Probiotics as Adjuvants to Standard Helicobacter pylori Treatment: Evidence for the Use of Lacidofil®, an Established Blend of Thoroughly Characterized Strains
Abstract
1. Introduction
Literature Search
2. Microbiology and Epidemiology of H. pylori Infection
3. Diagnosis and Treatment of H. pylori Infection
4. The Role of Probiotics
5. Lacidofil®
6. Clinical Studies
6.1. Studies Conducted in Children
6.2. Studies Conducted in Adults
6.3. Summary of Clinical Studies’ Characteristics
6.4. Inclusion of Studies in Systematic Reviews and Meta-Analyses
7. Mechanisms of Action
7.1. In Vivo Studies
7.2. In Vitro Studies on Lacidofil® Strains
8. Limitations and Perspectives for Future Research
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ansari, S.; Yamaoka, Y. Helicobacter pylori Infection, Its Laboratory Diagnosis, and Antimicrobial Resistance: A Perspective of Clinical Relevance. Clin. Microbiol. Rev. 2022, 35, e00258-00221. [Google Scholar] [CrossRef]
- Kusters, J.G.; Van Vliet, A.H.M.; Kuipers, E.J. Pathogenesis of Helicobacter pylori Infection. Clin. Microbiol. Rev. 2006, 19, 449–490. [Google Scholar] [CrossRef]
- Wroblewski, L.E.; Peek, R.M.; Wilson, K.T. Helicobacter pylori and Gastric Cancer: Factors that Modulate Disease Risk. Clin. Microbiol. Rev. 2010, 23, 713–739. [Google Scholar] [CrossRef]
- Tshibangu-Kabamba, E.; Yamaoka, Y. Helicobacter pylori infection and antibiotic resistance—From biology to clinical implications. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 613–629. [Google Scholar] [CrossRef]
- Goderska, K.; Agudo Pena, S.; Alarcon, T. Helicobacter pylori treatment: Antibiotics or probiotics. Appl. Microbiol. Biotechnol. 2018, 102, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations; World Health Organization. Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria; Food and Agriculture Organization of the United Nations: Rome, Italy, 2001. [Google Scholar]
- Yang, Z.; Zhou, Y.; Han, Z.; He, K.; Zhang, Y.; Wu, D.; Chen, H. The effects of probiotics supplementation on Helicobacter pylori standard treatment: An umbrella review of systematic reviews with meta-analyses. Sci. Rep. 2024, 14, 10069. [Google Scholar] [CrossRef] [PubMed]
- Chey, W.D.; Howden, C.W.; Moss, S.F.; Morgan, D.R.; Greer, K.B.; Grover, S.; Shah, S.C. ACG Clinical Guideline: Treatment of Helicobacter pylori Infection. Off. J. Am. Coll. Gastroenterol.|ACG 2024, 119, 1730–1753. [Google Scholar] [CrossRef] [PubMed]
- Fallone, C.A.; Moss, S.F.; Malfertheiner, P. Reconciliation of Recent Helicobacter pylori Treatment Guidelines in a Time of Increasing Resistance to Antibiotics. Gastroenterology 2019, 157, 44–53. [Google Scholar] [CrossRef]
- Jones, N.L.; Koletzko, S.; Goodman, K.; Bontems, P.; Cadranel, S.; Casswall, T.; Czinn, S.; Gold, B.D.; Guarner, J.; Elitsur, Y. Joint ESPGHAN/NASPGHAN guidelines for the management of Helicobacter pylori in children and adolescents (update 2016). J. Pediatr. Gastroenterol. Nutr. 2017, 64, 991–1003. [Google Scholar] [CrossRef]
- Katelaris, P.; Hunt, R.; Bazzoli, F.; Cohen, H.; Fock, K.M.; Gemilyan, M.; Malfertheiner, P.; Mégraud, F.; Piscoya, A.; Quach, D.; et al. Helicobacter pylori World Gastroenterology Organization Global Guideline. J. Clin. Gastroenterol. 2023, 57, 111–126. [Google Scholar] [CrossRef]
- Marasco, G.; Bruni, A.; Nardone, O.M.; Lopetuso, L.R. Insights into Probiotic Prescription among Gastroenterologists and Other Healthcare Professionals: Evidence from an Italian Survey. J. Clin. Med. 2024, 13, 4749. [Google Scholar] [CrossRef] [PubMed]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Keikha, M.; Karbalaei, M. Probiotics as the live microscopic fighters against Helicobacter pylori gastric infections. BMC Gastroenterol. 2021, 21, 388. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Zhu, M.; He, Y.; Wang, T.; Tian, D.; Shu, J. The impacts of probiotics in eradication therapy of Helicobacter pylori. Arch. Microbiol. 2022, 204, 692. [Google Scholar] [CrossRef]
- Whiteside, S.A.; Mohiuddin, M.M.; Shlimon, S.; Chahal, J.; MacPherson, C.W.; Jass, J.; Tompkins, T.A.; Creuzenet, C. In Vitro Framework to Assess the Anti-Helicobacter pylori Potential of Lactic Acid Bacteria Secretions as Alternatives to Antibiotics. Int. J. Mol. Sci. 2021, 22, 5650. [Google Scholar] [CrossRef]
- Ansari, S.; Yamaoka, Y. Survival of Helicobacter pylori in gastric acidic territory. Helicobacter 2017, 22, e12386. [Google Scholar] [CrossRef]
- Wilson, K.T.; Crabtree, J.E. Immunology of Helicobacter pylori: Insights Into the Failure of the Immune Response and Perspectives on Vaccine Studies. Gastroenterology 2007, 133, 288–308. [Google Scholar] [CrossRef]
- Zuo, Y.; Jing, Z.; Bie, M.; Xu, C.; Hao, X.; Wang, B. Association between Helicobacter pylori infection and the risk of colorectal cancer: A systematic review and meta-analysis. Medicine 2020, 99, e21832. [Google Scholar] [CrossRef]
- Graham, D.Y. Implications of the paradigm shift in management of Helicobacter pylori infections. Ther. Adv. Gastroenterol. 2023, 16, 17562848231160858. [Google Scholar] [CrossRef]
- Cardos, A.I.; Maghiar, A.; Zaha, D.C.; Pop, O.; Fritea, L.; Miere, F.; Cavalu, S. Evolution of Diagnostic Methods for Helicobacter pylori Infections: From Traditional Tests to High Technology, Advanced Sensitivity and Discrimination Tools. Diagnostics 2022, 12, 508. [Google Scholar] [CrossRef]
- Marrero Rolon, R.; Cunningham, S.A.; Mandrekar, J.N.; Polo, E.T.; Patel, R. Clinical Evaluation of a Real-Time PCR Assay for Simultaneous Detection of Helicobacter pylori and Genotypic Markers of Clarithromycin Resistance Directly from Stool. J. Clin. Microbiol. 2021, 59, e03040-20. [Google Scholar] [CrossRef]
- Ashinze, P.; Karkhanis, S.; Oki, B.P.; Ngirigwa, C.F.; Olaniyan, M.O.; Oluyole, A.; Olatunji, S.; Aminu, A.M. Addressing the global challenge of Helicobacter pylori induced dyspepsia and peptic ulcer disease: Socioeconomic, clinicopathologic, and clinico-pharmacological implications of the new treatment guidelines. Gut Microbes Rep. 2025, 2, 2487469. [Google Scholar] [CrossRef]
- Hsu, J.-Y.; Wu, U.-I.; Wang, J.-T.; Sheng, W.-H.; Chen, Y.-C.; Chang, S.-C. Managing Helicobacter pylori as an Infectious Disease: Implementation of Antimicrobial Stewardship. Helicobacter 2025, 30, e70013. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-C.; Dore, M.P.; Graham, D.Y. Diagnosis and treatment of Helicobacter pylori infection. Annu. Rev. Med. 2022, 73, 183–195. [Google Scholar] [CrossRef] [PubMed]
- Pacifico, L. Probiotics for the treatment of Helicobacter pylori infection in children. World J. Gastroenterol. 2014, 20, 673. [Google Scholar] [CrossRef] [PubMed]
- Cortés, P.; Nelson, A.D.; Bi, Y.; Stancampiano, F.F.; Murray, L.P.; Pujalte, G.G.A.; Gomez, V.; Harris, D.M. Treatment Approach of Refractory Helicobacter pylori Infection: A Comprehensive Review. J. Prim. Care Community Health 2021, 12, 215013272110140. [Google Scholar] [CrossRef]
- Gupta, A.; Shetty, S.; Mutalik, S.; Raghu Chandrashekar, H.; Nandakumar, K.; Mathew, E.M.; Jha, A.; Mishra, B.; Rajpurohit, S.; Ravi, G.; et al. Treatment of H. pylori infection and gastric ulcer: Need for novel Pharmaceutical formulation. Heliyon 2023, 9, e20406. [Google Scholar] [CrossRef]
- Gotteland, M.; Brunser, O.; Cruchet, S. Systematic review: Are probiotics useful in controlling gastric colonization by Helicobacter pylori? Aliment. Pharmacol. Ther. 2006, 23, 1077–1086. [Google Scholar] [CrossRef]
- Fakharian, F.; Asgari, B.; Nabavi-Rad, A.; Sadeghi, A.; Soleimani, N.; Yadegar, A.; Zali, M.R. The interplay between Helicobacter pylori and the gut microbiota: An emerging driver influencing the immune system homeostasis and gastric carcinogenesis. Front. Cell. Infect. Microbiol. 2022, 12, 953718. [Google Scholar] [CrossRef]
- Ji, J.; Yang, H. Using Probiotics as Supplementation for Helicobacter pylori Antibiotic Therapy. Int. J. Mol. Sci. 2020, 21, 1136. [Google Scholar] [CrossRef]
- Dash, D.; Mishra, V.; Panda, M.K.; Pathak, S.K. Effects of Lactobacillus spp. on Helicobacter pylori: A Promising Frontier in the Era of Antibiotic Resistance. Probiotics Antimicrob. Proteins 2024. [Google Scholar] [CrossRef]
- Mladenova, I. Epidemiology of Helicobacter pylori Resistance to Antibiotics (A Narrative Review). Antibiotics 2023, 12, 1184. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.; Chen, C.; Wen, T.; Zhao, Q. Probiotics for the prevention of antibiotic-associated diarrhea in adults: A meta-analysis of randomized placebo-controlled trials. J. Clin. Gastroenterol. 2021, 55, 469–480. [Google Scholar] [CrossRef] [PubMed]
- Goodman, C.; Keating, G.; Georgousopoulou, E.; Hespe, C.; Levett, K. Probiotics for the prevention of antibiotic-associated diarrhoea: A systematic review and meta-analysis. BMJ Open 2021, 11, e043054. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.M.; Harris, H.M.; Mattarelli, P.; O’toole, P.W.; Pot, B.; Vandamme, P.; Walter, J. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef]
- Naser, S.M.; Hagen, K.E.; Vancanneyt, M.; Cleenwerck, I.; Swings, J.; Tompkins, T.A. Lactobacillus suntoryeus Cachat and Priest 2005 is a later synonym of Lactobacillus helveticus (Orla-Jensen 1919) Bergey et al. 1925 (Approved Lists 1980). Int. J. Syst. Evol. Microbiol. 2006, 56, 355–360. [Google Scholar] [CrossRef]
- Foster, L.M.; Tompkins, T.A.; Dahl, W.J. A comprehensive post-market review of studies on a probiotic product containing Lactobacillus helveticus R0052 and Lactobacillus rhamnosus R0011. Benef. Microbes 2011, 2, 319–334. [Google Scholar] [CrossRef]
- Tompkins, T.A.; Barreau, G.; Broadbent, J.R. Complete Genome Sequence of Lactobacillus helveticus R0052, a Commercial Probiotic Strain. J. Bacteriol. 2012, 194, 6349. [Google Scholar] [CrossRef]
- Tompkins, T.A.; Barreau, G.; de Carvalho, V.G. Draft Genome Sequence of Probiotic Strain Lactobacillus rhamnosus R0011. J. Bacteriol. 2012, 194, 902. [Google Scholar] [CrossRef]
- Koutsoumanis, K.; Allende, A.; Álvarez-Ordóñez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; De Cesare, A.; Hilbert, F.; Lindqvist, R.; Nauta, M.; et al. Update of the list of qualified presumption of safety (QPS) recommended microorganisms intentionally added to food or feed as notified to EFSA. EFSA J. 2023, 21, e07747. [Google Scholar] [CrossRef]
- Health Canada. Probiotics. In Natural Health Product Directorate; Health Canada—Natural Health Product Directorate: Ottawa, ON, Canada, 2023. [Google Scholar]
- Bourdichon, F.; Budde-Niekiel, A.; Dubois, A.; Fritz, D.; Hatte, J.-L.; Laulund, S.; McAuliffe, O.; Ouwehand, A.C.; Yao, S.; Zgoda, A. Inventory of microbial food cultures with safety demonstration in fermented food products Update of the Bulletin of the IDF N° 377-2002, N° 455-2012 and N° 495-2018. In Bulletin of the International Dairy Federation; International Dairy Federation: Brussels, Belgium, 2022; Issue 514. [Google Scholar]
- Plewinska, E.M.; Planeta-Malecka, I.; Bak-Romaniszyn, L.; Czkwianianc, E.; Malecka-Panas, E. Probiotics in the treatment of Helicobacter pylori infection in children. Gastroenterol. Pol. 2006, 13, 315–319. [Google Scholar]
- Gnaytenko, O.; Lychkovska, O.; Kulachkovska, Y.; Semen, V. Antibiotic-associated diarrhoea as a complication of anti-helicobacter therapy in children. Pract. Med. 2009, 5, 76–83. [Google Scholar]
- Abaturov, A.E.; Gerasymenko, O.N. Ефективність ерадикації Helicobacter pylori при пoєднанoму застoсуванні антибактеріальнoї та прoбіoтичнoї терапії у дітей, хвoрих на хрoнічний гастрoдуoденіт [Effectiveness of Helicobacter pylori eradication with the combined use of antibacterial and probiotic therapy in children with chronic gastroduodenitis]. Сoвременная педиатрия [Mod. Pediatr.] 2014, 2, 90–94. [Google Scholar]
- Bielanski, W.; Ziemniak, W.; Plonka, M.; Dobrzanska, M.J.; Kaminska, A.; Konturek, S.J. Improvement of anti-Helicobacter pylori therapy by the use of commercially available probiotics. Gut 2002, 51, A98. [Google Scholar]
- Ziemniak, W. Efficacy of Helicobacter pylori eradication taking into account its resistance to antibiotics. J. Physiol. Pharmacol. 2006, 57 (Suppl. S3), 123–141. [Google Scholar]
- Babak, O. The use of Lacidofil in treatment of duodenal peptic ulcers associated with H. pylori. Нoвoсти фармации и медицины [News Pharm. Med.] 2007, 5, 24–25. [Google Scholar]
- Vdovychenko, V.; Demidov, A.; Bidyuk, O. Efficiency of quadrotherapy with probiotics in patients with duodenal peptic ulcer. Сучасна гастрoентерoлoгія [Curr. Gastroenterol.] 2008, 5, 90–92. [Google Scholar]
- Kiattiweerasak, A.; Aumpan, N.; Pornthisarn, B.; Chonprasertsuk, S.; Siramolpiwat, S.; Bhanthumkomol, P.; Nunanan, P.; Issariyakulkarn, N.; Mahachai, V.; Vilaichone, R. Efficacy and safety of Lacticaseibacillus rhamnosus R0011 and Lactobacillus helveticus R0052 as adjuvant for Helicobacter pylori eradication: A double-blind, randomized, placebo-controlled study. Front. Gastroenterol. 2023, 2, 1245993. [Google Scholar] [CrossRef]
- Zou, J.; Dong, J.; Yu, X. Meta-Analysis: Lactobacillus Containing Quadruple Therapy Versus Standard Triple First-Line Therapy for Helicobacter pylori Eradication. Helicobacter 2009, 14, 449–459. [Google Scholar] [CrossRef]
- Wang, Z.-H.; Gao, Q.-Y.; Fang, J.-Y. Meta-Analysis of the Efficacy and Safety of Lactobacillus-containing and Bifidobacterium-containing Probiotic Compound Preparation in Helicobacter pylori Eradication Therapy. J. Clin. Gastroenterol. 2013, 47, 25–32. [Google Scholar] [CrossRef]
- Dang, Y.; Reinhardt, J.D.; Zhou, X.; Zhang, G. The Effect of Probiotics Supplementation on Helicobacter pylori Eradication Rates and Side Effects during Eradication Therapy: A Meta-Analysis. PLoS ONE 2014, 9, e111030. [Google Scholar] [CrossRef]
- Lv, Z.; Wang, B.; Zhou, X.; Wang, F.; Xie, Y.; Zheng, H.; Lv, N. Efficacy and safety of probiotics as adjuvant agents for Helicobacter pylori infection: A meta-analysis. Exp. Ther. Med. 2015, 9, 707–716. [Google Scholar] [CrossRef]
- Zhang, M.M.; Qian, W.; Qin, Y.Y.; He, J.; Zhou, Y.H. Probiotics in Helicobacter pylori eradication therapy: A systematic review and meta-analysis. World J. Gastroenterol. 2015, 21, 4345–4357. [Google Scholar] [CrossRef] [PubMed]
- Lau, C.; Ward, A.; Chamberlain, R. Probiotics improve the efficacy of standard triple therapy in the eradication of Helicobacter pylori: A meta-analysis. Infect. Drug Resist. 2016, 9, 275–289. [Google Scholar] [CrossRef] [PubMed]
- McFarland, L.V.; Huang, Y.; Wang, L.; Malfertheiner, P. Systematic review and meta-analysis: Multi-strain probiotics as adjunct therapy for Helicobacter pylori eradication and prevention of adverse events. United Eur. Gastroenterol. J. 2016, 4, 546–561. [Google Scholar] [CrossRef]
- Feng, J.-R.; Wang, F.; Qiu, X.; McFarland, L.V.; Chen, P.-F.; Zhou, R.; Liu, J.; Zhao, Q.; Li, J. Efficacy and safety of probiotic-supplemented triple therapy for eradication of Helicobacter pylori in children: A systematic review and network meta-analysis. Eur. J. Clin. Pharmacol. 2017, 73, 1199–1208. [Google Scholar] [CrossRef]
- McFarland, L.V.; Evans, C.T.; Goldstein, E.J.C. Strain-Specificity and Disease-Specificity of Probiotic Efficacy: A Systematic Review and Meta-Analysis. Front. Med. 2018, 5, 124. [Google Scholar] [CrossRef]
- Fang, H.-R.; Zhang, G.-Q.; Cheng, J.-Y.; Li, Z.-Y. Efficacy of Lactobacillus-supplemented triple therapy for Helicobacter pylori infection in children: A meta-analysis of randomized controlled trials. Eur. J. Pediatr. 2019, 178, 7–16. [Google Scholar] [CrossRef]
- McFarland, L.V. Efficacy of Single-Strain Probiotics Versus Multi-Strain Mixtures: Systematic Review of Strain and Disease Specificity. Dig. Dis. Sci. 2021, 66, 694–704. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Cao, X.-Y.; Zhu, H.-L.; Miao, L. Comparative effectiveness of different probiotics supplements for triple Helicobacter pylori eradication: A network meta-analysis. Front. Cell. Infect. Microbiol. 2023, 13, 1120789. [Google Scholar] [CrossRef]
- Mishra, V.; Dash, D.; Panda, A.K.; Pathak, S.K. Efficacy of Lactobacillus spp. Supplementation in Helicobacter pylori Eradication: A Systematic Meta-Analysis of Randomized Controlled Trials With Trial Sequential Analysis. Helicobacter 2024, 29, e70006. [Google Scholar] [CrossRef]
- Sniffen, J.C.; McFarland, L.V.; Evans, C.T.; Goldstein, E.J.C. Choosing an appropriate probiotic product for your patient: An evidence-based practical guide. PLoS ONE 2018, 13, e0209205. [Google Scholar] [CrossRef]
- Smith, V.; Devane, D.; Begley, C.M.; Clarke, M. Methodology in conducting a systematic review of systematic reviews of healthcare interventions. BMC Med. Res. Methodol. 2011, 11, 15. [Google Scholar] [CrossRef]
- Johnson-Henry, K.C.; Mitchell, D.J.; Avitzur, Y.; Galindo-Mata, E.; Jones, N.L.; Sherman, P.M. Probiotics reduce bacterial colonization and gastric inflammation in H. pylori-infected mice. Dig. Dis. Sci. 2004, 49, 1095–1102. [Google Scholar] [CrossRef] [PubMed]
- Brzozowski, T.; Konturek, P.C.; Mierzwa, M.; Drozdowicz, D.; Bielanski, W.; Kwiecien, S.; Konturek, S.J.; Stachura, J.; Pawlik, W.W.; Hahn, E.G. Effect of probiotics and triple eradication therapy on the cyclooxygenase (COX)-2 expression, apoptosis, and functional gastric mucosal impairment in Helicobacter pylori-infected Mongolian gerbils. Helicobacter 2006, 11, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Jeffrey, M.P.; Macpherson, C.W.; Tompkins, T.A.; Green-Johnson, J.M. Lacticaseibacillus rhamnosus R0011 secretome attenuates Salmonella enterica serovar Typhimurium secretome-induced intestinal epithelial cell monolayer damage and pro-inflammatory mediator production in intestinal epithelial cell and antigen-presenting cell. Front. Microbiol. 2022, 13, 980989. [Google Scholar] [CrossRef] [PubMed]
- Verdu, E.F.; Bercik, P.; Huang, X.X.; Lu, J.; Al-Mutawaly, N.; Sakai, H.; Tompkins, T.A.; Croitoru, K.; Tsuchida, E.; Perdue, M.; et al. The role of luminal factors in the recovery of gastric function and behavioral changes after chronic Helicobacter pylori infection. Am. J. Physiol. Gastrointest. Liver Physiol. 2008, 295, G664–G670. [Google Scholar] [CrossRef]
- Wood, C.; Keeling, S.; Bradley, S.; Johnson-Green, P.; Green-Johnson, J.M. Interactions in the mucosal microenvironment: Vasoactive intestinal peptide modulates the down-regulatory action of Lactobacillus rhamnosus on LPS-induced interleukin-8 production by intestinal epithelial cells. Microb. Ecol. Health Dis. 2007, 19, 191–200. [Google Scholar] [CrossRef]
- Jeffrey, M.P.; Strap, J.L.; Jones Taggart, H.; Green-Johnson, J.M. Suppression of intestinal epithelial cell chemokine production by Lactobacillus rhamnosus R0011 and Lactobacillus helveticus R0389 is mediated by secreted bioactive molecules. Front. Immunol. 2018, 9, 2639. [Google Scholar] [CrossRef]
- Jeffrey, M.P.; MacPherson, C.W.; Mathieu, O.; Tompkins, T.A.; Green-Johnson, J.M. Secretome-mediated interactions with intestinal epithelial cells: A role for secretome components from Lactobacillus rhamnosus R0011 in the attenuation of Salmonella enterica serovar typhimurium secretome and TNF-α–induced proinflammatory responses. J. Immunol. 2020, 204, 2523–2534. [Google Scholar] [CrossRef]
- Jeffrey, M.P.; Saleem, L.; Macpherson, C.W.; Tompkins, T.A.; Clarke, S.T.; Green-Johnson, J.M. A Lacticaseibacillus rhamnosus secretome induces immunoregulatory transcriptional, functional and immunometabolic signatures in human THP-1 monocytes. Sci. Rep. 2024, 14, 8379. [Google Scholar] [CrossRef] [PubMed]
- Ansari, S.; Yamaoka, Y. Animal Models and Helicobacter pylori Infection. J. Clin. Med. 2022, 11, 3141. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Li, H.; Huang, X.; Liu, Q. Animal Models of Helicobacter pylori Infection and Vaccines: Current Status and Future Prospects. Helicobacter 2024, 29, e13119. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.L.A.; Vieira-Silva, S.; Liston, A.; Raes, J. How informative is the mouse for human gut microbiota research? Dis. Models Mech. 2015, 8, 1–16. [Google Scholar] [CrossRef]
- Hugenholtz, F.; De Vos, W.M. Mouse models for human intestinal microbiota research: A critical evaluation. Cell. Mol. Life Sci. 2018, 75, 149–160. [Google Scholar] [CrossRef]
- Mégraud, F.; Graham, D.Y.; Howden, C.W.; Trevino, E.; Weissfeld, A.; Hunt, B.; Smith, N.; Leifke, E.; Chey, W.D. Rates of Antimicrobial Resistance in Helicobacter pylori Isolates From Clinical Trial Patients Across the US and Europe. Am. J. Gastroenterol. 2023, 118, 269–275. [Google Scholar] [CrossRef]
- Baj, J.; Forma, A.; Sitarz, M.; Portincasa, P.; Garruti, G.; Krasowska, D.; Maciejewski, R. Helicobacter pylori Virulence Factors—Mechanisms of Bacterial Pathogenicity in the Gastric Microenvironment. Cells 2020, 10, 27. [Google Scholar] [CrossRef]
First Author and Reference | Year | Country | Age (Years) | n Lacidofil® Arm | n Control Arm | Lacidofil® Regimen | Lacidofil® Duration | Medications Used in Standard Therapy | Standard Therapy Duration | H. pylori Eradication a | Frequency of Side Effects a |
---|---|---|---|---|---|---|---|---|---|---|---|
Studies conducted in children | |||||||||||
Plewinska [44] | 2006 | Poland | 8.8 to 18.3 | 30 | 30 | 2B 3x/day | 30 days | Amoxicillin, clarithromycin, omeprazole | 10 days | 100 vs. 76.6 * | AAD: 0 vs. 20 * Abdominal pain: 3.3 vs. 23.3 * Nausea/vomiting: 0 vs. 20 * Taste disturbance: 3.3 vs. 23.3 * |
Gnaytenko [45] | 2009 | Ukraine | 6 to 16 | 25 | 20 | 2B 2x/day | 20 days | Amoxicillin, clarithromycin | 7 days | n.r. | AAD: 8 vs. 35 * |
Abaturov [46] | 2014 | Ukraine | 10 to 16 | 25 | 20 | 2B 3x/day | 21 days | Amoxicillin, bismuth sub-citrate, clarithromycin | 7 days | 96 vs. 70 * | All SEs: 8 vs. 33.3 n.t. |
Studies conducted in adults | |||||||||||
Bielanski [47] | 2002 | Poland | Median: 43 | 51 | 99 | 4B 3x/day | 20 days | Amoxicillin, clarithromycin, pantoprazole | 10 days | 92 vs. 72 * | Taste disturbance and/or diarrhea: 16 (slight) vs. 37 (moderate/severe) n.t. |
Ziemniak [48] | 2006 | Poland | 18 to 81 | 53 | 192 | 4B 2x/day | 20 days | Amoxicillin, clarithromycin, pantoprazole | 10 days | 94.3 vs. 85.9 * | n.r. |
Babak [49] | 2007 | Ukraine | 18 to 70 | 20 | 15 | 4B 3x/day | 20 days | Amoxicillin, clarithromycin, rabeprazole | 7 days | 90 vs. 86.7 n.t. | n.r. |
Vdovychenko [50] | 2008 | Ukraine | Mean: 43.9 | 25 | 24 | 4B 2x/day | 10 days | Amoxicillin, clarithromycin, omeprazole | 7 days | 96 vs. 75 n.t. | All SEs: 4 vs. 25 n.t. |
Kiattiweerasak [51] | 2023 | Thailand | 18 to 65 | 45 | 45 | 4B 2x/day | 42 days | Amoxicillin, clarithromycin, lansoprazole | 14 days | 90.9 vs. 75 * | AAD: 13.6 vs. 40.9 * Bloating: 15.9 vs. 40.9 * Nausea: 2.3 vs. 34.1 * Taste disturbance: 4.5 vs. 25 * |
Mechanism of Action | Probiotic | Observation | First Author and Reference |
---|---|---|---|
Pathogen inhibition | Lacidofil® | Co-incubation with H. pylori at a 1:1 ratio reduced colonization; co-incubation at ratios of 1:10 and 1:100 inhibited colony formation. | Johnson-Henry [67] |
In mice undergoing H. pylori challenge, reduced the rate of infection by half compared to the regular diet. | |||
L. rhamnosus Rosell®-11 | Reduced H. pylori urease activity, which negatively impacts H. pylori growth. | Whiteside [16] | |
Abrogated H. pylori motility in the presence and absence of urea. | |||
L. helveticus Rosell®-52 | Curtailed H. pylori growth and showed significant urea resistance. | Whiteside [16] | |
Inhibited H. pylori motility. | |||
Adhesion and gastrointestinal barrier integrity | Lacidofil® | In Mongolian gerbils infected with H. pylori, significantly reduced gastric lesions, as well as hyperplasia and apoptosis of gastric epithelial cells. | Brzozowski [68] |
L. rhamnosus Rosell®-11 | Reversed damage to monolayer transepithelial resistance and permeability. | Jeffrey [69] | |
Inflammation and immune modulation | Lacidofil® | Reduced the proportion of mice with moderate–severe gastric inflammation compared to the regular diet. | Johnson-Henry [67] |
In mice that had completed H. pylori eradication treatment, improved gastric immune cell (CD3+) counts. | Verdu [70] | ||
In Mongolian gerbils infected with H. pylori, significantly reduced mucosal inflammation and gastric lesions. | Brzozowski [68] | ||
In Mongolian gerbils infected with H. pylori, attenuated the expression of proteins associated with inflammation (COX-2) and apoptosis (BAX). | |||
L. rhamnosus Rosell®-11 | Downregulated the LPS-induced production of IL-8 by intestinal epithelial cells (HT-29) and gastric epithelial cells (KATO III). | Wood [71] | |
In pro-inflammatory challenges, downregulated IL-8 production by intestinal epithelial cells (HT-29) and CINC-1 production from a rat intestinal cell line (IEC-6). | Jeffrey [72] | ||
Decreased the inflammatory response of human intestinal epithelial cells exposed to Salmonella enterica serovar Typhimurium secretome (STS) and TNF-α. | Jeffrey [73] | ||
Induced secretion of macrophage inhibitory factor (MIF) and down-regulated pro-inflammatory mediator secretion resulting in attenuated CXCL8/IL-8 and NFκB1 expression. | Jeffrey [69] | ||
Induced a unique transcriptional profile in THP-1 monocytes, promoting macrophage differentiation and polarization and priming subsequent immune response. | Jeffrey [74] | ||
L. helveticus Rosell®-52 | Reduced H. pylori-induced elicitation of pro-inflammatory IL-8 secretion in the absence and presence of urea. | Whiteside [16] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Auclair-Ouellet, N.; Tremblay, A.; Kassem, O.; Caballero-Calero, S.E.; Bronner, S.; Binda, S. Probiotics as Adjuvants to Standard Helicobacter pylori Treatment: Evidence for the Use of Lacidofil®, an Established Blend of Thoroughly Characterized Strains. Microorganisms 2025, 13, 2223. https://doi.org/10.3390/microorganisms13102223
Auclair-Ouellet N, Tremblay A, Kassem O, Caballero-Calero SE, Bronner S, Binda S. Probiotics as Adjuvants to Standard Helicobacter pylori Treatment: Evidence for the Use of Lacidofil®, an Established Blend of Thoroughly Characterized Strains. Microorganisms. 2025; 13(10):2223. https://doi.org/10.3390/microorganisms13102223
Chicago/Turabian StyleAuclair-Ouellet, Noémie, Annie Tremblay, Ola Kassem, Sara E. Caballero-Calero, Stéphane Bronner, and Sylvie Binda. 2025. "Probiotics as Adjuvants to Standard Helicobacter pylori Treatment: Evidence for the Use of Lacidofil®, an Established Blend of Thoroughly Characterized Strains" Microorganisms 13, no. 10: 2223. https://doi.org/10.3390/microorganisms13102223
APA StyleAuclair-Ouellet, N., Tremblay, A., Kassem, O., Caballero-Calero, S. E., Bronner, S., & Binda, S. (2025). Probiotics as Adjuvants to Standard Helicobacter pylori Treatment: Evidence for the Use of Lacidofil®, an Established Blend of Thoroughly Characterized Strains. Microorganisms, 13(10), 2223. https://doi.org/10.3390/microorganisms13102223