Proline Improves Pullulan Biosynthesis Under High Sugar Stress Condition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains and Culture
2.2. Fermentation Culture
2.3. Assessment of High Sugar and Hyperosmotic Stress Tolerance in A. pullulans
2.4. Preparation of Cell-Free Extracts and Determination of Intracellular Amino Acids
2.5. Determination of Intracellular Glycerol Content
2.6. Scanning Electron Microscopy
2.7. Determination of the Activities of Key Enzymes Involved in Pullulan Biosynthesis
2.8. Measurement of Biomass, Pullulan Yield, and Molecular Weight in Fermentation Broth
2.9. Transcriptome Analysis
2.9.1. Sample Preparation
2.9.2. Total RNA Extraction, Library Construction, and Sequencing
2.9.3. RNA Sequencing (RNA-seq)
2.10. Statistical Analysis
3. Results
3.1. A. pullulans Growth and Pullulan Synthesis Under High Sugar and Hyperosmotic Stress
3.2. Effect of High Sugar and Hyperosmotic Stress on Intracellular Amino Acid Content in A. pullulans
3.3. Protective Effects of Amino Acids Against Hyperosmotic Stress in A. pullulans
3.4. A. pullulans Transports Exogenous Amino Acids to Resist High Sugar Stress
3.5. Effect of Exogenous Proline on A. pullulans Cell Surface Morphology
3.6. Effect of Exogenous Addition of Proline on the Activities of Key Enzymes
3.7. Effect of Exogenous Proline on A. pullulans Under High Sugar Stress Conditions at the Transcriptome Level
3.7.1. RNA-seq Results and Quality Control
3.7.2. Statistical Analysis of DEGs
3.7.3. GO Functional Enrichment Analysis of DEGs
3.8. KEGG Enrichment Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Farris, S.; Unalan, I.U.; Introzzi, L.; Fuentes-Alventosa, J.M.; Cozzolino, C.A. Pullulan-based films and coatings for food packaging: Present applications, emerging opportunities, and future challenges. J. Appl. Polym. Sci. 2014, 131, 40539. [Google Scholar] [CrossRef]
- Singh, R.S.; Kaur, N.; Kennedy, J.F. Pullulan production from agro-industrial waste and its applications in food industry: A review. Carbohydr. Polym. 2019, 217, 46–57. [Google Scholar] [CrossRef]
- Cheng, K.-C.; Demirci, A.; Catchmark, J.M. Pullulan: Biosynthesis, production, and applications. Appl. Microbiol. Biotechnol. 2011, 92, 29–44. [Google Scholar] [CrossRef] [PubMed]
- Prajapati, V.D.; Jani, G.K.; Khanda, S.M. Pullulan: An exopolysaccharide and its various applications. Carbohydr. Polym. 2013, 95, 540–549. [Google Scholar] [CrossRef]
- Sugumaran, K.R.; Ponnusami, V.J.C.P. Review on production, downstream processing and characterization of microbial pullulan. Carbohydr. Polym. 2017, 173, 573–591. [Google Scholar] [CrossRef]
- Wang, D.; Ju, X.; Zhang, G.; Wang, D.; Wei, G. Copper sulfate improves pullulan production by bioconversion using whole cells of Aureobasidium pullulans as the catalyst. Carbohydr. Polym. 2016, 150, 209–215. [Google Scholar] [CrossRef]
- West, T.P. Impact of Aureobasidium Species Strain Improvement on the Production of the Polysaccharide Pullulan. Polysaccharides 2024, 5, 305–319. [Google Scholar] [CrossRef]
- Cheng, K.-C.; Demirci, A.; Catchmark, J.M.; Puri, V.M. Effects of initial ammonium ion concentration on pullulan production by Aureobasidium pullulans and its modeling. J. Food Eng. 2011, 103, 115–122. [Google Scholar] [CrossRef]
- Chen, L.; Wei, X.; Liu, G.-L.; Hu, Z.; Chi, Z.-M.; Chi, Z. Glycerol, trehalose and vacuoles had relations to pullulan synthesis and osmotic tolerance by the whole genome duplicated strain Aureobasidium melanogenum TN3-1 isolated from natural honey. Int. J. Biol. Macromol. 2020, 165, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Chi, Z.; Wang, L.; Wang, X. Influence of different sugars on pullulan production and activities of α-phosphoglucose mutase, UDPG-pyrophosphorylase and glucosyltransferase involved in pullulan synthesis in Aureobasidium pullulans Y68. Carbohydr. Polym. 2008, 73, 587–593. [Google Scholar] [CrossRef]
- Jiang, H.; Xue, S.-J.; Li, Y.-F.; Liu, G.-L.; Chi, Z.-M.; Hu, Z.; Chi, Z. Efficient transformation of sucrose into high pullulan concentrations by Aureobasidium melanogenum TN1-2 isolated from a natural honey. Food Chem. 2018, 257, 29–35. [Google Scholar] [CrossRef]
- Chen, L.; Chi, Z.; Liu, G.-L.; Xue, S.-J.; Wang, Z.-P.; Hu, Z.; Chi, Z.-M. Improved pullulan production by a mutant of Aureobasidium melanogenum TN3-1 from a natural honey and capsule shell preparation. Int. J. Biol. Macromol. 2019, 141, 268–277. [Google Scholar] [CrossRef] [PubMed]
- Van den Eynde, K.; Boon, V.; Gaspar, R.C.; Fardim, P. Biofabrication of Functional Pullulan by Aureobasidium pullulans under the Effect of Varying Mineral Salts and Sugar Stress Conditions. Molecules 2023, 28, 2478. [Google Scholar] [CrossRef] [PubMed]
- Takagi, H. Proline as a stress protectant in yeast: Physiological functions, metabolic regulations, and biotechnological applications. Appl. Microbiol. Biotechnol. 2008, 81, 211–223. [Google Scholar] [CrossRef]
- Xu, S.; Zhou, J.; Liu, L.; Chen, J. Arginine: A novel compatible solute to protect Candida glabrata against hyperosmotic stress. Process Biochem. 2011, 46, 1230–1235. [Google Scholar] [CrossRef]
- Xu, S.; Zhou, J.; Liu, L.; Chen, J. Proline enhances Torulopsis glabrata growth during hyperosmotic stress. Biotechnol. Bioprocess Eng. 2010, 15, 285–292. [Google Scholar] [CrossRef]
- Yang, J.; Li, X.; Zhao, S.; Yuan, W.; Zhou, Q.; Zhang, Y.; Qiu, J.; Wang, J.; Zhu, Q.; Yang, X.; et al. Light calcium carbonate improves pullulan biosynthesis by Aureobasidium pullulans under high concentration of sugar. Food Chem. 2023, 415, 135760. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Ju, X.; Zhou, D.; Wei, G. Efficient production of pullulan using rice hull hydrolysate by adaptive laboratory evolution of Aureobasidium pullulans. Bioresour. Technol. 2014, 164, 12–19. [Google Scholar] [CrossRef]
- Yang, L.B.; Zhan, X.B.; Zheng, Z.Y.; Wu, J.R.; Gao, M.J.; Lin, C.C. A novel osmotic pressure control fed-batch fermentation strategy for improvement of erythritol production by Yarrowia lipolytica from glycerol. Bioresour. Technol. 2014, 151, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhou, G.; Sun, L.; Zheng, C. Ovicidal activity of spirotetramat and its effect on hatching, development and formation of Frankliniella occidentalis egg. Sci. Rep. 2021, 11, 20751. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Xiong, G.; Yuan, S.; Wu, Z.; Miao, Y.; Weng, P. Investigating the underlying mechanism of Saccharomyces cerevisiae in response to ethanol stress employing RNA-seq analysis. World J. Microbiol. Biotechnol. 2017, 33, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Chi, Z.; Liu, N.-N.; Jiang, H.; Wang, Q.-Q.; Chen, J.-T.; Liu, G.-L.; Hu, Z.; Chi, Z.-M. Relationship between β-d-fructofuranosidase activity, fructooligosaccharides and pullulan biosynthesis in Aureobasidium melanogenum P16. Int. J. Biol. Macromol. 2019, 125, 1103–1111. [Google Scholar] [CrossRef] [PubMed]
- Shingel, K.I. Current knowledge on biosynthesis, biological activity, and chemical modification of the exopolysaccharide, pullulan. Carbohydr. Res. 2004, 339, 447–460. [Google Scholar] [CrossRef] [PubMed]
- An, C.; Ma, S.-j.; Xue, W.-j.; Liu, C.; Ding, H. Comparative study of different molecular weight pullulan productions by Aureobasidium pullulans CGMCC No.11602. 3 Biotech 2019, 9, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Feng, Z.; Zeng, Q.; Zeng, J.; Liu, H.; Deng, P.; Li, S.; Li, N.; Wang, J. Enhancing Pullulan Production in Aureobasidium pullulans through UV Mutagenesis Breeding and High-Throughput Screening System. Fermentation 2024, 10, 103. [Google Scholar] [CrossRef]
- Cheng, Y.; Du, Z.; Zhu, H.; Guo, X.; He, X. Protective Effects of Arginine on Saccharomyces cerevisiae Against Ethanol Stress. Sci. Rep. 2016, 6, 31311. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.-N.; Chi, Z.; Wang, Q.-Q.; Hong, J.; Liu, G.-L.; Hu, Z.; Chi, Z.-M. Simultaneous production of both high molecular weight pullulan and oligosaccharides by Aureobasdium melanogenum P16 isolated from a mangrove ecosystem. Int. J. Biol. Macromol. 2017, 102, 1016–1024. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.-N.; Chi, Z.; Liu, G.-L.; Chen, T.-J.; Jiang, H.; Hu, Z.; Chi, Z.-M. α-Amylase, glucoamylase and isopullulanase determine molecular weight of pullulan produced by Aureobasidium melanogenum P16. Int. J. Biol. Macromol. 2018, 117, 727–734. [Google Scholar] [CrossRef]
- Chi, Z.; Wang, F.; Chi, Z.; Yue, L.; Liu, G.; Zhang, T. Bioproducts from Aureobasidium pullulans, a biotechnologically important yeast. Appl. Microbiol. Biotechnol. 2009, 82, 793–804. [Google Scholar] [CrossRef] [PubMed]
- Guan, N.; Li, J.; Shin, H.-d.; Du, G.; Chen, J.; Liu, L. Microbial response to environmental stresses: From fundamental mechanisms to practical applications. Appl. Microbiol. Biotechnol. 2017, 101, 3991–4008. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Tang, J.; Lv, J.; Wang, X.; Sun, H. Physiological and transcriptomic insights into sugar stress resistance in osmophilic yeast Zygosaccharomyces rouxii. Food Microbiol. 2024, 117, 104395. [Google Scholar] [CrossRef]
- Wang, D.; Hao, Z.; Zhao, J.; Jin, Y.; Huang, J.; Zhou, R.; Wu, C. Comparative physiological and transcriptomic analyses reveal salt tolerance mechanisms of Zygosaccharomyces rouxii. Process Biochem. 2019, 82, 59–67. [Google Scholar] [CrossRef]
- Krämer, R. Bacterial stimulus perception and signal transduction: Response to osmotic stress. Chem. Rec. 2010, 10, 217–229. [Google Scholar] [CrossRef] [PubMed]
- Davenport, K.R.; Sohaskey, M.; Kamada, Y.; Levin, D.E.; Gustin, M.C. A second osmosensing signal transduction pathway in yeast. Hypotonic shock activates the PKC1 protein kinase-regulated cell integrity pathway. J. Biol. Chem. 1995, 270, 30157–30161. [Google Scholar] [CrossRef]
- Chi, Z.; Kong, C.-C.; Wang, Z.-Z.; Wang, Z.; Liu, G.-L.; Hu, Z.; Chi, Z.-M. The signaling pathways involved in metabolic regulation and stress responses of the yeast-like fungi Aureobasidium spp. Biotechnol. Adv. 2022, 55, 107898. [Google Scholar] [CrossRef]
- Murdock, L.; Burke, T.; Coumoundouros, C.; Culham, D.E.; Deutch, C.E.; Ellinger, J.; Kerr, C.H.; Plater, S.M.; To, E.; Wright, G.; et al. Analysis of Strains Lacking Known Osmolyte Accumulation Mechanisms Reveals Contributions of Osmolytes and Transporters to Protection against Abiotic Stress. Appl. Environ. Microbiol. 2014, 80, 5366–5378. [Google Scholar] [CrossRef]
- Song, N.; Xia, H.; Yang, Q.; Zhang, X.; Yao, L.; Yang, S.; Chen, X.; Dai, J. Differential analysis of ergosterol function in response to high salt and sugar stress in Zygosaccharomyces rouxii. FEMS Yeast Res. 2022, 22, foac040. [Google Scholar] [CrossRef] [PubMed]
- Lin, N.-X.; Xu, Y.; Yu, X.-W. Overview of yeast environmental stress response pathways and the development of tolerant yeasts. Syst. Microbiol. Biomanufacturing 2021, 2, 232–245. [Google Scholar] [CrossRef]
- Prielhofer, R.; Cartwright, S.P.; Graf, A.B.; Valli, M.; Bill, R.M.; Mattanovich, D.; Gasser, B. Pichia pastoris regulates its gene-specific response to different carbon sources at the transcriptional, rather than the translational, level. BMC Genom. 2015, 16, 1–17. [Google Scholar] [CrossRef] [PubMed]
- de Nadal, E.; Ammerer, G.; Posas, F. Controlling gene expression in response to stress. Nat. Rev. Genet. 2011, 12, 833–845. [Google Scholar] [CrossRef] [PubMed]
- Nieves, I.U.; Geddes, C.C.; Miller, E.N.; Mullinnix, M.T.; Hoffman, R.W.; Fu, Z.; Tong, Z.; Ingram, L.O. Effect of reduced sulfur compounds on the fermentation of phosphoric acid pretreated sugarcane bagasse by ethanologenic Escherichia coli. Bioresour. Technol. 2011, 102, 5145–5152. [Google Scholar] [CrossRef] [PubMed]
- Francioso, A.; Baseggio Conrado, A.; Mosca, L.; Fontana, M.; Cirillo, G. Chemistry and Biochemistry of Sulfur Natural Compounds: Key Intermediates of Metabolism and Redox Biology. Oxidative Med. Cell. Longev. 2020, 2020, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Wang, Y.; Yang, Q.; Zhang, Y.; Wu, Y.; Yang, Y.; Mei, M.; He, M.; Wang, X.; Yang, S. Molecular mechanism of enhanced ethanol tolerance associated with hfq overexpression in Zymomonas mobilis. Front. Bioeng. Biotechnol. 2022, 10, 1098021. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, Y.; Chen, Z.; Gu, P.; Li, X.; Wang, G. Exploring cell aggregation as a defense strategy against perchlorate stress in Chlamydomonas reinhardtii through multi-omics analysis. Sci. Total Environ. 2023, 905, 167045. [Google Scholar] [CrossRef] [PubMed]
- Leandro, M.R.; Andrade, L.F.; de Souza Vespoli, L.; Soares, F.S.; Moreira, J.R.; Pimentel, V.R.; Barbosa, R.R.; de Oliveira, M.V.V.; Silveira, V.; de Souza Filho, G.A. Combination of osmotic stress and sugar stress response mechanisms is essential for Gluconacetobacter diazotrophicus tolerance to high-sucrose environments. Appl. Microbiol. Biotechnol. 2021, 105, 7463–7473. [Google Scholar] [CrossRef]
Sample | Raw Data (bp) | Clean Data (bp) | Q20 (%) | Q30 (%) | N (%) | GC (%) |
---|---|---|---|---|---|---|
CK-1 | 5,988,940,500 | 5,950,751,278 | 5,853,778,416 (98.37%) | 5,653,430,973 (95.00%) | 91,353 (0.00%) | 3,118,360,617 (52.40%) |
CK-2 | 6,232,372,500 | 6,197,207,194 | 6,093,540,111 (98.33%) | 5,885,423,028 (94.97%) | 102,951 (0.00%) | 3,257,455,686 (52.56%) |
CK-3 | 5,909,783,400 | 5,855,383,584 | 5,758,623,630 (98.35%) | 5,551,683,529 (94.81%) | 165,982 (0.00%) | 3,066,103,894 (52.36%) |
CP-1 | 5,752,149,000 | 5,700,962,758 | 5,621,846,659 (98.61%) | 5,451,164,121 (95.62%) | 103,635 (0.00%) | 2,961,035,665 (51.94%) |
CP-2 | 5,523,115,500 | 5,484,849,961 | 5,393,385,771 (98.33%) | 5,210,109,566 (94.99%) | 92,173 (0.00%) | 2,842,443,729 (51.82%) |
CP-3 | 5,508,067,500 | 5,463,335,033 | 5,358,162,917 (98.07%) | 5,155,132,240 (94.36%) | 92,332 (0.00%) | 2,798,609,660 (51.23%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, K.; Wang, J.; Li, F.; Wang, R.; Zeng, Q.; Zhang, Z.; Liu, H.; Li, P. Proline Improves Pullulan Biosynthesis Under High Sugar Stress Condition. Microorganisms 2024, 12, 2657. https://doi.org/10.3390/microorganisms12122657
Liu K, Wang J, Li F, Wang R, Zeng Q, Zhang Z, Liu H, Li P. Proline Improves Pullulan Biosynthesis Under High Sugar Stress Condition. Microorganisms. 2024; 12(12):2657. https://doi.org/10.3390/microorganisms12122657
Chicago/Turabian StyleLiu, Keyi, Junqing Wang, Feng Li, Ruiming Wang, Qingming Zeng, Zhenxing Zhang, Hongwei Liu, and Piwu Li. 2024. "Proline Improves Pullulan Biosynthesis Under High Sugar Stress Condition" Microorganisms 12, no. 12: 2657. https://doi.org/10.3390/microorganisms12122657
APA StyleLiu, K., Wang, J., Li, F., Wang, R., Zeng, Q., Zhang, Z., Liu, H., & Li, P. (2024). Proline Improves Pullulan Biosynthesis Under High Sugar Stress Condition. Microorganisms, 12(12), 2657. https://doi.org/10.3390/microorganisms12122657