Effect of Triticale Grain in Diets on Performance, Development of Gastrointestinal Tract and Microflora in Crop and Ileum of Broiler Chickens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chickens, Diets, Nutrition and Conditions
2.2. Performance of Broiler Chickens
2.3. Component and Chemical Analysis
2.4. Dissection of Gastrointestinal Tract of Birds
2.5. Determination pH Value in Crop and Ileum
2.6. Microbiological Analysis
2.7. Statistical Analysis
3. Results
3.1. Performance of Broiler Chickens
3.2. The Weight of Organs and the Length of the Intestines of the Digestive Tract Depending on the Type of Diet
3.3. Count of Microorganisms and pH Value in Crop and Ileum
3.4. Correlation between the Weight of Organs and the Length of the Intestines and the Number of Microorganisms in the Crop and Ileum
4. Discussion
4.1. The Influence of Triticale on Production Parameters
4.2. The Weight of Organs and the Length of Intestinal Sections Depending on the Type and Share of Cereals in the Diet
4.3. Number of Bacteria in the Crop and Small Intestine
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Babić, V.; Rajčić, V.; Durić, N. Economic significance, nutritional value and application of triticale. Econ. Agric. 2021, 68, 1089–1107. [Google Scholar] [CrossRef]
- Asker, N.E.; Emam, R.M.; Farahat, G.S.; Bahnas, M.S. Effect of substituting yellow corn by triticale grains on productive performance of two broiler strains. Egypt. J. Nutr. Feeds. 2011, 14, 251–265. [Google Scholar]
- Alijošius, S.; Šasytė, V.; Mieželienė, A.; Alenčikenė, G.; Bliznikas, S.; Racevičiūtė-Stupelienė, A.; Nutautaitė, M.; Paleckaitis, M. Effect of triticale and non-starch polysaccharides (NSP) degrading enzymes on color and sensory characteristics of broiler meat. Vet. Med. Zoot. 2018, 76, 3–8. [Google Scholar]
- Grela, E.R.; Kovalchuk-Vasilev, E.; Świątkiewicz, M.; Chunk, G. Barley, triticale or rye? The type of grain can affect the growth performance and meat quality of sustainable raised pigs. Animals 2023, 13, 1331. [Google Scholar] [CrossRef] [PubMed]
- Szczurek, W.; Szymczyk, B.; Arczewska-Włosek, A.; Świątkiewicz, S. Apparent and standardized ileal digestibility of amino acids in wheat, triticale and barley for broiler chickens of two different ages. Brit. Poult. Sci. 2020, 61, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Gaviley, O.V.; Katerynych, O.O.; Ionov, I.A.; Dekthiarova, O.O.; Griffin, D.K.; Romanov, M.N. Triticale: A general overview of its use in poultry. Encyclopedia 2024, 4, 395–414. [Google Scholar] [CrossRef]
- Babatunde, O.O.; Park, C.S.; Adeola, O. Nutritional potentials of atypical feed ingredients for broiler chickens and pigs. Animals 2021, 11, 1196. [Google Scholar] [CrossRef]
- Konca, Y.; Kirkpinar, F.; Mert, S.; Ataç, C. Effects of mixed or separate feeding with whole barley or triticale on growth performance, gastrointestinal system, nutrient digestibility and blood constituents in turkeys. Revue Med. Vet. 2012, 163, 522–529. [Google Scholar]
- Zarghi, H.; Golian, A. Effect of triticale replacement and enzyme supplementation on performance and blood chemistry of broiler chickens. J. Anim. Vet. Adv. 2009, 8, 1316–1321. [Google Scholar]
- Santos, F.B.O.; Sheldon, B.W.; Santos, A.A., Jr.; Ferket, P.R. Influence of housing system, grain type, and particle size on Salmonella colonization and shedding of broilers fed triticale or corn-soybean meal diets. Poult. Sci. 2008, 87, 405–420. [Google Scholar] [CrossRef]
- Borda-Molina, D.; Mátis, G.; Mackei, M.; Neogrády, Z.; Huber, K.; Seifert, J.; Camarinha-Silva, A. Caeca microbial variation in broiler chickens as a result of dietary combinations using two cereal types, supplementation of crude protein and sodium butyrate. Front. Microbiol. 2021, 11, 617800. [Google Scholar] [CrossRef] [PubMed]
- Bach Knudsen, K.E. Fiber and nonstarch polysaccharide content and variation in common crops used in broiler diets. Poult. Sci. 2014, 93, 2380–2393. [Google Scholar] [CrossRef] [PubMed]
- Jamroz, D.; Jakobsen, K.; Bach Knudsen, K.E.; Wiliczkiewicz, A.; Orda, J. Digestibility and energy value of non-starch polysaccharides in young chickens, ducks and geese, fed diets containing high amounts of barley. Comp. Biochem. Physiol. Part A 2002, 131, 657–668. [Google Scholar] [CrossRef] [PubMed]
- Ali Rawash, M.; Farkas, V.; Such, N.; Mezőlaki, A.; Menyhárt, L.; Pal, L.; Csitári, G.; Dublecz, K. Effects of barley- and oat-based diets on some gut parameters and microbiota composition of the small intestine and feces of broiler chicken. Agriculture 2023, 13, 169. [Google Scholar] [CrossRef]
- Kouzounis, D.; Kers, J.G.; Soares, N.; Smidt, H.; Cable, M.A.; Schols, H.A. Cereal type and combined xylanase/glucanase supplementation influence the cecal microbiota composition in broilers. J. Anim. Sci. Biotechnol. 2022, 13, 51. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Chen, Z.; Fu, Y.; Liu, J.; Lin, S.; Zhang, Q.; Liu, Y.; Wu, D.; Lin, D.; Han, G.; et al. Structure, antioxidant and hypoglycemic activities of arabinoxylans extracted by multiple methods from triticale. Antioxidants 2019, 8, 584. [Google Scholar] [CrossRef]
- Kliševičiūtė, V.; Gružauskas, R.; Racevičiūtė-Stupelienė, A.; Daukšiene, A.; Švirmickas, G.J.; Mieželienė, A.; Alencikienė, G. Influence of different amount of whole triticale on productivity and meat quality of broiler chickens. Vet. Med. Zoot. 2014, 66, 20–27. [Google Scholar]
- Smulikowska, S.; Rutkowski, A. Nutritional Requirements for Poultry, 4th ed.; Institute of Animal Physiology and Nutrition Jan Kielanowski, PAN: Jablonna, Poland, 2005. (In Polish) [Google Scholar]
- Ditengou, J.I.C.P.; Cho, S.; Ahn, S.-I.; Chae, B.; Jeon, E.; Choi, N.-J. Effects of different triticale inclusion levels on broilers’ growth parameters: A meta-analysis. Vet. Anim. Sci. 2024, 23, 100328. [Google Scholar] [CrossRef] [PubMed]
- Anwar, U.; Chishti, F.A.; Bilal, M.Q.; Farooq, U.; Mustafa, R.; Zamir, S.I.; Hussain, M.; Hussain, M.; Ashraf, M.; Qamar, S.H.; et al. Inclusion of stored wheat in the feed of broilers influences intake. growth performance. nutrient digestibility, and digesta viscosity from 1–21 days of age. Braz. J. Poult. Sci. 2023, 25, 1–8. [Google Scholar] [CrossRef]
- Mustafa, A.; Bai, S.; Zheng, Q.; Ding, X.; Wang, J.; Xuan, Y.; Su, Z.; Zhang, K. Limitation and potential effects of different levels of aging corn on performance. antioxidant capacity, intestinal health, and microbiota in broiler chickens. Animals 2021, 11, 2832. [Google Scholar] [CrossRef]
- Kim, E.; Morgan, N.K.; Moss, A.F.; Li, L.; Ader, P.; Choct, M. The flow of non-starch polysaccharides along the gastrointestinal tract of broiler chickens fed either a wheat- or maize-based diet. Anim. Nutr. 2022, 9, 138–142. [Google Scholar] [CrossRef]
- Gheorghe, A.; Hăbeanu, M.; Lefter, N.A.; Turcu, R.P. Alterations in meat nutrient composition in response to a partial replacement of corn with triticale in the broiler diet. Arch. Zootech. 2022, 25, 24–36. [Google Scholar] [CrossRef]
- Wróblewska, P.; Hikawczuk, T.; Sergeant, K.; Wiliczkiewicz, A.; Szuba-Trznadel, A. Effects of oat hull as a source of insoluble dietary fiber on changes in the microbial status of gastrointestinal tract in broiler chickens. Animals 2022, 12, 2721. [Google Scholar] [CrossRef]
- Ştef, L.; Simiz, E.; Drinceanu, D.; Ştef, D. The effects of enzyme supplementation on bio-productive performance. intestinal viscosity, blood parameters and intestinal microflora of broiler chickens fed with Triticale based diets. Rom. Biotechnol. Lett. 2013, 18, 8883–8892. [Google Scholar]
- Widodo, A.E.; Nolan, J.V.; Akter, M.; O’Neil, H.M. Response of broiler chickens to triticale-based diets supplemented with microbial enzymes (1. Growth and intestinal function). Poult. Sci. J. 2018, 6, 25–40. [Google Scholar] [CrossRef]
- WPSA (World’s Poultry Science Association). European Tables of Energy Values of Feeds for Poultry, 3rd ed.; Nutrition of the European Federation of Branches Subcommittee Energy of the Working Group (Beekbergen): Wageningen, The Netherlands, 1989; pp. 11–28. [Google Scholar]
- AOAC. Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2005. [Google Scholar]
- Tibco Software Inc. Statistica (Data Analysis Software System) 2019, Ver. 13.3; Tibco Software Inc.: Palo Alto, CA, USA, 2019. [Google Scholar]
- Dänicke, S.; Jeroch, H.; Simon, O.; Bedford, M.R. Interactions between dietary fat type and exogenous enzyme supplementation of broiler diets based on maize, wheat, triticale or barley. J. Anim. Feed Sci. 1999, 8, 467–483. [Google Scholar] [CrossRef]
- Chen, Z.; Wassgren, C.; Ambrose, R.P.K. Measured damage resistance of corn and wheat kernels to compression, friction and repeated impacts. Powder Technol. 2021, 380, 638–648. [Google Scholar] [CrossRef]
- Osek, M.; Milczarek, A.; Janocha, A.; Świniarska, R. Effect of triticale as a partial or complete wheat and maize substitute in broiler chicken diets on growth performance, slaughter value and meat quality. Ann. Anim. Sci. 2010, 10, 275–283. [Google Scholar]
- Witzig, M.; Ingelmann, C.-J.; Möhring, J.; Rodehutscord, M. Variability of prececal phosphorus digestibility of triticale and wheat in broiler chickens. Poult. Sci. 2018, 97, 910–919. [Google Scholar] [CrossRef]
- Wiśniewska, Z.; Kołodziejski, P.; Pruszyńska-Oszmałek, E.; Konieczka, P.; Kinser, M.; Górka, P. Combination of emulsifier and xylanase in triticale-based broiler chickens diets. Arch. Anim. Nutr. 2023, 77, 187–204. [Google Scholar] [CrossRef]
- Kittelsen, K.E.; Vasdal, G.; Moe, R.O.; Steinhoff, F.S.; Tahamtani, F.M. Health effects of feed dilution and roughage in Ross 308 broiler breeder cockerels. Poult. Sci. 2023, 102, 102985. [Google Scholar] [CrossRef] [PubMed]
- Bornaei, L.; Salari, S.; Erfani majd, N. Effect of electron beam irradiated barley grains on growth performance, blood parameters, nutritional digestibility, microbial population, and intestinal histomorphometry in broiler chickens. J. Appl. Anim. Res. 2022, 50, 408–419. [Google Scholar] [CrossRef]
- Viliene, V.; Raceviciute-Stupeliene, A.; Bliznikas, S.; Pockevicius, A.; Nutautaite, M.; Sasyte, V. The impact of different inclusion levels of whole barley in feed on growth performance, carcass and gastrointestinal traits of broiler chickens. Czech J. Anim. Sci. 2022, 67, 147–156. [Google Scholar] [CrossRef]
- Hikawczuk, T.; Szuba-Trznadel, A.; Wróblewska, P.; Wiliczkiewicz, A. Oat hull as a source of lignin-cellulose complex in diets containing wheat or barley and its effect on performance and morphometric measurements of gastrointestinal tract in broiler chickens. Agriculture 2023, 13, 896. [Google Scholar] [CrossRef]
- Itani, K.; Apajalahti, J.; Smith, A.; Ghimire, S.; Svihus, B. The effect of increasing the level of oat hulls, extent of grinding and their interaction on the performance, gizzard characteristics and gut health of broiler chickens fed oat-based pelleted diets. Anim. Feed. Sci. Technol. 2024, 308, 115858. [Google Scholar] [CrossRef]
- Svihus, B. The gizzard: Function, influence of dietary structure and effects on nutrient availability. World. Poult. Sci. J. 2011, 67, 207–224. [Google Scholar] [CrossRef]
- Singh, Y.; Molan, A.L.; Ravindran, V. Influence of the method of whole wheat inclusion on performance and global microbiota profile of broiler chickens. J. Appl. Anim. Nutr. 2019, 7, 1–7. [Google Scholar] [CrossRef]
- Crisol-Martínez, E.; Stanley, D.; Geier, M.S.; Hughes, R.J.; Moore, R.J. Sorghum and wheat differentially affect caecal microbiota and associated performance characteristics of meat chickens. PeerJ 2017, 5, e3071. [Google Scholar] [CrossRef] [PubMed]
- Jurburg, S.D.; Brouwer, M.S.M.; Ceccarelli, D.; van der Goot, J.; Jansman, A.J.M.; Bossers, A. Patterns of community assembly in the developing chicken microbiome reveal rapid primary succession. MicrobiologyOpen 2019, 8, e00821. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Shi, L.; Ge, Y.; Leng, D.; Zeng, B.; Wang, T.; Jie, H.; Li, D. Dynamic changes in the gut microbial community and function during broiler growth. Microbial. Spectr. 2022, 10, e0100522. [Google Scholar] [CrossRef]
- Dittoe, D.K.; Olson, E.G.; Ricke, S.C. Impact of the gastrointestinal microbiome and fermentation metabolites on broiler performance. Poult. Sci. 2022, 101, 101786. [Google Scholar] [CrossRef] [PubMed]
- Kairimi, S.H.; Abdalaziz, K.; Spahany, H.; Astill, J.; Trott, D.; Wang, B.; Wang, A.; Parkinson, J.; Sharif, S. Intestinal microbiome profiles in broiler chickens raised without antibiotics exhibit altered microbiome dynamics relative to conventionally raised chickens. PLoS ONE 2024, 19, e0301110. [Google Scholar] [CrossRef]
- Wang, J.; Liu, S.; Ma, J.; Piao, X. Changes in growth performance and ileal microbiota composition by xylanase supplementation in broilers fed wheat-based diets. Front. Microbiol. 2021, 12, 706396. [Google Scholar] [CrossRef]
- Such, N.; Farkas, V.; Molnar, A.; Csitári, G.; Pal, L.; Ali Rawash, M.; Koltay, I.A.; Husvéth, F.; Dublecz, K. The effect of dietary composition, a probiotic and a symbiotic treatment on the ileal microbiota composition of one-week-old broiler chickens. Acta Agrar. Debreceniensis 2021, 1, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Bedford, M.R. The evolution and application of enzymes in the animal feed industry: The role of data interpretation. Brit. Poult. Sci. 2018, 59, 486–493. [Google Scholar] [CrossRef]
- Stanley, D.; Bajagai, Y.S. Feed safety and the development of poultry intestinal microbiota. Animals 2022, 12, 2890. [Google Scholar] [CrossRef]
- Munyaka, P.M.; Nandha, N.K.; Kiarrie, E.; Nyachoti, C.M.; Khafipour, E. Impact of combined β-glucanase and xylanase enzymes on growth performance, nutrients utilization and gut microbiota in broiler chickens fed corn or wheat-based diets. Poult. Sci. 2016, 95, 528–540. [Google Scholar] [CrossRef]
- Moharrery, A.; Asadi, E.; Rezaei, R. Performance characteristics and nutritional comparison of broiler chickens fed with barley and triticale based diets. Iran. J. Appl. Anim. Sci. 2015, 5, 369–376. [Google Scholar]
- Olson, E.G.; Dittoe, D.K.; Jendza, J.A.; Stock, D.A.; Ricke, S.C. Application of microbial analyses to feeds and potential implications for poultry nutrition. Poult. Sci. 2022, 101, 101789. [Google Scholar] [CrossRef]
Item | Control | Wheat | Barley | Triticale |
---|---|---|---|---|
Ingredient composition | ||||
Corn | 56.17 | 26.33 | 23.03 | 27.56 |
Wheat | 30.0 | |||
Barley | 30.0 | |||
Triticale | 30.0 | |||
Rape oil | 3.0 | 4.1 | 5.8 | 4.2 |
Soybean meal (46% CP) | 36.9 | 35.7 | 37.4 | 34.3 |
Dicalcium phosphate | 2.15 | 1.99 | 1.91 | 2.03 |
Limestone | 0.14 | 0.22 | 0.27 | 0.23 |
NaCl | 0.34 | 0.35 | 0.35 | 0.35 |
L-Lysine HCl | 0.084 | 0.095 | 0.025 | 0.109 |
DL-Methionine | 0.216 | 0.215 | 0.215 | 0.221 |
Premix * | 1.0 | 1.0 | 1.0 | 1.0 |
Calculated analysis | ||||
Metabolizable energy, MJ/kg | 12.54 | 12.55 | 12.51 | 12.56 |
Analyzed nutrients | ||||
Crude protein, g | 225.5 | 227.1 | 226.8 | 224.9 |
Crude fibre, g | 26.8 | 28.3 | 34.2 | 26.7 |
Ca, g | 6.49 | 6.50 | 6.50 | 6.49 |
Pavailable, g | 4.30 | 4.29 | 4.30 | 4.30 |
Na, g | 1.58 | 1.59 | 1.59 | 1.59 |
Lysine, g | 12.03 | 11.99 | 12.04 | 12.02 |
Methionine, g | 5.50 | 5.50 | 5.49 | 5.51 |
Item | Treatment | SEM | p-Value | |||
---|---|---|---|---|---|---|
Control | Wheat | Barley | Triticale | |||
BW, day | ||||||
4 | 90.7 a | 86.2 Bb | 93.0 Aa | 86.6 Bb | 0.747 | 0.000 |
18 | 581.2 | 576.5 | 574.3 | 562.3 | 3.121 | 0.138 |
28 | 1231.3 | 1235.7 | 1265.3 | 1225.9 | 6.788 | 0.120 |
BWG, days | ||||||
1–4 | 45.9 a | 41.3 Bb | 48.3 Aa | 41.9 Bb | 0.721 | 0.000 |
1–18 | 536.4 | 531.7 | 529.6 | 517.6 | 3.012 | 0.141 |
1–28 | 1186.5 | 1190.9 | 1220.7 | 1180.9 | 6.561 | 0.119 |
FI, days | ||||||
1–4 | 60.5 | 63.1 | 62.1 | 64.0 | 0.605 | 0.184 |
1–18 | 882.6 | 891.0 | 876.9 | 891.4 | 8.962 | 0.926 |
1–28 | 1772.6 | 1757.3 | 1759.8 | 1777.4 | 11.60 | 0.912 |
FCR, days | ||||||
1–4 | 1.32 B | 1.53 A | 1.29 B | 1.53 A | 0.030 | 0.000 |
1–18 | 1.65 | 1.68 | 1.66 | 1.72 | 0.021 | 0.559 |
1–28 | 1.49 | 1.48 | 1.44 | 1.51 | 0.012 | 0.242 |
Item | Treatment | SEM | p-Value | |||
---|---|---|---|---|---|---|
Control | Wheat | Barley | Triticale | |||
Live weight * | 1.30 a | 1.27 ab | 1.27 ab | 1.23 b | 0.009 | 0.019 |
Empty weight (g) ** | ||||||
Crop | 6.53 Aa | 5.46 Bc | 6.24 ab | 5.78 bc | 0.126 | 0.013 |
Proventriculus | 5.89 AB | 5.50 B | 6.09 A | 5.84 AB | 0.067 | 0.009 |
Gizzard | 23.65 ab | 22.17 b | 24.72 a | 22.64 ab | 0.316 | 0.023 |
Length (cm) | ||||||
Duodenum | 25.44 | 25.29 | 25.53 | 24.76 | 0.149 | 0.636 |
Jejunum | 72.30 | 69.19 | 69.97 | 70.02 | 0.502 | 0.180 |
Ileum | 69.58 | 68.98 | 71.38 | 67.14 | 0.678 | 0.235 |
Ceca | 33.32 a | 33.32 a | 35.19 A | 30.90 Bb | 0.397 | 0.001 |
Large intestine | 6.28 b | 5.69 Bb | 7.68 Aa | 6.82 ab | 0.198 | 0.001 |
Total length of intestines | 206.93 ab | 202.46 ab | 209.76 a | 199.64 b | 1.341 | 0.050 |
Treatment | Control | Wheat | Barley | Triticale | SEM | p-Value |
---|---|---|---|---|---|---|
Crop | ||||||
TAMC | 6.34 A | 4.11 D | 4.63 C | 5.26 B | 0.162 | 0.000 |
E. coli | 0.00 B | 1.78 Aa | 0.60 b | 0.00 B | 0.183 | 0.000 |
Lactobacillus sp. | 3.35 A | 2.51 C | 2.22 C | 2.93 B | 0.088 | 0.000 |
TYMC | 2.39 A | 2.21 AB | 2.05 B | 2.25 AB | 0.033 | 0.002 |
Ileum | ||||||
TAMC | 4.11 | 4.15 | 4.09 | 4.16 | 0.015 | 0.384 |
E. coli | 1.20 ab | 1.77 ab | 2.12 a | 0.78 b | 0.190 | 0.046 |
Lactobacillus sp. | 2.23 B | 2.26 B | 3.23 A | 2.43 B | 0.078 | 0.000 |
TYMC | 1.75 ab | 0.45 b | 1.55 ab | 1.96 a | 0.167 | 0.002 |
Item | Crop | Ileum | ||||||
---|---|---|---|---|---|---|---|---|
TAMC | E. coli | Lactobacillus sp. | TYMC | TAMC | E. coli | Lactobacillus sp. | TYMC | |
Empty weight | ||||||||
Crop | 0.467 | −0.490 | ns | ns | ns | ns | ns | ns |
Proventriculus | ns | −0.406 | ns | ns | ns | ns | 0.482 | ns |
Gizzard | ns | ns | ns | ns | ns | ns | 0.490 | ns |
Length | ||||||||
Duodenum | ns | ns | ns | ns | ns | ns | ns | −0.391 |
Jejunum | 0.401 | ns | ns | ns | ns | ns | ns | ns |
Ileum | ns | ns | ns | −0.418 | ns | ns | ns | ns |
Ceca | ns | ns | −0.407 | −0.456 | ns | ns | 0.449 | ns |
Large intestine | ns | −0.425 | ns | −0.430 | ns | ns | 0.613 | ns |
Total length of intestines | ns | ns | ns | ns | ns | ns | ns | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wróblewska, P.; Hikawczuk, T.; Szuba-Trznadel, A.; Wiliczkiewicz, A.; Zinchuk, A.; Rusiecka, A.; Laszki-Szcząchor, K. Effect of Triticale Grain in Diets on Performance, Development of Gastrointestinal Tract and Microflora in Crop and Ileum of Broiler Chickens. Microorganisms 2024, 12, 1239. https://doi.org/10.3390/microorganisms12061239
Wróblewska P, Hikawczuk T, Szuba-Trznadel A, Wiliczkiewicz A, Zinchuk A, Rusiecka A, Laszki-Szcząchor K. Effect of Triticale Grain in Diets on Performance, Development of Gastrointestinal Tract and Microflora in Crop and Ileum of Broiler Chickens. Microorganisms. 2024; 12(6):1239. https://doi.org/10.3390/microorganisms12061239
Chicago/Turabian StyleWróblewska, Patrycja, Tomasz Hikawczuk, Anna Szuba-Trznadel, Andrzej Wiliczkiewicz, Andrii Zinchuk, Agnieszka Rusiecka, and Krystyna Laszki-Szcząchor. 2024. "Effect of Triticale Grain in Diets on Performance, Development of Gastrointestinal Tract and Microflora in Crop and Ileum of Broiler Chickens" Microorganisms 12, no. 6: 1239. https://doi.org/10.3390/microorganisms12061239
APA StyleWróblewska, P., Hikawczuk, T., Szuba-Trznadel, A., Wiliczkiewicz, A., Zinchuk, A., Rusiecka, A., & Laszki-Szcząchor, K. (2024). Effect of Triticale Grain in Diets on Performance, Development of Gastrointestinal Tract and Microflora in Crop and Ileum of Broiler Chickens. Microorganisms, 12(6), 1239. https://doi.org/10.3390/microorganisms12061239