Differential Immunological Responses of Adult Domestic and Bighorn Sheep to Inoculation with Mycoplasma ovipneumoniae Type Strain Y98
Abstract
1. Introduction
2. Materials and Methods
2.1. Propagation of M. ovipneumoniae Inoculum
2.2. Animals, Inoculation, Monitoring, and Sampling
2.3. M. ovipneumoniae and Leukotoxin A PCR
2.4. Flow Cytometric Assessment of Leukocyte Clusters of Differentiation Molecules
2.5. Multiplex Assay of Serum Cytokines/Chemokines
2.6. Immunocapillary Assay
2.7. Statistical Analysis
3. Results
3.1. Post-Inoculation Detection of M. ovipneumoniae DNA and Measured Clinical Signs Consistent with Upper Respiratory Disease
3.2. Peripheral Leukocyte Profile Pre- and Post-Inoculation
3.3. Immune Cell Surface Markers
3.4. Time Course Changes in Surface Integrin Markers
3.5. Time Course Changes in Surface Adhesins
3.6. Time Course Changes in CD14 and CD16
3.7. Measurement of Serum Cytokines from Baseline and Post-Inoculation
3.8. Antibody Response to M. ovipneumoniae Following Inoculation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Highland, M.A.; Herndon, D.R.; Bender, S.C.; Hansen, L.; Gerlach, R.F.; Beckmen, K.B. Mycoplasma ovipneumoniae in Wildlife Species beyond Subfamily Caprinae. Emerg. Infect. Dis. 2018, 24, 2384–2386. [Google Scholar] [CrossRef] [PubMed]
- Besser, T.E.; Frances Cassirer, E.; Highland, M.A.; Wolff, P.; Justice-Allen, A.; Mansfield, K.; Davis, M.A.; Foreyt, W. Bighorn sheep pneumonia: Sorting out the cause of a polymicrobial disease. Prev. Vet. Med. 2013, 108, 85–93. [Google Scholar] [CrossRef]
- Besser, T.E.; Cassirer, E.F.; Potter, K.A.; VanderSchalie, J.; Fischer, A.; Knowles, D.P.; Herndon, D.R.; Rurangirwa, F.R.; Weiser, G.C.; Srikumaran, S. Association of Mycoplasma ovipneumoniae infection with population-limiting respiratory disease in free-ranging Rocky Mountain bighorn sheep (Ovis canadensis canadensis). J. Clin. Microbiol. 2008, 46, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Jones, G.E.; Keir, W.A.; Gilmour, J.S. The pathogenicity of Mycoplasma ovipneumoniae and Mycoplasma arginini in ovine and caprine tracheal organ cultures. J. Comp. Pathol. 1985, 95, 477–487. [Google Scholar] [CrossRef] [PubMed]
- Alley, M.R.; Ionas, G.; Clarke, J.K. Chronic non-progressive pneumonia of sheep in New Zealand—A review of the role of Mycoplasma ovipneumoniae. N. Z. Vet. J. 1999, 47, 155–160. [Google Scholar] [CrossRef]
- Lindstrom, L.; Tauni, F.A.; Vargmar, K. Bronchopneumonia in Swedish lambs: A study of pathological changes and bacteriological agents. Acta Vet. Scand. 2018, 60, 54. [Google Scholar] [CrossRef] [PubMed]
- Besser, T.E.; Cassirer, E.F.; Potter, K.A.; Lahmers, K.; Oaks, J.L.; Shanthalingam, S.; Srikumaran, S.; Foreyt, W.J. Epizootic pneumonia of bighorn sheep following experimental exposure to Mycoplasma ovipneumoniae. PLoS ONE 2014, 9, e110039. [Google Scholar] [CrossRef]
- Hernandez, J.B.R.; Kim, P.Y. Epidemiology Morbidity and Mortality; StatPearls: Treasure Island, FL, USA, 2024. [Google Scholar]
- Johnson, T.; Jones, K.; Jacobson, B.T.; Schearer, J.; Adams, N.; Thornton, I.; Mosdal, C.; Jones, S.; Jutila, M.; Rynda-Apple, A.; et al. Experimental infection of specific-pathogen-free domestic lambs with Mycoplasma ovipneumoniae causes asymptomatic colonization of the upper airways that is resistant to antibiotic treatment. Vet. Microbiol. 2022, 265, 109334. [Google Scholar] [CrossRef] [PubMed]
- Foggie, A.; Jones, G.E.; Buxton, D. The experimental infection of specific pathogen free lambs with Mycoplasma ovipneumoniae. Res. Vet. Sci. 1976, 21, 28–35. [Google Scholar] [CrossRef]
- USDA. Mycoplasma Ovipneumonia on U.S. Sheep Operations; USDA–APHIS–VS–CEAH–NAHMS: Fort Collins, CO, USA, 2015; pp. 1–3. [Google Scholar]
- Grossman, P.C.; Schneider, D.A.; Herndon, D.R.; Knowles, D.P.; Highland, M.A. Differential pulmonary immunopathology of domestic sheep (Ovis aries) and bighorn sheep (Ovis canadensis) with Mycoplasma ovipneumoniae infection: A retrospective study. Comp. Immunol. Microbiol. Infect. Dis. 2021, 76, 101641. [Google Scholar] [CrossRef]
- Wood, M.E.; Fox, K.A.; Jennings-Gaines, J.; Killion, H.J.; Amundson, S.; Miller, M.W.; Edwards, W.H. How Respiratory Pathogens Contribute to Lamb Mortality in a Poorly Performing Bighorn Sheep (Ovis canadensis) Herd. J. Wildlife Dis. 2017, 53, 126–130. [Google Scholar] [CrossRef]
- Cassirer, E.F.; Manlove, K.R.; Plowright, R.K.; Besser, T.E. Evidence for strain-specific immunity to pneumonia in bighorn sheep. J. Wildl. Manag. 2017, 81, 133–143. [Google Scholar] [CrossRef]
- Johnson, B.M.; Stroud-Settles, J.; Roug, A.; Manlove, K. Disease Ecology of a Low-Virulence Mycoplasma ovipneumoniae Strain in a Free-Ranging Desert Bighorn Sheep Population. Animals 2022, 12, 1029. [Google Scholar] [CrossRef]
- Moberg, E. Factors Influencing Mortality of Bighorn Sheep (Ovis canadensis). In Wildlife and Fisheries Sciences; South Dakota State University: Brookings, SD, USA, 2023. [Google Scholar]
- Highland, M.A.; Schneider, D.A.; White, S.N.; Madsen-Bouterse, S.A.; Knowles, D.P.; Davis, W.C. Differences in leukocyte differentiation molecule abundances on domestic sheep (Ovis aries) and bighorn sheep (Ovis canadensis) neutrophils identified by flow cytometry. Comp. Immunol. Microbiol. Infect. Dis. 2016, 46, 40–46. [Google Scholar] [CrossRef]
- Dassanayake, R.P.; Shanthalingam, S.; Liu, W.; Casas, E.; Srikumaran, S. Differential Susceptibility of Bighorn Sheep (Ovis canadensis) and Domestic Sheep (Ovis aries) Neutrophils to Mannheimia haemolytica Leukotoxin is not due to Differential Expression of Cell Surface CD18. J. Wildl. Dis. 2017, 53, 625–629. [Google Scholar] [CrossRef]
- Herndon, D.R.; Beckmen, K.B.; Highland, M.A. Draft Genome Sequence of a Novel Mycoplasma Species Identified from the Respiratory Tract of an Alaska Moose (Alces alces gigas). Microbiol. Resour. Announc. 2021, 10, e01371-20. [Google Scholar] [CrossRef]
- AlHajri, S.M.; Cunha, C.W.; Nicola, A.V.; Aguilar, H.C.; Li, H.; Taus, N.S. Ovine Herpesvirus 2 Glycoproteins B, H, and L Are Sufficient for, and Viral Glycoprotein Ov8 Can Enhance, Cell-Cell Membrane Fusion. J. Virol. 2017, 91, e02454-16. [Google Scholar] [CrossRef] [PubMed]
- Robinson, E.; Schulein, C.; Jacobson, B.T.; Jones, K.; Sago, J.; Huber, V.; Jutila, M.; Bimczok, D.; Rynda-Apple, A. Pathophysiology of Influenza D Virus Infection in Specific-Pathogen-Free Lambs with or without Prior Mycoplasma ovipneumoniae Exposure. Viruses 2022, 14, 1422. [Google Scholar] [CrossRef] [PubMed]
- Mousel, M.R.; White, S.N.; Herndon, M.K.; Herndon, D.R.; Taylor, J.B.; Becker, G.M.; Murdoch, B.M. Genes involved in immune, gene translation and chromatin organization pathways associated with Mycoplasma ovipneumoniae presence in nasal secretions of domestic sheep. PLoS ONE 2021, 16, e0247209. [Google Scholar] [CrossRef] [PubMed]
- Fisher, M.A.; Weiser, G.C.; Hunter, D.L.; Ward, A.C. Use of a polymerase chain reaction method to detect the leukotoxin gene lktA in biogroup and biovariant isolates of Pasteurella haemolytica and P trehalosi. Am. J. Vet. Res. 1999, 60, 1402–1406. [Google Scholar] [CrossRef]
- Dassanayake, R.P.; Shanthalingam, S.; Herndon, C.N.; Lawrence, P.K.; Frances Cassirer, E.; Potter, K.A.; Foreyt, W.J.; Clinkenbeard, K.D.; Srikumaran, S. Mannheimia haemolytica serotype A1 exhibits differential pathogenicity in two related species, Ovis canadensis and Ovis aries. Vet. Microbiol. 2009, 133, 366–371. [Google Scholar] [CrossRef]
- McAuliffe, L.; Hatchell, F.M.; Ayling, R.D.; King, A.I.; Nicholas, R.A. Detection of Mycoplasma ovipneumoniae in Pasteurella-vaccinated sheep flocks with respiratory disease in England. Vet. Rec. 2003, 153, 687–688. [Google Scholar] [CrossRef]
- Smith, H.E.; Jacobs, R.M.; Smith, C. Flow cytometric analysis of ovine peripheral blood lymphocytes. Can. J. Vet. Res. 1994, 58, 152–155. [Google Scholar]
- Mazzone, A.; Ricevuti, G. Leukocyte CD11/CD18 integrins: Biological and clinical relevance. Haematologica 1995, 80, 161–175. [Google Scholar]
- Konrad, F.M.; Wohlert, J.; Gamper-Tsigaras, J.; Ngamsri, K.C.; Reutershan, J. How Adhesion Molecule Patterns Change While Neutrophils Traffic through the Lung during Inflammation. Mediat. Inflamm. 2019, 2019, 1208086. [Google Scholar] [CrossRef]
- Arbones, M.L.; Ord, D.C.; Ley, K.; Ratech, H.; Maynard-Curry, C.; Otten, G.; Capon, D.J.; Tedder, T.F. Lymphocyte homing and leukocyte rolling and migration are impaired in L-selectin-deficient mice. Immunity 1994, 1, 247–260. [Google Scholar] [CrossRef]
- Ciesielska, A.; Matyjek, M.; Kwiatkowska, K. TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling. Cell Mol. Life Sci. 2021, 78, 1233–1261. [Google Scholar] [CrossRef] [PubMed]
- Yeap, W.H.; Wong, K.L.; Shimasaki, N.; Teo, E.C.Y.; Quek, J.K.S.; Yong, H.X.; Diong, C.P.; Bertoletti, A.; Linn, Y.C.; Wong, S.C. CD16 is indispensable for antibody-dependent cellular cytotoxicity by human monocytes. Sci. Rep 2016, 6, 34310. [Google Scholar] [CrossRef]
- Fox, K.A.; MacGlover, C.A.W.; Blecha, K.A.; Stenglein, M.D. Assessing shared respiratory pathogens between domestic (Ovis aries) and bighorn (Ovis canadensis) sheep; Methods for multiplex PCR, amplicon sequencing, and bioinformatics to characterize respiratory flora. PLoS ONE 2023, 18, e0293062. [Google Scholar] [CrossRef]
- Pennock, N.D.; White, J.T.; Cross, E.W.; Cheney, E.E.; Tamburini, B.A.; Kedl, R.M. T cell responses: Naive to memory and everything in between. Adv. Physiol. Educ. 2013, 37, 273–283. [Google Scholar] [CrossRef]
- Chen, G.; Sun, L.; Kato, T.; Okuda, K.; Martino, M.B.; Abzhanova, A.; Lin, J.M.; Gilmore, R.C.; Batson, B.D.; O’Neal, Y.K.; et al. IL-1beta dominates the promucin secretory cytokine profile in cystic fibrosis. J. Clin. Invest. 2019, 129, 4433–4450. [Google Scholar] [CrossRef] [PubMed]
- Suwara, M.I.; Green, N.J.; Borthwick, L.A.; Mann, J.; Mayer-Barber, K.D.; Barron, L.; Corris, P.A.; Farrow, S.N.; Wynn, T.A.; Fisher, A.J.; et al. IL-1alpha released from damaged epithelial cells is sufficient and essential to trigger inflammatory responses in human lung fibroblasts. Mucosal Immunol. 2014, 7, 684–693. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Huard, A.; Mora, J.; da Silva, P.; Brune, B.; Weigert, A. IL-36 family cytokines in protective versus destructive inflammation. Cell. Signal 2020, 75, 109773. [Google Scholar] [CrossRef] [PubMed]
- Shams, F.; Moravvej, H.; Hosseinzadeh, S.; Mostafavi, E.; Bayat, H.; Kazemi, B.; Bandehpour, M.; Rostami, E.; Rahimpour, A.; Moosavian, H. Overexpression of VEGF in dermal fibroblast cells accelerates the angiogenesis and wound healing function: In vitro and in vivo studies. Sci. Rep. 2022, 12, 18529. [Google Scholar] [CrossRef]
- Malmberg, J.L.; Allen, S.E.; Jennings-Gaines, J.E.; Johnson, M.; Luukkonen, K.L.; Robbins, K.M.; Cornish, T.E.; Smiley, R.A.; Wagler, B.L.; Gregory, Z.; et al. Pathology of Chronic Mycoplasma ovipneumoniae Carriers in a Declining Bighorn Sheep (Ovis canadensis) Population. J. Wildl. Dis. 2024, 60, 448–460. [Google Scholar] [CrossRef] [PubMed]
- Subramaniam, R.; Herndon, C.N.; Shanthalingam, S.; Dassanayake, R.P.; Bavananthasivam, J.; Potter, K.A.; Knowles, D.P.; Foreyt, W.J.; Srikumaran, S. Defective bacterial clearance is responsible for the enhanced lung pathology characteristic of pneumonia in bighorn sheep. Vet. Microbiol. 2011, 153, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Elhmouzi-Younes, J.; Boysen, P.; Pende, D.; Storset, A.K.; Le Vern, Y.; Laurent, F.; Drouet, F. Ovine CD16+/CD14− blood lymphocytes present all the major characteristics of natural killer cells. Vet. Res. 2010, 41, 4. [Google Scholar] [CrossRef]
- Dienz, O.; Eaton, S.M.; Bond, J.P.; Neveu, W.; Moquin, D.; Noubade, R.; Briso, E.M.; Charland, C.; Leonard, W.J.; Ciliberto, G.; et al. The induction of antibody production by IL-6 is indirectly mediated by IL-21 produced by CD4+ T cells. J. Exp. Med. 2009, 206, 69–78. [Google Scholar] [CrossRef]
- Madhurantakam, S.; Lee, Z.J.; Naqvi, A.; Prasad, S. Importance of IP-10 as a biomarker of host immune response: Critical perspective as a target for biosensing. Curr. Res. Biotechnol. 2023, 5, 100130. [Google Scholar] [CrossRef]
- Li, M.Y.; Chen, Y.; Li, H.H.; Yang, D.H.; Zhou, Y.L.; Chen, Z.M.; Zhang, Y.Y. Serum CXCL10/IP-10 may be a potential biomarker for severe pneumonia in children. BMC Infect. Dis. 2021, 21, 909. [Google Scholar] [CrossRef]
- Haziot, A.; Tsuberi, B.Z.; Goyert, S.M. Neutrophil CD14: Biochemical properties and role in the secretion of tumor necrosis factor-alpha in response to lipopolysaccharide. J. Immunol. 1993, 150, 5556–5565. [Google Scholar] [CrossRef]
- Wang, M.; Feng, J.; Zhou, D.; Wang, J. Bacterial lipopolysaccharide-induced endothelial activation and dysfunction: A new predictive and therapeutic paradigm for sepsis. Eur. J. Med. Res. 2023, 28, 339. [Google Scholar] [CrossRef]
- Luderitz, O.; Freudenberg, M.A.; Galanos, C.; Lehmann, V.; Rietschel, E.T.; Shaw, D.H. Lipopolysaccharides of Gram-Negative Bacteria. Curr. Top. Membr. Trans. 1982, 17, 79–151. [Google Scholar]
- Shimizu, T. Inflammation-inducing Factors of Mycoplasma pneumoniae. Front. Microbiol. 2016, 7, 414. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Varasteh, S.; van Putten, J.P.M.; Folkerts, G.; Braber, S. Mannheimia haemolytica and lipopolysaccharide induce airway epithelial inflammatory responses in an extensively developed ex vivo calf model. Sci. Rep. 2020, 10, 13042. [Google Scholar] [CrossRef]
- Hodgson, P.D.; Aich, P.; Stookey, J.; Popowych, Y.; Potter, A.; Babiuk, L.; Griebel, P.J. Stress significantly increases mortality following a secondary bacterial respiratory infection. Vet. Res. 2012, 43, 21. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madsen-Bouterse, S.A.; Herndon, D.R.; Grossman, P.C.; Rivolta, A.A.; Fry, L.M.; Murdoch, B.M.; Piel, L.M.W. Differential Immunological Responses of Adult Domestic and Bighorn Sheep to Inoculation with Mycoplasma ovipneumoniae Type Strain Y98. Microorganisms 2024, 12, 2658. https://doi.org/10.3390/microorganisms12122658
Madsen-Bouterse SA, Herndon DR, Grossman PC, Rivolta AA, Fry LM, Murdoch BM, Piel LMW. Differential Immunological Responses of Adult Domestic and Bighorn Sheep to Inoculation with Mycoplasma ovipneumoniae Type Strain Y98. Microorganisms. 2024; 12(12):2658. https://doi.org/10.3390/microorganisms12122658
Chicago/Turabian StyleMadsen-Bouterse, Sally A., David R. Herndon, Paige C. Grossman, Alejandra A. Rivolta, Lindsay M. Fry, Brenda M. Murdoch, and Lindsay M. W. Piel. 2024. "Differential Immunological Responses of Adult Domestic and Bighorn Sheep to Inoculation with Mycoplasma ovipneumoniae Type Strain Y98" Microorganisms 12, no. 12: 2658. https://doi.org/10.3390/microorganisms12122658
APA StyleMadsen-Bouterse, S. A., Herndon, D. R., Grossman, P. C., Rivolta, A. A., Fry, L. M., Murdoch, B. M., & Piel, L. M. W. (2024). Differential Immunological Responses of Adult Domestic and Bighorn Sheep to Inoculation with Mycoplasma ovipneumoniae Type Strain Y98. Microorganisms, 12(12), 2658. https://doi.org/10.3390/microorganisms12122658