Characteristics, Performance and Microbial Response of Aerobic Granular Sludge for Treating Tetracycline Hypersaline Pharmaceutical Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reactor Start-Up and Operation
2.2. Seed Sludge and Influent Composition
2.3. Conventional Analysis Methods
2.4. Metagenomic Sequence, Assembly and Analysis
2.5. Quantitative PCR of Selected ARGs
2.6. Statistical Analysis
3. Results and Discussion
3.1. Structure Characteristics of AGS
3.2. Performance of AGS
3.2.1. Carbon Removal Efficiency
3.2.2. Sludge Concentration
3.2.3. Settlement Performance
3.3. Microbial Population Dynamics of AGS
3.3.1. Characteristics of Microbial Community
3.3.2. Dynamic Succession of Microbial Community
3.4. Occurrence and Distribution of ARGs in AGS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, Y.; Shi, X.; Ng, H.Y. Aerobic granular sludge systems for treating hypersaline pharmaceutical wastewater: Start-up, long-term performances and metabolic function. J. Hazard. Mater. 2021, 412, 125229. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Ju, F.; Huang, K.; Mao, Y.; Zhang, X.X.; Ren, H.; Zhang, T. Comprehensive insights into the key components of bacterial assemblages in pharmaceutical wastewater treatment plants. Sci. Total Environ. 2019, 651, 2148–2157. [Google Scholar] [CrossRef] [PubMed]
- Sarmah, A.K.; Meyer, M.T.; Boxall, A.B.A. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 2006, 65, 725–759. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Wei, M.; Hu, Q.; Li, B.; Li, B.; Wang, W.; Abudi, Z.N.; Hu, Z. Aerobic granular sludge formation and stability in enhanced biological phosphorus removal system under antibiotics pressure: Performance, granulation mechanism, and microbial successions. J. Hazard. Mater. 2023, 454, 131472. [Google Scholar] [CrossRef] [PubMed]
- Dai, D.; Brown, C.; Bürgmann, H.; Larsson, D.J.; Nambi, I.; Zhang, T.; Flach, C.F.; Pruden, A.; Vikesland, P.J. Long-read metagenomic sequencing reveals shifts in associations of antibiotic resistance genes with mobile genetic elements from sewage to activated sludge. Microbiome 2022, 10, 20. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- O’neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations; Review on Antimicobial Resistance: London, UK, 2016; Available online: https://apo.org.au/node/63983 (accessed on 4 June 2024).
- Adav, S.S.; Lee, D.J.; Tay, J.H. Extracellular polymeric substances and structural stability of aerobic granule. Water Res. 2008, 42, 1644–1650. [Google Scholar] [CrossRef] [PubMed]
- Tay, J.H.; Yang, S.F.; Liu, Y. Hydraulic selection pressure-induced nitrifying granulation in sequencing batch reactors. Appl. Microbiol. Biotechnol. 2002, 59, 332–337. [Google Scholar]
- Winkler, M.K.H.; van Loosdrecht, M.C.M. Intensifying existing urban wastewater. Science 2022, 375, 377–378. [Google Scholar] [CrossRef]
- Purba, L.D.; Ibiyeye, H.T.; Yuzir, A.; Mohamad, S.E.; Iwamoto, K.; Zamyadi, A.; Abdullah, N. Various applications of aerobic granular sludge: A review. Environ. Technol. Innov. 2020, 20, 101045. [Google Scholar] [CrossRef]
- Sarma, S.J.; Tay, J.H.; Chu, A. Finding Knowledge Gaps in Aerobic Granulation Technology. Trends Biotechnol. 2017, 35, 66–78. [Google Scholar] [CrossRef] [PubMed]
- Bahgat, N.T.; Wilfert, P.; Korving, L.; van Loosdrecht, M. Integrated resource recovery from aerobic granular sludge plants. Water Res. 2023, 234, 119819. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liu, X.; Lee, D.J.; Tay, J.H.; Zhang, Y.; Wan, C.L.; Chen, X.F. Recent advances on biosorption by aerobic granular sludge. J. Hazard. Mater. 2018, 357, 253–270. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Hu, J.; Lee, D.-J. Aerobic granular processes: Current research trends. Bioresour. Technol. 2016, 210, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.F.; Zheng, P.; Ji, Q.X.; Zhang, H.T.; Ji, J.Y.; Wang, L.; Ding, S.; Chen, T.T.; Zhang, J.Q.; Tang, C.J.; et al. The structure, density and settlability of anammox granular sludge in high-rate reactors. Bioresour. Technol. 2012, 123, 312–317. [Google Scholar] [CrossRef] [PubMed]
- Ou, D.; Ai, N.; Hu, C.; Liu, Y. Metagenomics unraveled the characteristics and microbial response to hypersaline stress in salt-tolerant aerobic granular sludge. J. Environ. Manag. 2022, 321, 115950. [Google Scholar] [CrossRef] [PubMed]
- Ai, N.; Yang, Z.; Lou, B.; Yang, D.; Wang, Q.; Ou, D.; Hu, C. Impact of stepwisely reducing settling time on the formation and performance of aerobic granular sludge. J. Water Process Eng. 2024, 60, 105117. [Google Scholar] [CrossRef]
- Li, Y.; Li, C.; Wang, Z.; Liu, Y.; Jia, Y.; Li, F.; Ren, R.; Ikhlaq, A.; Kumirska, J.; Siedlecka, E.M.; et al. Navigating the complexity of pharmaceutical wastewater treatment by “effective strategy, emerging technology, and sustainable solution”. J. Water Process Eng. 2024, 63, 105404. [Google Scholar] [CrossRef]
- Ou, D.; Li, H.; Li, W.; Wu, X.; Wang, Y.Q. Salt-tolerance aerobic granular sludge: Formation and microbial community characteristics. Bioresour. Technol. 2018, 249, 132–138. [Google Scholar] [CrossRef]
- Ou, D.; Li, W.; Li, H.; Wu, X.; Li, C.; Zhuge, Y. Enhancement of the removal and settling performance for aerobic granular sludge under hypersaline stress. Chemosphere 2018, 212, 400–407. [Google Scholar] [CrossRef]
- Frutuoso, F.K.A.; Dos Santos, A.F.; da Silva França, L.L.; Barros, A.R.; Dos Santos, A.B. Influence of salt addition to stimulating biopolymers production in aerobic granular sludge systems. Chemosphere 2023, 311, 137006. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.Q.; Yuan, L.; Li, Z.H.; Zhang, H.C.; Sheng, G.P. Tetracycline exposure shifted microbial communities and enriched antibiotic resistance genes in the aerobic granular sludge. Environ. Int. 2019, 130, 104902. [Google Scholar] [CrossRef] [PubMed]
- Pallares-Vega, R.; Blaak, H.; van der Plaats, R.; de Roda Husman, A.M.; Leal, L.H.; van Loosdrecht, M.C.; Weissbrodt, D.G.; Schmitt, H. Determinants of presence and removal of antibiotic resistance genes during WWTP treatment: A cross-sectional study. Water Res. 2019, 161, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Pärnänen, K.M.; Narciso-da-Rocha, C.; Kneis, D.; Berendonk, T.U.; Cacace, D.; Do, T.T.; Elpers, C.; Fatta-Kassinos, D.; Henriques, I.; Jaeger, T.; et al. Antibiotic resistance in European wastewater treatment plants mirrors the pattern of clinical antibiotic resistance prevalence. Sci. Adv. 2019, 5, eaau9124. [Google Scholar] [CrossRef] [PubMed]
- Sabri, N.A.; Van Holst, S.; Schmitt, H.; van der Zaan, B.M.; Gerritsen, H.W.; Rijnaarts, H.H.; Langenhoff, A.A. Fate of antibiotics and antibiotic resistance genes during conventional and additional treatment technologies in wastewater treatment plants. Sci. Total Environ. 2020, 741, 140199. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Yan, Z.; Zhang, Y.; Xu, W.; Kong, D.; Shan, Z.; Wang, N. Behavior of antibiotic resistance genes under extremely high-level antibiotic selection pressures in pharmaceutical wastewater treatment plants. Sci. Total Environ. 2018, 612, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Long, B.; Yang, C.Z.; Pu, W.H.; Yang, J.K.; Jiang, G.S.; Dan, J.F.; Li, C.Y.; Liu, F.B. Rapid cultivation of aerobic granular sludge in a pilot scale sequencing batch reactor. Bioresour. Technol. 2014, 166, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Ren, T.T.; Liu, L.; Sheng, G.P.; Liu, X.W.; Yu, H.Q.; Zhang, M.C.; Zhu, J.R. Calcium spatial distribution in aerobic granules and its effects on granule structure, strength and bioactivity. Water Res. 2008, 42, 3343–3352. [Google Scholar] [CrossRef]
- Elahinik, A.; Haarsma, M.; Abbas, B.; Pabst, M.; Xevgenos, D.; van Loosdrecht, M.C.; Pronk, M. Glycerol conversion by aerobic granular sludge. Water Res. 2022, 227, 119340. [Google Scholar] [CrossRef]
- Standard Methods for the Examination of Water and Wastewater; American Public Health Association (APHA): Washington, DC, USA, 2005; Volume 56, p. 387.
- de Graaff, D.R.; van Loosdrecht, M.C.M.; Pronk, M. Stable granulation of seawater-adapted aerobic granular sludge with filamentous Thiothrix bacteria. Water Res. 2020, 175, 115683. [Google Scholar] [CrossRef]
- Campo, R.; Corsino, S.F.; Torregrossa, M.; Di Bella, G. The role of extracellular polymeric substances on aerobic granulation with stepwise increase of salinity. Sep. Purif. Technol. 2018, 195, 12–20. [Google Scholar] [CrossRef]
- Li, Z.H.; Wang, R.L.; Lu, M.; Wang, X.; Huang, Y.P.; Yang, J.W.; Zhang, T.Y. A novel method for identifying aerobic granular sludge state using sorting, densification and clarification dynamics during the settling process. Water Res. 2024, 253, 121336. [Google Scholar] [CrossRef] [PubMed]
- Alcock, B.P.; Raphenya, A.R.; Lau, T.T.; Tsang, K.K.; Bouchard, M.; Edalatmand, A.; Huynh, W.; Nguyen, A.L.; Cheng, A.A.; Liu, S.; et al. CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2019, 48, D517–D525. [Google Scholar] [CrossRef] [PubMed]
- Calderón-Franco, D.; Sarelse, R.; Christou, S.; Pronk, M.; van Loosdrecht, M.C.; Abeel, T.; Weissbrodt, D.G. Metagenomic profiling and transfer dynamics of antibiotic resistance determinants in a full-scale granular sludge wastewater treatment plant. Water Res. 2022, 219, 118571. [Google Scholar] [CrossRef] [PubMed]
- Oberoi, A.S.; Jia, Y.; Zhang, H.; Khanal, S.K.; Lu, H. Insights into fate and removal of antibiotics in engineered biological treatment systems: A critical review. Environ. Sci. Technol. 2019, 53, 7234–7264. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Li, A.D.; Yin, X.L.; Zhang, T. The Prevalence of Integrons as the Carrier of Antibiotic Resistance Genes in Natural and Man-Made Environments. Environ. Sci. Technol. 2017, 51, 5721–5728. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zheng, P.; Zhang, M.; Zeng, Z.; Wang, Z.; Ding, A.; Ding, K. Hydrophilicity/hydrophobicity of anaerobic granular sludge surface and their causes: An in situ research. Bioresour. Technol. 2016, 220, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Roesch, L.F.; Fulthorpe, R.R.; Riva, A.; Casella, G.; Hadwin, A.K.; Kent, A.D.; Daroub, S.H.; Camargo, F.A.; Farmerie, W.G.; Triplett, E.W. Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J. 2007, 1, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Shao, M.-F.; Ye, L. 454 Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants. ISME J. 2012, 6, 1137–1147. [Google Scholar] [CrossRef]
- Li, D.; Qi, R.; Yang, M.; Zhang, Y.; Yu, T. Bacterial community characteristics under long-term antibiotic selection pressures. Water Res. 2011, 45, 6063–6073. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, B.; Xu, R.X.; Wang, G.X.; Zhou, Y.; Xie, B. Effects of pressurized aeration on organic degradation efficiency and bacterial community structure of activated sludge treating saline wastewater. Bioresour. Technol. 2016, 222, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Fang, T.; Wang, H.; Huang, Y.; Zhou, H.; Dong, P. Oleiagrimonas soli gen. nov., sp. nov., a genome-sequenced gammaproteobacterium isolated from an oilfield. Int. J. Syst. Evol. Microbiol. 2015, 65 Pt 5, 1666–1671. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Gao, J.; Dai, H.; Wang, Z.; Zhao, Y.; Cui, Y. Higher spreading risk of antibacterial biocide and heavy metal resistance genes than antibiotic resistance genes in aerobic granular sludge. Environ. Res. 2022, 212, 113356. [Google Scholar] [CrossRef] [PubMed]
Running Time (d) | Cycle Time (h) | Salinity (%) | Feeding (min/Cycle) | Anoxic Time (min/Cycle) | Aerobic Time (min/Cycle) | Settling Time (min/Cycle) | Discharge (min/Cycle) |
---|---|---|---|---|---|---|---|
0–7 | 6 | 2.5 | 2 | 30 | 296 | 30 | 2 |
7–14 | 6 | 2.5 | 2 | 30 | 296 | 30 | 2 |
14–21 | 6 | 2.5 | 2 | 30 | 311 | 15 | 2 |
21–28 | 6 | 2.5 | 2 | 30 | 311 | 15 | 2 |
28–35 | 6 | 2.5 | 2 | 30 | 321 | 5 | 2 |
35–42 | 6 | 2.5 | 2 | 30 | 321 | 5 | 2 |
Constituent | Concentration (mg/L) |
---|---|
Tetracycline (TC) | 0.5 |
Salinity (NaCl) | 25 |
C6H12O6 | 937 |
NH4Cl | 500 |
KH2PO4 | 140 |
CaCl2 | 150 |
MgCl2 | 31 |
FeSO4·H2O | 10 |
Trace Element | Concentration (mg/L) |
---|---|
H3Bo3 | 50 |
ZnCl2 | 50 |
CuCl2 | 30 |
MnSO4·H2O | 50 |
(NH4)6Mo7O24·H2O | 50 |
AICl3 | 50 |
CoCl2·6H2O | 50 |
NiCl2 | 50 |
Category | Gene | Description |
---|---|---|
Bacteria normalization | 16S rRNA | RNA component of the 30S small subunit of prokaryotic ribosome |
ARGs | tetA | Tetracycline resistance protein tetA |
tetW | Tetracycline resistance protein tetW | |
sul1 | Sulfonamide resistant dihydropteroate synthase | |
sul2 | Sulfonamide resistant dihydropteroate synthase | |
blaTEM | Bla-cefotaxine-hydrolizing β-lactamase | |
MGE | Int1 | Class 1 integron integrase |
Settling Time (min/Cycle) | Salinity (%) | Time (d) | MLSS (g/L) | MLVSS (g/L) | VSS/SS | SVI5 (mL/g) | SVI30 (mL/g) | SVI30/SVI5 |
---|---|---|---|---|---|---|---|---|
30 | 2.5 | 00–07 | 22.134 | 11.964 | 0.495 | 28.463 | 17.620 | 0.619 |
30 | 2.5 | 07–14 | 17.190 | 6.581 | 0.500 | 52.938 | 31.414 | 0.593 |
15 | 2.5 | 14–21 | 6.219 | 3.220 | 0.518 | 43.415 | 28.944 | 0.667 |
15 | 2.5 | 21–28 | 11.255 | 6.917 | 0.615 | 24.878 | 16.881 | 0.679 |
5 | 2.5 | 28–35 | 4.332 | 2.335 | 0.539 | 30.009 | 23.084 | 0.769 |
5 | 2.5 | 35–42 | 5.795 | 4.772 | 0.823 | 17.256 | 8.628 | 0.500 |
Sample ID | Reads | Q30(%) | Community Richness | Community Diversity | ||
---|---|---|---|---|---|---|
ACE a | Chao1 a | Shannon b | Simpson b | |||
d0 | 62919090 | 94.85 | 26755 | 26971 | 10.43 | 0.9961367 |
d14 | 62348856 | 94.93 | 25493 | 25638 | 9.96 | 0.9890374 |
d28 | 56729842 | 94.61 | 22994 | 23094 | 7.85 | 0.8892812 |
d42 | 63234358 | 95.03 | 22980 | 23237 | 6.81 | 0.850424 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lou, B.; Yang, Z.; Zheng, S.; Ou, D.; Hu, W.; Ai, N. Characteristics, Performance and Microbial Response of Aerobic Granular Sludge for Treating Tetracycline Hypersaline Pharmaceutical Wastewater. Microorganisms 2024, 12, 1173. https://doi.org/10.3390/microorganisms12061173
Lou B, Yang Z, Zheng S, Ou D, Hu W, Ai N. Characteristics, Performance and Microbial Response of Aerobic Granular Sludge for Treating Tetracycline Hypersaline Pharmaceutical Wastewater. Microorganisms. 2024; 12(6):1173. https://doi.org/10.3390/microorganisms12061173
Chicago/Turabian StyleLou, Bichen, Zhonghui Yang, Shengyan Zheng, Dong Ou, Wanpeng Hu, and Ning Ai. 2024. "Characteristics, Performance and Microbial Response of Aerobic Granular Sludge for Treating Tetracycline Hypersaline Pharmaceutical Wastewater" Microorganisms 12, no. 6: 1173. https://doi.org/10.3390/microorganisms12061173
APA StyleLou, B., Yang, Z., Zheng, S., Ou, D., Hu, W., & Ai, N. (2024). Characteristics, Performance and Microbial Response of Aerobic Granular Sludge for Treating Tetracycline Hypersaline Pharmaceutical Wastewater. Microorganisms, 12(6), 1173. https://doi.org/10.3390/microorganisms12061173