡ >18 years old and MV § time > 48 h | Synbiotics: Ergyphilus (Lactobacillus rhamnosus GG, Lactobacillus casei, Lactobacillus acidophilus, Bifidobacterium bifidum) | Placebo | [29] |
Morrow et al. (2010) | RCT ¶ (prospective, randomized, double-blind, placebo-controlled trial) | 138 | ICU ‡ >19 years old and MV § time > 72 h (tracheostomy excluded) | Probiotics: Lactobacillus rhamnosus GG | Placebo | [16] |
Zeng et al. (2016) | RCT ¶ (prospective, randomized, open-label, controlled multicenter study) | 235 | ICU ‡ >18 years old and MV § time > 48 h | Probiotics: Bacillus subtilis Enterococcus faecalis | Only standard strategies | [27] |
Cook et al. (2016) | RCT ¶ (randomized concealed blinded parallel trial) | 150 | ICU ‡ >18 years old and MV § time > 72 h | Probiotics: Lactobacillus rhamnosus GG | Placebo | [17] |
Shimizu et al. (2018) | Cohort study (retrospective observational study) | 179 | ICU ‡ MV | Synbiotics: Bifidobacterium breve, Lactobacillus casei, | Synbiotics not used | [22] |
Shimizu et al. (2018) | RCT ¶ (randomized, Single-blind study) | 72 | ICU ‡ Sepsis >16 years old and MV § | Synbiotics: Bifidobacterium breve, Lactobacillus casei, | Synbiotics not used | [20] |
Klarin et al. (2018) | RCT ¶ (prospective, randomized, multicenter, controlled open trial) | 137 | ICU ‡ >18 years old and MV § time > 24 h (tracheostomy excluded) | Probiotics: Lactobacillus plantarum 299 (LP299) | CHX † solution oral care | [15] |
Mahmoodpoor et al. (2019) | RCT ¶ (prospective, randomized, double-blind, placebo-controlled trial) | 100 | ICU ‡ >18 years old and MV § time > 48 h (tracheostomy excluded) | Probiotics: Lactobacillus species (casei, acidophilus, rhamnosus, bulgaricus), Bifidobacterium species (breve, longum), Streptococcus thermophilus | Placebo | [28] |
Johnstone et al. (2021) | RCT ¶ (prospective, randomized, blind, placebo-controlled trial) | 2650 | ICU ‡ >18 years old and MV § time > 72 h | Probiotics: Lactobacillus rhamnosus GG | Placebo | [24] |
Tsilika et al. (2022) | RCT ¶ (randomized, double-blind, multicenter, placebo-controlled trial) | 112 | ICU ‡ Multi-trauma patients requiring MV § 18–80 years old | Probiotics: Lactobacillus acidophilus LA-5, Lactobacillus plantarum UBLP-40, Bifidobacterium animalis subsp. lactis BB-12, Saccharomyces boulardii Unique-28 | Placebo | [18] |
Lau et al. (2022) | RCT ¶ (prospective, randomized, blind, placebo-controlled trial) | 2650 | ICU ‡ >18 years old and MV § time > 72 h | Probiotics: Lactobacillus rhamnosus GG | Placebo | [25] |
Kasiri et al. (2023) | RCT ¶ (randomized, triple-blind, single-center, placebo-controlled trial) | 80 | ICU ‡ MV § time > 48 h | Synbiotics: FamiLact 2plus: Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus rhamnosus, Lactobacillus salivarius, Lactobacillus reuteri, Bifidobacterium lactis, Bifidobacterium longum, Bifidobacterium bifidum | Placebo | [23] |
Study (Year) | Probiotic Strain(s)/Synbiotics | Administration Route and Dose | VAP | Reference | ||
---|---|---|---|---|---|---|
Outcomes Mention (Primary/ Secondary) | Conclusion on Effect | Assessment of Prevention (Positive/ Negative) | ||||
Forestier et al. (2008) | Probiotics: Lactobacillus casei rhamnosus | Nasogastric tube feeding (109 CFUs †) twice daily | Primary | Delayed P. aeruginosa VAP ‡ acquisition | Positive | [19] |
Klarin et al. (2008) | Probiotics: Lactobacillus plantarum 299 (LP299) | Gauze swabs oral care (1010 CFUs †) twice daily | Secondary | Reduced colonization | Positive | [14] |
Knight et al. (2009) | Synbiotic 2000 FORTE (Pediococcus pentosaceus, Leuconostoc mesenteroides, Lactobacillus paracasei subsp. paracasei Lactobacillus plantarum) | Nasogastric/ orogastric tube feeding (1010 bacteria/sachet) twice daily | Primary | Not significantly reduced VAP ‡ incidence | Negative | [26] |
Giamarellos- Bourboulis et al. (2009) | Synbiotic 2000 FORTE (Pediococcus pentosaceus, Leuconostoc mesenteroides, Lactobacillus paracasei subsp. paracasei Lactobacillus plantarum) | Nasogastric tube/ gastrostomy feeding (1011 CFUs †) once daily | Secondary | Not significantly reduced VAP ‡ incidence (but may reduce A. baumannii-induced VAP ‡) | Negative | [21] |
Barraud et al. (2010) | Synbiotics: Ergyphilus (Lactobacillus rhamnosus GG, Lactobacillus casei, Lactobacillus acidophilus, Bifidobacterium bifidum) | Enteral feeding tube (2 × 1010 revivable bacteria) once daily | Secondary | Not directly mentioned (but the incidence of VAP ‡ showed no significance) | Negative | [29] |
Morrow et al. (2010) | Probiotics: Lactobacillus rhamnosus GG | One as a slurry to the oropharynx and the other via nasogastric tube feeding (2 × 2 × 109 CFUs †) twice daily | Primary | Significantly reduced VAP ‡ incidence | Positive | [16] |
Zeng et al. (2016) | Probiotics: Bacillus subtilis Enterococcus faecalis | Nasogastric tube feeding (5 × 109 CFUs †) three times daily | Primary | Significantly reduced and delayed the onset of VAP ‡ | Positive | [27] |
Cook et al. (2016) | Probiotics: Lactobacillus rhamnosus GG | Gastric/ duodenal tube feeding (1010 CFU †) twice daily | Primary | No clear conclusion on VAP ‡ prevention | Not applicable | [17] |
Shimizu et al. (2018) | Synbiotics: Bifidobacterium breve, Lactobacillus casei, | Nasal tube feeding (2 × 108 living bacteria/g × 3 g/day) within 3 days | Primary | Trend of reduced VAP ‡, but not significant | Positive | [22] |
Shimizu et al. (2018) | Synbiotics: Bifidobacterium breve, Lactobacillus casei, | Nasal tube feeding (2 × 108 living bacteria/g × 3 g/day) within 3 days | Primary | Significantly reduced VAP ‡ incidence and its cumulative rate | Positive | [20] |
Klarin et al. (2018) | Probiotics: Lactobacillus plantarum 299 | Gauze swabs oral care (1010 CFUs †) twice daily | Secondary | Not significantly reduced VAP ‡ incidence | Negative | [15] |
Mahmoodpoor et al. (2019) | Probiotics: Lactobacillus species (casei, acidophilus, rhamnosus, bulgaricus), Bifidobacterium species (breve, longum), Streptococcus thermophilus | Feeding tube feeding (1010 bacteria consisting) twice daily | Primary | Significantly reduced VAP ‡ incidence, but no timing difference | Positive | [28] |
Johnstone et al. (2021) | Probiotics: Lactobacillus rhamnosus GG | Enteral (1010 CFUs †) twice daily | Primary | No significant reduction in VAP ‡ incidence | Negative | [24] |
Tsilika et al. (2022) | Probiotics: Lactobacillus acidophilus LA-5, Lactobacillus plantarum UBLP-40, Bifidobacterium animalis subsp. lactis BB-12, Saccharomyces boulardii Unique-28 | One as a slurry to the oropharynx and the other via nasogastric or gastrostomy tube feeding (2 × 5.5 × 109 CFUs †) twice daily | Primary | Significantly reduced VAP ‡ incidence (reducing the risk of P. aeruginosa and A. baumannii-induced VAP ‡) | Positive | [18] |
Lau et al. (2022) | Probiotics: Lactobacillus rhamnosus GG | Enteral (1010 CFUs †) twice daily | Primary | No significant reduction in VAP ‡ incidence costly, not cost effective | Negative | [25] |
Kasiri et al. (2023) | Synbiotics: FamiLact 2plus: Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus rhamnosus, Lactobacillus salivarius, Lactobacillus reuteri, Bifidobacterium lactis, Bifidobacterium longum, Bifidobacterium bifidum | Intestinal feeding (109 CFUs †) twice daily | Primary | Significantly reduced VAP ‡ incidence | Positive | [23] |
Study (Year) | Study Type | No. of RCTs | Sample Size | Primary Outcomes (VAP Incidence) | Conclusion and Recommendation | Reference |
---|---|---|---|---|---|---|
Siempos et al. (2010) | Systematic Review and Meta-analysis | 5 | 689 |
| Probiotics reduce VAP ※ risk. Prior reviews were inconclusive due to limited data. | [6] |
Bo et al. (2014) | Systematic Review and Meta-analysis | 8 | 1083 | OR ‡ 0.70 (95% CI † 0.52–0.95) | Probiotics may lower VAP ※ risk but should be used cautiously. Further research is needed. | [30] |
Lau et al. (2020) | Systematic Review | 7 Studies (1 study mentions VAP) | Not specified | Cost–benefit analysis | Probiotics reduce VAP ※ incidence, but the economic impact varies. | [32] |
Su et al. (2020) | Systematic Review and Meta-analysis | 14 | 1975 |
| Probiotics significantly lower VAP ※ but need verification in large trials. | [31] |
Cheema et al. (2022) | Systematic Review and Meta-analysis | 18 | 4893 | RR ⁂ 0.68 (95% CI † 0.55–0.84) | Probiotics may reduce VAP ※ incidence, but evidence quality is low. | [7] |
Sharif et al. (2022) | Systematic Review and Meta-analysis | 65 (17 RCTs § mention VAP ※) | 8483 (2367 patients included) | RR ⁂ 0.72 (95% CI † 0.59–0.89) RD ¶ 6.9% reduction (95% CI † 2.7–10.2%) | Probiotics appear effective, but evidence certainty is low. | [33] |
Study (Year) | Other Important VAP Outcomes | Study Limitations | Reference |
---|---|---|---|
Siempos et al. (2010) |
|
| [6] |
Bo et al. (2014) |
| Low evidence quality: Small sample sizes, high methodological heterogeneity, and probiotic strain variations make definitive conclusions difficult. | [30] |
Lau et al. (2020) | Only one study mentioned VAP ⁂, which was a model-based health economic evaluation (observational study). |
| [32] |
Su et al. (2020) | Probiotics significantly reduced antibiotic duration for VAP ⁂ (mean difference: −1.44 days, 95% CI † [−2.88, −0.01]). |
| [31] |
Cheema et al. (2022) |
|
| [7] |
Sharif et al. (2022) | Sensitivity analysis: Excluding high risk-of-bias studies found no significant on VAP ⁂ incidence (RR ¶ 0.91, 95% CI † 0.73–1.13). |
| [33] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, T.-A.; Chuang, Y.-T.; Pai, S.-C.; Zheng, J.-F. The Potential of Probiotics in Reducing Ventilator-Associated Pneumonia: A Literature-Based Analysis. Microorganisms 2025, 13, 856. https://doi.org/10.3390/microorganisms13040856
Chen T-A, Chuang Y-T, Pai S-C, Zheng J-F. The Potential of Probiotics in Reducing Ventilator-Associated Pneumonia: A Literature-Based Analysis. Microorganisms. 2025; 13(4):856. https://doi.org/10.3390/microorganisms13040856
Chicago/Turabian StyleChen, Tao-An, Ya-Ting Chuang, Szu-Chi Pai, and Jin-Fu Zheng. 2025. "The Potential of Probiotics in Reducing Ventilator-Associated Pneumonia: A Literature-Based Analysis" Microorganisms 13, no. 4: 856. https://doi.org/10.3390/microorganisms13040856
APA StyleChen, T.-A., Chuang, Y.-T., Pai, S.-C., & Zheng, J.-F. (2025). The Potential of Probiotics in Reducing Ventilator-Associated Pneumonia: A Literature-Based Analysis. Microorganisms, 13(4), 856. https://doi.org/10.3390/microorganisms13040856