Correlation of Geographic Variables with the Incidence Rate of Dengue Fever in Mexico: A 38-Year Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Description of the Study
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Espinoza-Gomez, F.; Newton-Sanchez, O.A.; Nava-Zavala, A.H.; Zavala-Cerna, M.G.; Rojas-Larios, F.; Delgado-Enciso, I.; Martinez-Rizo, A.B.; Lozano-Kasten, F. Demographic and climatic factors associated with dengue prevalence in a hyperendemic zone in Mexico: An empirical approach. Trans. R. Soc. Trop. Med. Hyg. 2020, 115, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Gaspar-Castillo, C.; Cortes-Escamilla, A.; Aparicio-Antonio, R.; Carnalla, M.; López, S.; Sánchez-Tacuba, L.; Oceguera-Cabrera, A.; Burrone, Ó.; González-Bonilla, C.; Navarrete, V.O.; et al. Evolution of Zika prevalence in a dengue hyperendemic municipality in Southern Mexico after the outbreak of 2015 to 2017. Salud Publica Mex. 2024, 66, 218–225. Available online: https://saludpublica.mx/index.php/spm/article/view/15407 (accessed on 1 August 2024). [CrossRef]
- Dirección General de Epidemiología. Panorama Epidemiológico de Dengue. Available online: https://www.gob.mx/salud/acciones-y-programas/informacion-epidemiologica (accessed on 1 August 2024).
- Kuri-Morales, P.; Correa-Morales, F.; González-Acosta, C.; Sánchez-Tejeda, G.; Dávalos-Becerril, E.; Juárez-Franco, M.F.; Díaz-Quiñonez, A.; Huerta-Jimenéz, H.; Mejía-Guevara, M.D.; Moreno-García, M.; et al. First report of Stegomyia aegypti (=Aedes aegypti) in Mexico City, Mexico. Med. Vet. Entomol. 2017, 31, 240–242. [Google Scholar] [CrossRef]
- Dávalos-Becerril, E.; Correa-Morales, F.; González-Acosta, C.; Santos-Luna, R.; Peralta-Rodríguez, J.; Pérez-Rentería, C.; Ordoñez-Álvarez, J.; Huerta, H.; Carmona-Perez, M.; Díaz-Quiñonez, J.A.; et al. Urban and semi-urban mosquitoes of Mexico City: A risk for endemic mosquito-borne disease transmission. PLoS ONE 2019, 14, e0212987. [Google Scholar] [CrossRef]
- Brady, O.J.; Golding, N.; Pigott, D.M.; Kraemer, M.U.G.; Messina, J.P.; Reiner, R.C., Jr.; Scott, T.W.; Smith, D.L.; Gething, P.W.; Hay, S.I. Global temperature constraints on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission. Parasites Vectors 2014, 7, 338. [Google Scholar] [CrossRef] [PubMed]
- Gwee, X.W.S.; Chua, P.E.Y.; Pang, J. Global dengue importation: A systematic review. BMC Infect. Dis. 2021, 21, 1078. [Google Scholar] [CrossRef]
- Hii, Y.L.; Zhu, H.; Ng, N.; Ng, L.C.; Rocklöv, J. Forecast of Dengue Incidence Using Temperature and Rainfall. PLoS Neglected Trop. Dis. 2012, 6, e1908. [Google Scholar] [CrossRef] [PubMed]
- Shil, P. Rainfall and Dengue Occurrences in India during 2010–2016. Biomed. Res. J. 2019, 6, 56. [Google Scholar] [CrossRef]
- Ehelepola, N.D.B.; Ariyaratne, K.; Buddhadasa, W.M.N.P.; Ratnayake, S.; Wickramasinghe, M. A study of the correlation between dengue and weather in Kandy City, Sri Lanka (2003–2012) and lessons learned. Infect. Dis. Poverty 2015, 4, 42. [Google Scholar] [CrossRef]
- Hurtado-Díaz, M.; Riojas-Rodríguez, H.; Rothenberg, S.J.; Gomez-Dantés, H.; Cifuentes, E. Short communication: Impact of climate variability on the incidence of dengue in Mexico. Trop. Med. Int. Health 2007, 12, 1327–1337. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Castro, S.; Moreno-Legorreta, M.; Ortega-Rubio, A.; Serrano-Pinto, V. Relation between dengue and climate trends in the Northwest of Mexico. Trop. Biomed. 2017, 34, 157–165. [Google Scholar] [PubMed]
- Hernández-Gaytán, S.I.; Díaz-Vásquez, F.J.; Duran-Arenas, L.G.; Cervantes, M.L.; Rothenberg, S.J. 20 Years Spatial-Temporal Analysis of Dengue Fever and Hemorrhagic Fever in Mexico. Arch. Med. Res. 2017, 48, 653–662. [Google Scholar] [CrossRef] [PubMed]
- Servicio Meteorológico Nacional. Resúmenes Mensuales de Temperatura y Lluvia. Available online: https://smn.conagua.gob.mx/es/climatologia/temperaturas-y-lluvias/resumenes-mensuales-de-temperaturas-y-lluvias (accessed on 1 August 2024).
- Mendoza-Cano, O.; Trujillo, X.; Huerta, M.; Ríos-Silva, M.; Lugo-Radillo, A.; Benites-Godínez, V.; Bricio-Barrios, J.A.; Ríos-Bracamontes, E.F.; Uribe-Ramos, J.M.; Baltazar-Rodríguez, G.M.; et al. Assessing the Relationship between Annual Surface Temperature Changes and the Burden of Dengue: Implications for Climate Change and Global Health Outcomes. Trop. Med. Infect. Dis. 2023, 8, 351. [Google Scholar] [CrossRef] [PubMed]
- Jia, P.; Chen, X.; Chen, J.; Lu, L.; Liu, Q.; Tan, X. How does the dengue vector mosquito Aedes albopictus respond to global warming? Parasites Vectors 2017, 10, 140. [Google Scholar] [CrossRef] [PubMed]
- Gubler, D.J.; Reiter, P.; Ebi, K.L.; Yap, W.; Nasci, R.; Patz, J.A. Climate variability and change in the United States: Potential impacts on vector- and rodent-borne diseases. Environ. Health Perspect. 2001, 109 (Suppl. S2), 223–233. [Google Scholar] [CrossRef] [PubMed]
- Jansen, C.C.; Beebe, N.W. The dengue vector Aedes aegypti: What comes next. Microbes Infect. 2010, 12, 272–279. [Google Scholar] [CrossRef]
- Li, Y.; Kamara, F.; Zhou, G.; Puthiyakunnon, S.; Li, C.; Liu, Y.; Zhou, Y.; Yao, L.; Yan, G.; Chen, X.-G. Urbanization increases Aedes albopictus larval habitats and accelerates mosquito development and survivorship. PLoS Neglected Trop. Dis. 2014, 8, e3301. [Google Scholar] [CrossRef] [PubMed]
- Narro-Robles, J.; Gómez-Dantés, H. El dengue en Mexico: Un problema prioritario de salud pública. Salud Pública Mex. 1995, 37, 12–20. [Google Scholar]
- Vázquez-Castellanos, J.L.; Canales-Muñoz, J.L.; Nápoles-Camacho, M.A.; Castillo-Morán, M.A.; Ureña-Carillo, L.E. Estudio del primer gran brote epidémico de dengue en Guadalajara, Jalisco, México, octubre de 1988. Rev. Salud Jalisco 2018, 5, 8–19. [Google Scholar]
- Bautista, P.F.H.; Gaytán, D.A.C.; Tinoco, C.E.S.; Parás, A.V.; Yaah, J.E.A.; Miguel, B.M.; Hernández, Y.M.A.; Nieto, L.A.; Paz, A.M.; Betancourt, L.J.; et al. Retrospective Analysis of Severe Dengue by Dengue Virus Serotypes in a Population with Social Security, Mexico 2023. Viruses 2024, 16, 769. [Google Scholar] [CrossRef]
- San Martín, J.L.; Brathwaite, O.; Zambrano, B.; Solórzano, J.O.; Bouckenooghe, A.; Dayan, G.H.; Guzmán, M.G. The epidemiology of dengue in the Americas over the last three decades: A worrisome reality. Am. J. Trop. Med. Hyg. 2010, 82, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Brathwaite Dick, O.; San Martín, J.L.; Montoya, R.H.; del Diego, J.; Zambrano, B.; Dayan, G.H. The history of dengue outbreaks in the Americas. Am. J. Trop. Med. Hyg. 2012, 87, 584–593. [Google Scholar] [CrossRef]
- Navarrete, J.; Vásquez, J.L.; Vásquez, J.A.; Gómez, H. Epidemiologia del dengue y dengue hemorrágico en el Instituto Mexicano del Seguro Social (IMSS). Rev. Peruana. Epidemiol. 2002, 10, 1–12. [Google Scholar]
- Instituto Nacional de Estadística y Geografía. Agua Potable y Drenaje. Available online: https://cuentame.inegi.org.mx/territorio/agua/dispon.aspx?tema=T (accessed on 4 November 2024).
- Instituto Nacional de Estadística y Geografía. Estadísticas a Propósito del Día Mundial del Agua. 17 de marzo de 2023. Available online: https://www.inegi.org.mx/app/saladeprensa/noticia.html?id=8053 (accessed on 4 November 2024).
- Consejo Nacional de Evaluación de la Política del Desarrollo Social. Medición de la pobreza en México. Available online: https://www.coneval.org.mx/Medicion/Paginas/PobrezaInicio.aspx (accessed on 4 November 2024).
- Torres-Galicia, L.; Cortés-Poza, D.; Becker, I. Dengue in Mexico: An analysis of two decades. Gac. Med. Mex. 2014, 150, 122–127. [Google Scholar] [PubMed]
- Ibáñez-Bernal, S.; Gómez-Dantés, H. Los vectores del dengue en México: Una revisión crítica [Vectors of dengue in Mexico: A critical review)]. Salud Publica Mex. 1995, 37, S53–S63. (In Spanish) [Google Scholar] [PubMed]
- Ortega-Morales, A.I.; Pérez-Rentería, C.; Ordóñez-Álvarez, J.; Salazar, J.A.; Dzul-Manzanilla, F.; Correa-Morales, F.; Huerta-Jiménez, H. Update on the Dispersal of Aedes albopictus in Mexico: 1988–2021. Front. Trop. Dis. 2022, 2, 814205. [Google Scholar] [CrossRef]
- Arredondo-Jiménez, J.I.; Valdez-Delgado, K.M. Aedes aegypti pupal/demographic surveys in southern Mexico: Consistency and practicality. Ann. Trop. Med. Parasitol. 2006, 100 (Suppl. S1), S17–S32. [Google Scholar] [CrossRef] [PubMed]
- Manrique-Saide, P.; Coleman, P.; McCall, P.J.; Lenhart, A.; Vázquez-Prokopec, G.; Davies, C.R. Multi-scale analysis of the associations among egg, larval and pupal surveys and the presence and abundance of adult female Aedes aegypti (Stegomyia aegypti) in the city of Merida, Mexico. Med. Vet. Entomol. 2014, 28, 264–272. [Google Scholar] [CrossRef]
- Lozano-Fuentes, S.; Hayden, M.H.; Welsh-Rodriguez, C.; Ochoa-Martinez, C.; Tapia-Santos, B.; Kobylinski, K.C.; Uejio, C.K.; Zielinski-Gutierrez, E.; Monache, L.D.; Monaghan, A.J.; et al. El mosquito vector del virus del dengue Aedes aegypti en las grandes alturas de México. Am. J. Trop. Med. Hyg. 2012, 87, 902–909. [Google Scholar] [CrossRef]
- Marina, C.F.; Bond, J.G.; Hernández-Arriaga, K.; Valle, J.; Ulloa, A.; Fernández-Salas, I.; Carvalho, D.O.; Bourtzis, K.; Dor, A.; Williams, T.; et al. Population Dynamics of Aedes aegypti and Aedes albopictus in Two Rural Villages in Southern Mexico: Baseline Data for an Evaluation of the Sterile Insect Technique. Insects 2021, 12, 58. [Google Scholar] [CrossRef] [PubMed]
- Wiwanitkit, V. An observation on correlation between rainfall and the prevalence of clinical cases of dengue in Thailand. J. Vector Borne Dis. 2006, 43, 73–76. [Google Scholar] [PubMed]
- Gastelbondo-Pastrana, B.; Echeverri-De la Hoz, D.; Sanchez, L.; García, Y.; Espitia-Delgado, Y.; Lopez, Y.; Yasnot-Acosta, M.F.; Arrieta, G.; Mattar, S. Climatic variables and their relationship with vector-borne disease cases in Colombia, 2011–2021. Front. Trop. Dis. 2024, 5, 1481991. [Google Scholar] [CrossRef]
- Gage, K.L.; Burkot, T.R.; Eisen, R.J.; Hayes, E.B. Climate and vector-borne diseases. Am. J. Prev. Med. 2008, 35, 436–450. [Google Scholar] [CrossRef] [PubMed]
- Hales, S.; de Wet, N.; Maindonald, J.; Woodward, A. Potential effects of global climate change on human health: An empirical review. Lancet 2002, 360, 1301–1309. [Google Scholar] [CrossRef]
- Dzul-Manzanilla, F.; Correa-Morales, F.; Che-Mendoza, A.; Palacio-Vargas, J.; Sánchez-Tejeda, G.; González-Roldan, J.F.; López-Gatell, H.; E Flores-Suárez, A.; Gómez-Dantes, H.; E Coelho, G.; et al. Identifying urban hotspots of dengue, chikungunya, and Zika transmission in Mexico to support risk stratification efforts: A spatial analysis. Lancet Planet. Health 2021, 5, e277–e285. [Google Scholar] [CrossRef]
Estimator | Maximum Temperature | Average Temperature | Minimum Temperature | Rainfall | ||||
---|---|---|---|---|---|---|---|---|
CD | HD | CD | HD | CD | HD | CD | HD | |
b | 9.67 | 3.39 | 8.03 | 3.46 | 7.20 | 2.13 | 0.06 | 0.04 |
p value b | 0.25 | 0.06 | 0.26 | 0.01 | 0.27 | 0.01 | 0.69 | 0.19 |
R2 | 0.22 | 0.48 | 0.20 | 0.68 | 0.20 | 0.68 | 0.03 | 0.27 |
p | 0.25 | 0.06 | 0.26 | 0.01 | 0.27 | 0.01 | 0.69 | 0.19 |
Pearson | 0.46 | 0.69 | 0.45 | 0.83 | 0.45 | 0.83 | 0.17 | 0.52 |
p Pearson | 0.25 | 0.06 | 0.26 | 0.01 | 0.27 | 0.01 | 0.69 | 0.19 |
Spearman | 0.48 | 0.74 | 0.40 | 0.79 | 0.36 | 0.71 | 0.16 | 0.38 |
p Spearman | 0.23 | 0.04 | 0.33 | 0.02 | 0.39 | 0.05 | 0.69 | 0.35 |
Clime | Estimator | Centre-North | Centre-South | Northeast | Northwest | West | East | Southeast | Southwest |
---|---|---|---|---|---|---|---|---|---|
Maxim temperture (°C) | b | 1.44 | 0.90 | 2.74 | 6.06 | −11.82 | 6.47 | −96.43 | 24.34 |
p value b | 0.02 | 0.00 | 0.79 | 0.47 | 0.73 | 0.02 | 0.06 | 0.22 | |
R2 | 0.64 | 0.83 | 0.01 | 0.09 | 0.02 | 0.61 | 0.47 | 0.23 | |
p | 0.02 | 0.00 | 0.79 | 0.47 | 0.73 | 0.02 | 0.06 | 0.23 | |
Pearson | 0.80 | 0.91 | 0.11 | 0.30 | −0.14 | 0.78 | −0.69 | 0.48 | |
p Pearson | 0.02 | 0.00 | 0.79 | 0.47 | 0.73 | 0.02 | 0.06 | 0.23 | |
Spearman | 0.88 | 0.71 | −0.05 | 0.38 | −0.29 | 0.64 | −0.34 | 0.54 | |
p Spearman | 0.00 | 0.05 | 0.91 | 0.35 | 0.49 | 0.09 | 0.41 | 0.17 | |
Average temperature (°C) | b | 1.56 | 0.56 | −2.45 | 5.25 | 10.61 | 6.43 | 21.96 | 19.85 |
p value b | 0.02 | 0.00 | 0.81 | 0.10 | 0.67 | 0.00 | 0.46 | 0.18 | |
R2 | 0.60 | 0.76 | 0.01 | 0.39 | 0.03 | 0.80 | 0.01 | 0.28 | |
p | 0.02 | 0.00 | 0.81 | 0.10 | 0.67 | 0.00 | 0.46 | 0.18 | |
Pearson | 0.78 | 0.87 | −0.10 | 0.63 | 0.18 | 0.89 | 0.31 | 0.53 | |
p Pearson | 0.02 | 0.00 | 0.81 | 0.10 | 0.67 | 0.00 | 0.46 | 0.18 | |
Spearman | 0.83 | 0.75 | 0.08 | 0.79 | 0.24 | 0.76 | 0.76 | 0.54 | |
p Spearman | 0.01 | 0.03 | 0.84 | 0.02 | 0.57 | 0.03 | 0.03 | 0.17 | |
Minimum temperature (°C) | b | 1.17 | 0.34 | −3.62 | 3.46 | 10.67 | 5.99 | 17.48 | 23.72 |
p value b | 0.15 | 0.02 | 0.69 | 0.10 | 0.51 | 0.00 | 0.19 | 0.11 | |
R2 | 0.31 | 0.61 | 0.03 | 0.39 | 0.07 | 0.88 | 0.26 | 0.36 | |
p | 0.15 | 0.02 | 0.69 | 0.10 | 0.51 | 0.00 | 0.19 | 0.11 | |
Pearson | 0.55 | 0.78 | −0.17 | 0.62 | 0.27 | 0.93 | 0.51 | 0.60 | |
p Pearson | 0.15 | 0.02 | 0.69 | 0.10 | 0.51 | 0.00 | 0.19 | 0.11 | |
Spearman | 0.79 | 0.93 | 0.12 | 0.74 | 0.38 | 0.76 | 0.69 | 0.54 | |
p Spearman | 0.02 | 0.00 | 0.78 | 0.04 | 0.35 | 0.02 | 0.06 | 0.17 | |
Rainfall | b | −0.01 | 0.00 | −0.17 | 0.04 | −0.01 | 0.02 | 0.11 | −0.05 |
p value b | 0.16 | 0.39 | 0.12 | 0.21 | 0.87 | 0.26 | 0.58 | 0.34 | |
R2 | 0.30 | 0.12 | 0.36 | 0.24 | 0.00 | 0.20 | 0.05 | 0.15 | |
p | 0.16 | 0.39 | 0.12 | 0.21 | 0.88 | 0.26 | 0.58 | 0.34 | |
Pearson | −0.55 | 0.35 | −0.60 | 0.49 | −0.06 | 0.45 | 0.23 | −0.39 | |
p Pearson | 0.16 | 0.39 | 0.12 | 0.21 | 0.88 | 0.26 | 0.58 | 0.34 | |
Spearman | −0.12 | 0.21 | −0.45 | 0.48 | 0.10 | 0.50 | 0.14 | −0.61 | |
p Spearman | 0.77 | 0.61 | 0.26 | 0.23 | 0.82 | 0.21 | 0.74 | 0.10 |
Temperature (°C) | Estimator | Centre-North | Centre-South | Northeast | Northwest | West | East | Southeast | Southwest |
---|---|---|---|---|---|---|---|---|---|
Maximum | b1 | 0.02 | 0.050 | 0.26 | 0.80 | 1.36 | 0.45 | −55.66 | 9.89 |
p value b1 | 0.14 | 0.01 | 0.34 | 0.57 | 0.74 | 0.00 | 0.03 | 0.38 | |
b2 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.02 | 0.00 | |
p value b2 | 1.00 | 0.68 | 0.27 | 0.40 | 0.08 | 0.45 | 0.71 | 0.92 | |
R2 | 0.44 | 0.82 | 0.41 | 0.17 | 0.49 | 0.92 | 0.66 | 0.27 | |
p | 0.24 | 0.01 | 0.26 | 0.64 | 0.18 | 0.00 | 0.07 | 0.45 | |
Average | b1 | 0.02 | 0.01 | 0.17 | 0.28 | 4.28 | 0.37 | 2.15 | 8.93 |
p value b1 | 0.07 | 0.08 | 0.51 | 0.65 | 0.15 | 0.00 | 0.89 | 0.33 | |
b2 | 0.00 | 0.00 | −0.01 | 0.00 | 0.01 | 0.00 | 0.04 | 0.01 | |
p value b2 | 0.64 | 0.85 | 0.22 | 0.58 | 0.19 | 0.54 | 0.71 | 0.79 | |
R2 | 0.56 | 0.54 | 0.35 | 0.15 | 0.67 | 0.92 | 0.03 | 0.30 | |
p | 0.13 | 0.15 | 0.34 | 0.67 | 0.06 | 0.00 | 0.92 | 0.41 | |
Minimum | b1 | 0.02 | 0.01 | 0.16 | 0.25 | 3.88 | 0.34 | 4.13 | 15.39 |
p value b1 | 0.21 | 0.18 | 0.49 | 0.55 | 0.08 | 0.00 | 0.59 | 0.01 | |
b2 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.03 | 0.03 | |
p value b2 | 0.40 | 0.88 | 0.20 | 0.66 | 0.49 | 0.44 | 0.73 | 0.35 | |
R2 | 0.36 | 0.38 | 0.36 | 0.17 | 0.74 | 0.90 | 0.09 | 0.53 | |
p | 0.33 | 0.30 | 0.33 | 0.62 | 0.03 | 0.00 | 0.79 | 0.15 |
Clime | Estimator | CD | HD | ||||||
---|---|---|---|---|---|---|---|---|---|
<500 | 500 to 1500 | 1501 to 2000 | >2000 | <500 | 500 to 1500 | 1501 to 2000 | >2000 | ||
Maxim temperature | b | 4.38 | 19.63 | 3.40 | 0.78 | −5.85 | 5.279 | 0.06 | 0.07 |
p value b | 0.85 | 0.20 | 0.04 | 0.41 | 0.44 | 0.03 | 0.06 | 0.00 | |
R2 | 0.01 | 0.26 | 0.55 | 0.11 | 0.10 | 0.59 | 0.48 | 0.80 | |
p | 0.85 | 0.20 | 0.04 | 0.41 | 0.44 | 0.03 | 0.06 | 0.00 | |
Pearson | 0.08 | 0.51 | 0.74 | 0.34 | −0.32 | 0.77 | 0.70 | 0.89 | |
p Pearson | 0.85 | 0.20 | 0.04 | 0.41 | 0.44 | 0.03 | 0.06 | 0.00 | |
Spearman | 0.19 | 0.60 | 0.85 | 0.87 | 0.07 | 0.83 | 0.67 | 0.77 | |
p Spearman | 0.65 | 0.12 | 0.01 | 0.00 | 0.86 | 0.01 | 0.07 | 0.03 | |
Average temperature | b | 28.91 | 14.55 | 4.43 | 1.21 | 6.83 | 4.02 | 0.07 | 0.06 |
p value b | 0.09 | 0.15 | 0.01 | 0.08 | 0.28 | 0.01 | 0.03 | 0.00 | |
R2 | 0.40 | 0.31 | 0.72 | 0.43 | 0.19 | 0.75 | 0.55 | 0.84 | |
p | 0.09 | 0.15 | 0.01 | 0.08 | 0.28 | 0.01 | 0.04 | 0.00 | |
Pearson | 0.63 | 0.56 | 0.85 | 0.66 | 0.44 | 0.87 | 0.74 | 0.91 | |
p Pearson | 0.09 | 0.15 | 0.01 | 0.08 | 0.28 | 0.01 | 0.04 | 0.00 | |
Spearman | 0.63 | 0.44 | 0.85 | 0.81 | 0.67 | 0.86 | 0.77 | 0.76 | |
p Spearman | 0.10 | 0.27 | 0.01 | 0.01 | 0.07 | 0.01 | 0.03 | 0.03 | |
Minimum temperature | b | 15.57 | 12.04 | 3.60 | 1.22 | 5.11 | 2.37 | 0.05 | 0.05 |
p value b | 0.08 | 0.06 | 0.00 | 0.05 | 0.09 | 0.03 | 0.02 | 0.01 | |
R2 | 0.43 | 0.47 | 0.82 | 0.49 | 0.40 | 0.58 | 0.68 | 0.75 | |
p | 0.08 | 0.06 | 0.00 | 0.05 | 0.09 | 0.03 | 0.02 | 0.01 | |
Pearson | 0.65 | 0.68 | 0.91 | 0.70 | 0.63 | 0.76 | 0.79 | 0.86 | |
p Pearson | 0.08 | 0.06 | 0.00 | 0.05 | 0.09 | 0.03 | 0.02 | 0.01 | |
Spearman | 0.48 | 0.60 | 0.86 | 0.81 | 0.72 | 0.60 | 0.76 | 0.76 | |
p Spearman | 0.23 | 0.12 | 0.01 | 0.01 | 0.04 | 0.12 | 0.03 | 0.03 | |
Rainfall | b | 0.04 | 0.04 | −0.01 | 0.00 | 0.03 | 0.01 | 0.00 | 0.00 |
p value b | 0.48 | 0.41 | 0.52 | 0.85 | 0.06 | 0.03 | 0.09 | 0.11 | |
R2 | 0.08 | 0.11 | 0.07 | 0.00 | 0.47 | 0.59 | 0.40 | 0.37 | |
p | 0.49 | 0.41 | 0.52 | 0.85 | 0.06 | 0.03 | 0.09 | 0.11 | |
Pearson | 0.29 | 0.34 | −0.27 | −0.08 | 0.68 | 0.77 | −0.63 | −0.61 | |
p Pearson | 0.49 | 0.41 | 0.5171 | 0.86 | 0.06 | 0.03 | 0.09 | 0.11 | |
Spearman | 0.38 | 0.31 | −0.24 | −0.10 | 0.49 | 0.62 | −0.55 | −0.33 | |
p Spearman | 0.35 | 0.46 | 0.57 | 0.88 | 0.22 | 0.10 | 0.16 | 0.43 |
Clime | Estimator | Centre-North | Centre-South | Northeast | Northwest | West | East | Southeast | Southwest |
---|---|---|---|---|---|---|---|---|---|
Maximun temperature | b | 0.02 | 0.02 | 0.33 | 0.52 | 0.09 | 0.48 | −56.30 | 9.09 |
p value b | 0.07 | 0.00 | 0.22 | 0.70 | 0.99 | 0.00 | 0.01 | 0.19 | |
R2 | 0.44 | 0.81 | 0.23 | 0.03 | 0.00 | 0.91 | 0.65 | 0.27 | |
p | 0.07 | 0.00 | 0.22 | 0.70 | 0.99 | 0.00 | 0.01 | 0.19 | |
Pearson | 0.66 | 0.90 | 0.48 | 0.16 | 0.01 | 0.96 | −0.81 | 0.52 | |
p Pearson | 0.07 | 0.00 | 0.22 | 0.70 | 0.99 | 0.00 | 0.01 | 0.19 | |
Spearman | 0.74 | 0.77 | 0.41 | 0.53 | 0.37 | 0.90 | −0.23 | 0.65 | |
p Spearman | 0.04 | 0.02 | 0.31 | 0.17 | 0.37 | 0.00 | 0.58 | 0.08 | |
Average temperature | b | 0.03 | 0.03 | 0.21 | 0.38 | 6.18 | 0.42 | 2.25 | 7.06 |
p value b | 0.04 | 0.04 | 0.44 | 0.48 | 0.04 | 0.00 | 0.88 | 0.17 | |
R2 | 0.54 | 0.53 | 0.10 | 0.09 | 0.52 | 0.91 | 0.00 | 0.29 | |
p | 0.04 | 0.04 | 0.44 | 0.48 | 0.04 | 0.00 | 0.88 | 0.17 | |
Pearson | 0.73 | 0.73 | 0.32 | 0.29 | 0.72 | 0.95 | 0.06 | 0.54 | |
p Pearson | 0.04 | 0.04 | 0.44 | 0.48 | 0.04 | 0.00 | 0.88 | 0.17 | |
Spearman | 0.73 | 0.77 | 0.43 | 0.84 | 0.87 | 0.88 | 0.79 | 0.65 | |
p Spearman | 0.04 | 0.03 | 0.2830 | 0.01 | 0.00 | 0.00 | 0.02 | 0.08 | |
Minimum temperatura | b | 0.02 | 0.015 | 0.165 | 0.32 | 4.75 | 0.36 | 4.330 | 8.97 |
p value b | 0.20 | 0.11 | 0.51 | 0.37 | 0.01 | 0.00 | 0.54 | 0.08 | |
R2 | 0.25 | 0.38 | 0.08 | 0.14 | 0.71 | 0.89 | 0.07 | 0.43 | |
p | 0.20 | 0.11 | 0.51 | 0.37 | 0.01 | 0.00 | 0.54 | 0.08 | |
Pearson | 0.50 | 0.61 | 0.28 | 0.37 | 0.84 | 0.94 | 0.26 | 0.66 | |
p Pearson | 0.20 | 0.11 | 0.51 | 0.37 | 0.01 | 0.00 | 0.54 | 0.08 | |
Spearman | 0.49 | 0.77 | 0.27 | 0.84 | 0.74 | 0.88 | 0.83 | 0.67 | |
p Spearman | 0.2220 | 0.03 | 0.51 | 0.01 | 0.03 | 0.00 | 0.01 | 0.07 | |
Rainfall | b | 0.00 | 0.00 | −0.01 | 0.00 | 0.02 | −0.01 | 0.04 | −0.02 |
p value b | 0.47 | 0.52 | 0.17 | 0.43 | 0.06 | 0.01 | 0.68 | 0.36 | |
R2 | 0.09 | 0.07 | 0.29 | 0.11 | 0.48 | 0.39 | 0.03 | 0.14 | |
p | 0.47 | 0.52 | 0.17 | 0.43 | 0.06 | 0.01 | 0.68 | 0.36 | |
Pearson | −0.30 | 0.27 | −0.53 | 0.33 | 0.69 | 0.62 | 0.17 | 0.37 | |
p Pearson | 0.47 | 0.52 | 0.17 | 0.43 | 0.06 | 0.70 | 0.68 | 0.36 | |
Spearman | −0.31 | 0.48 | −0.20 | 0.29 | 0.68 | 0.46 | 0.32 | −0.59 | |
p Spearman | 0.45 | 0.23 | 0.63 | 0.48 | 0.06 | 0.25 | 0.43 | 0.13 |
Temperature | Estimator | CD | HD | ||||||
---|---|---|---|---|---|---|---|---|---|
<500 | 500 to 1500 | 1501 to 2000 | >2000 | <500 | 500 to 1500 | 1501 to 2000 | >2000 | ||
Maximum | b1 | 10.42 | 18.66 | 3.59 | 1.17 | −2.06 | 3.27 | 0.042 | 0.07 |
p value b1 | 0.68 | 0.37 | 0.06 | 0.39 | 0.75 | 0.17 | 0.16 | 0.02 | |
b2 | 0.05 | 0.01 | 0.00 | 0.00 | 0.03 | 0.10 | 0.00 | 0.00 | |
p value b2 | 0.48 | 0.94 | 0.79 | 0.65 | 0.12 | 0.17 | 0.27 | 0.91 | |
R2 | 0.12 | 0.26 | 0.56 | 0.15 | 0.48 | 0.73 | 0.60 | 0.80 | |
p | 0.73 | 0.48 | 0.13 | 0.66 | 0.20 | 0.04 | 0.10 | 0.02 | |
Average | b1 | 29.35 | 22.36 | 4.42 | 1.38 | 2.25 | 3.38 | 0.06 | 0.05 |
p value b1 | 0.17 | 0.24 | 0.02 | 0.09 | 0.71 | 0.11 | 0.06 | 0.00 | |
b2 | 0.00 | −0.04 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | |
p value b2 | 0.96 | 0.59 | 0.99 | 0.56 | 0.15 | 0.68 | 0.14 | 0.12 | |
R2 | 0.40 | 0.35 | 0.72 | 0.47 | 0.48 | 0.76 | 0.72 | 0.90 | |
p | 0.28 | 0.34 | 0.04 | 0.20 | 0.19 | 0.03 | 0.04 | 0.00 | |
Minimum | b1 | 16.70 | 20.52 | 3.597 | 1.31 | 3.00 | 1.28 | 0.05 | 0.05 |
p value b1 | 0.14 | 0.06 | 0.01 | 0.07 | 0.34 | 0.40 | 0.06 | 0.01 | |
b2 | −0.01 | −0.07 | 0.00 | 0.00 | 0.02 | 0.01 | 0.00 | 0.00 | |
p value b2 | 0.83 | 0.27 | 0.98 | 0.64 | 0.22 | 0.37 | 0.13 | 0.08 | |
R2 | 0.43 | 0.59 | 0.82 | 0.51 | 0.56 | 0.65 | 0.72 | 0.87 | |
p | 0.24 | 0.11 | 0.01 | 0.17 | 0.12 | 0.07 | 0.04 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández Bautista, P.F.; Cabrera Gaytán, D.A.; Vallejos Parás, A.; Alejo Martínez, O.M.; Arriaga Nieto, L.; Rocha Reyes, B.L.; Ruíz Valdez, C.A.; Jaimes Betancourt, L.; Valle Alvarado, G.; Pérez Andrade, Y.; et al. Correlation of Geographic Variables with the Incidence Rate of Dengue Fever in Mexico: A 38-Year Study. Microorganisms 2024, 12, 2661. https://doi.org/10.3390/microorganisms12122661
Hernández Bautista PF, Cabrera Gaytán DA, Vallejos Parás A, Alejo Martínez OM, Arriaga Nieto L, Rocha Reyes BL, Ruíz Valdez CA, Jaimes Betancourt L, Valle Alvarado G, Pérez Andrade Y, et al. Correlation of Geographic Variables with the Incidence Rate of Dengue Fever in Mexico: A 38-Year Study. Microorganisms. 2024; 12(12):2661. https://doi.org/10.3390/microorganisms12122661
Chicago/Turabian StyleHernández Bautista, Porfirio Felipe, David Alejandro Cabrera Gaytán, Alfonso Vallejos Parás, Olga María Alejo Martínez, Lumumba Arriaga Nieto, Brenda Leticia Rocha Reyes, Carmen Alicia Ruíz Valdez, Leticia Jaimes Betancourt, Gabriel Valle Alvarado, Yadira Pérez Andrade, and et al. 2024. "Correlation of Geographic Variables with the Incidence Rate of Dengue Fever in Mexico: A 38-Year Study" Microorganisms 12, no. 12: 2661. https://doi.org/10.3390/microorganisms12122661
APA StyleHernández Bautista, P. F., Cabrera Gaytán, D. A., Vallejos Parás, A., Alejo Martínez, O. M., Arriaga Nieto, L., Rocha Reyes, B. L., Ruíz Valdez, C. A., Jaimes Betancourt, L., Valle Alvarado, G., Pérez Andrade, Y., & Moctezuma Paz, A. (2024). Correlation of Geographic Variables with the Incidence Rate of Dengue Fever in Mexico: A 38-Year Study. Microorganisms, 12(12), 2661. https://doi.org/10.3390/microorganisms12122661