Role of Polyphosphate as an Inorganic Chaperone to Prevent Protein Aggregation Under Copper Stress in Saccharolobus solfataricus
Abstract
1. Introduction
2. Materials and Methods
2.1. Strains and Culture Media
2.2. polyP Extraction and Measurement
2.3. ADP/ATP Assays
2.4. Protein Extraction, Measurement, and Visualization
2.5. Total RNA Extraction from S. solfataricus and cDNA Synthesis
2.6. Primer Design and qPCR
2.7. Statistical Analyzes
3. Results
3.1. Polyphosphate Levels in the Presence of Copper Stress in S. solfataricus
3.2. Energy Metabolism Under Copper Stress in the Presence or Absence of polyP
3.3. Protein Aggregation Under Copper Stress in the Presence or Absence of polyP
3.4. Survival Assay
3.5. Expression of Stress-Related Genes Under Copper Stress in the Presence or Absence of polyP
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kornberg, A.; Rao, N.N.; Ault-Riche, D. Inorganic polyphosphate: A molecule of many functions. Annu. Rev. Biochem. 1999, 68, 89–125. [Google Scholar] [CrossRef] [PubMed]
- Achbergerová, L.; Nahálka, J. Polyphosphate-an ancient energy source and active metabolic regulator. Microb. Cell Fact. 2011, 10, 63. [Google Scholar] [CrossRef] [PubMed]
- Rao, N.N.; Gómez-García, M.R.; Kornberg, A. Inorganic polyphosphate: Essential for growth and survival. Annu. Rev. Biochem. 2009, 78, 605–647. [Google Scholar] [CrossRef] [PubMed]
- Gray, M.J.; Jakob, U. Oxidative stress protection by polyphosphate—New roles for an old player. Curr. Opin. Microbiol. 2015, 24, 1–6. [Google Scholar] [CrossRef]
- Albi, T.; Serrano, A. Inorganic polyphosphate in the microbial world. Emerging roles for multifaceted biopolymers. World J. Microbiol. Biotechnol. 2016, 32, 27. [Google Scholar] [CrossRef]
- Wang, L.; Liu, Q.; Wu, X.; Huang, Y.; Wise, M.J.; Liu, Z.; Wang, W.; Hu, J.; Wang, C. Bioinformatics analysis of metabolism pathways of archaeal energy reserves. Sci. Rep. 2019, 9, 1034. [Google Scholar] [CrossRef]
- Cardona, S.T.; Chávez, F.P.; Jerez, C.A. The exopolyphosphatase gene from Sulfolobus solfataricus: Characterization of the first gene found to be involved in polyphosphate metabolism in archaea. Appl. Environ. Microbiol. 2002, 68, 4812–4819. [Google Scholar] [CrossRef]
- Höfmann, S.; Schmerling, C.; Stracke, C.; Niemeyer, F.; Schaller, T.; Snoep, J.L.; Bräsen, C.; Siebers, B. The archaeal family 3 polyphosphate kinase reveals a function of polyphosphate as energy buffer under low energy charge. bioRxiv 2024. [Google Scholar] [CrossRef]
- Remonsellez, F.; Orell, A.; Jerez, C.A. Copper tolerance of the thermoacidophilic archaeon Sulfolobus metallicus: Possible role of polyphosphate metabolism. Microbiology 2006, 152, 59–66. [Google Scholar] [CrossRef]
- Orell, A.; Navarro, C.A.; Rivero, M.; Aguilar, J.S.; Jerez, C.A. Inorganic polyphosphates in extremophiles and their possible functions. Extremophiles 2012, 16, 573–583. [Google Scholar] [CrossRef]
- Rivero, M.; Torres-Paris, C.; Muñoz, R.; Cabrera, R.; Navarro, C.A.; Jerez, C.A. Inorganic polyphosphate, exopolyphosphatase, and Pho84-like transporters may be involved in copper resistance in Metallosphaera sedula DSM 2018, 5348T. Archaea 2018, 2018, 5251061. [Google Scholar] [CrossRef] [PubMed]
- Soto, D.F.; Recalde, A.; Orell, A.; Albers, S.V.; Paradela, A.; Navarro, C.A.; Jerez, C.A. Global effect of the lack of inorganic polyphosphate in the extremophilic archaeon Sulfolobus solfataricus: A proteomic approach. J. Proteom. 2019, 191, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Recalde, A.; González-Madrid, G.; Acevedo-López, J.; Jerez, C.A. Sessile Lifestyle Offers Protection against Copper Stress in Saccharolobus solfataricus. Microorganisms 2023, 11, 1421. [Google Scholar] [CrossRef] [PubMed]
- Kuroda, A.; Tanaka, S.; Ikeda, T.; Kato, J.; Takiguchi, N.; Ohtake, H. Inorganic polyphosphate kinase is required to stimulate protein degradation and for adaptation to amino acid starvation in Escherichia coli. Proc. Natl. Acad. Sci. USA 1999, 96, 14264–14269. [Google Scholar] [CrossRef]
- Rao, N.N.; Kornberg, A. Inorganic polyphosphate regulates responses of Escherichia coli to nutritional stringencies, environmental stresses and survival in the stationary phase. Prog. Mol. Subcell. Biol. 1999, 23, 183–195. [Google Scholar] [CrossRef]
- Gray, M.J.; Wholey, W.Y.; Wagner, N.O.; Cremers, C.M.; Mueller-Schickert, A.; Hock, N.T.; Krieger, A.G.; Smith, E.M.; Bender, R.A.; Bardwell, J.C.A.; et al. Polyphosphate is a primordial chaperone. Mol. Cell 2014, 53, 689–699. [Google Scholar] [CrossRef]
- Dahl, J.U.; Gray, M.J.; Jakob, U. Protein quality control under oxidative stress conditions. J. Mol. Biol. 2015, 427, 1549–1563. [Google Scholar] [CrossRef]
- Yoo, N.G.; Dogra, S.; Meinen, B.A.; Tse, E.; Haefliger, J.; Southworth, D.R.; Gray, M.J.; Dahl, J.U.; Jakob, U. Polyphosphate stabilizes protein unfolding intermediates as soluble amyloid-like oligomers. J. Mol. Biol. 2018, 430, 4195–4208. [Google Scholar] [CrossRef]
- Grillo-Puertas, M.; Schurig-Briccio, L.A.; Rodríguez-Montelongo, L.; Rintoul, M.R.; Rapisarda, V.A. Copper tolerance mediated by polyphosphate degradation and low-affinity inorganic phosphate transport system in Escherichia coli. BMC Microbiol. 2014, 14, 72. [Google Scholar] [CrossRef]
- Xie, L.; Jakob, U. Inorganic polyphosphate, a multifunctional polyanionic protein scaffold. J. Biol. Chem. 2019, 294, 2180–2190. [Google Scholar] [CrossRef]
- Reichmann, D.; Voth, W.; Jakob, U. Maintaining a Healthy Proteome during Oxidative Stress. Mol. Cell. 2018, 69, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Rudat, A.K.; Pokhrel, A.; Green, T.J.; Gray, M.J. Mutations in Escherichia coli Polyphosphate Kinase That Lead to Dramatically Increased In Vivo Polyphosphate Levels. J. Bacteriol. 2018, 200, e00697-17. [Google Scholar] [CrossRef] [PubMed]
- Guan, J.; Jakob, U. The Protein Scaffolding Functions of Polyphosphate. J. Mol. Biol. 2024, 200, 168504. [Google Scholar] [CrossRef] [PubMed]
- Schoeppe, R.; Waldmann, M.; Jessen, H.J.; Renné, T. An Update on Polyphosphate In Vivo Activities. Biomolecules 2024, 14, 937. [Google Scholar] [CrossRef]
- Rosigkeit, H.; Kneißle, L.; Obruča, S.; Jendrossek, D. The multiple roles of polyphosphate in Ralstonia eutropha and other bacteria. Microb. Physiol. 2021, 31, 163–177. [Google Scholar] [CrossRef]
- Denoncourt, A.; Downey, M. Model systems for studying polyphosphate biology: A focus on microorganisms. Curr. Genet. 2021, 67, 331–346. [Google Scholar] [CrossRef]
- McCarhy, S.; Ai, C.; Wheaton, G.; Tevatia, R.; Eckrich, V.; Kelly, R.; Blum, P. Role of an archaeal PitA transporter in the copper and arsenic resistance of Metallosphaera sedula, an extreme thermoacidophilic. J. Bacteriol. 2014, 196, 3562–3570. [Google Scholar] [CrossRef]
- Lewis, A.M.; Recalde, A.; Bräsen, C.; Counts, J.A.; Nussbaum, P.; Bost, J.; Schocke, L.; Shen, L.; Willard, D.J.; Quax, T.E.F.; et al. The biology of thermoacidophilic archaea from the order Sulfolobales. FEMS Microbiol. Rev. 2021, 45, fuaa063. [Google Scholar] [CrossRef]
- Macomber, L.; Imlay, J.A. The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc. Natl. Acad. Sci. USA 2009, 106, 8344–8349. [Google Scholar] [CrossRef]
- Xia, L.; Yin, C.; Cai, L.; Qiu, G.; Qin, W.; Peng, B.; Liu, J. Metabolic changes of Acidithiobacillus caldus under Cu2+ stress. J. Basic Microbiol. 2010, 50, 591–598. [Google Scholar] [CrossRef]
- Tan, G.; Yang, J.; Li, T.; Zhao, J.; Sun, S.; Li, X.; Lin, C.; Li, J.; Zhou, H.; Lyu, J.; et al. Anaerobic Copper Toxicity and Iron-Sulfur Cluster Biogenesis in Escherichia coli. Appl. Environ. Microbiol. 2017, 83, e00867-17. [Google Scholar] [CrossRef] [PubMed]
- Macomber, L.; Rensing, C.; Imlay, J.A. Intracellular copper does not catalyze the formation of oxidative DNA damage in Escherichia coli. J. Bacteriol. 2007, 189, 1616–1626. [Google Scholar] [CrossRef]
- Völlmecke, C.; Drees, S.L.; Reimann, J.; Albers, S.V.; Lübben, M. The ATPases CopA and CopB both contribute to copper resistance of the thermoacidophilic archaeon Sulfolobus solfataricus. Microbiology 2012, 158, 1622–1633. [Google Scholar] [CrossRef]
- Juan, C.A.; Pérez de la Lastra, J.M.; Plou, F.J.; Pérez-Lebeña, E. The chemistry of reactive oxygen species (ROS) revisited: Outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. Int. J. Mol. Sci. 2021, 22, 4642. [Google Scholar] [CrossRef]
- Hawkins, C.L.; Davies, M.J. Detection, identification, and quantification of oxidative protein modifications. J. Biol. Chem. 2019, 294, 19683–19708. [Google Scholar] [CrossRef]
- Macario, A.J.; Lange, M.; Ahring, B.K.; De Macario, E.C. Stress genes and proteins in the archaea. Microbiol. Mol. Biol. Rev. 1999, 63, 923–967. [Google Scholar] [CrossRef]
- Rani, S.; Sharma, A.; Goel, M. Insights into archaeal chaperone machinery: A network-based approach. Cell Stress Chaperones 2018, 23, 1257–1274. [Google Scholar] [CrossRef]
- Kampinga, H.H.; Craig, E.A. The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat. Rev. Mol. Cell Biol. 2010, 11, 579–592. [Google Scholar] [CrossRef]
- Bhakta, K.; Roy, M.; Samanta, S.; Ghosh, A. Functional diversity in archaeal Hsp60: A molecular mosaic of Group I and Group II chaperonin. FEBS J. 2024, 291, 4323–4345. [Google Scholar] [CrossRef]
- Li, D.C.; Yang, F.; Lu, B.; Chen, D.F.; Yang, W.J. Thermotolerance and molecular chaperone function of the small heat shock protein HSP20 from hyperthermophilic archaeon, Sulfolobus solfataricus P2. Cell Stress Chaperones 2012, 17, 103–108. [Google Scholar] [CrossRef]
- Guagliardi, A.; Mancusi, L.; Rossi, M. Reversion of protein aggregation mediated by Sso7d in cell extracts of Sulfolobus solfataricus. Biochem. J. 2004, 381, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.C.; Sobti, M.; Stewart, A.G. Structural analysis of the Sulfolobus solfataricus TF55β chaperonin by cryo-electron microscopy. Acta Crystallogr. Sect. F Struct. Biol. Commun. 2021, 77, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Sahlan, M.; Zako, T.; Yohda, M. Prefoldin, a jellyfish-like molecular chaperone: Functional cooperation with a group II chaperonin and beyond. Biophys. Rev. 2018, 10, 339–345. [Google Scholar] [CrossRef]
- Huo, Y.; Hu, Z.; Zhang, K.; Wang, L.; Zhai, Y.; Zhou, Q.; Lander, G.; Zhu, J.; He, Y.; Pang, X.; et al. Crystal structure of group II chaperonin in the open state. Structure 2010, 18, 1270–1279. [Google Scholar] [CrossRef]
- Chaston, J.J.; Smits, C.; Aragão, D.; Wong, A.S.; Ahsan, B.; Sandin, S.; Molugu, S.K.; Molugu, S.K.; Bernal, R.A.; Stock, D.; et al. Structural and functional insights into the evolution and stress adaptation of type II chaperonins. Structure 2016, 24, 364–374. [Google Scholar] [CrossRef]
- Arranz, R.; Martín-Benito, J.; Valpuesta, J.M. Structure and function of the cochaperone prefoldin. In Prefoldins: New Chaperones; Springer: Berlin/Heidelberg, Germany, 2018; pp. 119–131. [Google Scholar] [CrossRef]
- Liu, L.; Chen, J.Y.; Yang, B.; Wang, F.H.; Wang, Y.H.; Yun, C.H. Active-state structures of a small heat-shock protein revealed a molecular switch for chaperone function. Structure 2015, 23, 2066–2075. [Google Scholar] [CrossRef]
- Ellis, M.J.; Knapp, S.; Koeck, P.J.; Fakoor-Biniaz, Z.; Ladenstein, R.; Hebert, H. Two-Dimensional Crystallization of the Chaperonin TF55 from the Hyperthermophilic Archaeon Sulfolobus solfataricus. J. Struct. Biol. 1998, 123, 30–36. [Google Scholar] [CrossRef]
- Knapp, S.; Schmidt-Krey, I.; Hebert, H.; Bergman, T.; Jörnvall, H.; Ladenstein, R. The molecular chaperonin TF55 from the thermophilic archaeon Sulfolobus solfataricus: A biochemical and structural characterization. J. Mol. Biol. 1994, 242, 397–407. [Google Scholar] [CrossRef]
- Marco, S.; Ureña, D.; Carrascosa, J.L.; Waldmann, T.; Peters, J.; Hegerl, R.; Pfeifer, G.; Sack-Kongehl, H.; Baumeister, W. The molecular chaperone TF55: Assesment of symmetry. FEBS Lett. 1994, 341, 152–155. [Google Scholar] [CrossRef]
- Zuily, L.; Lahrach, N.; Fassler, R.; Genest, O.; Faller, P.; Sénèque, O.; Denis, Y.; Castanié-Cornet, M.P.; Genevaux, P.; Jakob, U.; et al. Copper induces protein aggregation, a toxic process compensated by molecular chaperones. MBio 2022, 13, e03251-21. [Google Scholar] [CrossRef]
- Zammit, C.M.; Mangold, S.; Rao Jonna, V.; Mutch, L.A.; Watling, H.R.; Dopson, M.; Watkin, E.L. Bioleaching in brackish waters—Effect of chloride ions on the acidophile population and proteomes of model species. Appl. Microbiol. Biotechnol. 2012, 93, 319–329. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acevedo-López, J.; González-Madrid, G.; Navarro, C.A.; Jerez, C.A. Role of Polyphosphate as an Inorganic Chaperone to Prevent Protein Aggregation Under Copper Stress in Saccharolobus solfataricus. Microorganisms 2024, 12, 2627. https://doi.org/10.3390/microorganisms12122627
Acevedo-López J, González-Madrid G, Navarro CA, Jerez CA. Role of Polyphosphate as an Inorganic Chaperone to Prevent Protein Aggregation Under Copper Stress in Saccharolobus solfataricus. Microorganisms. 2024; 12(12):2627. https://doi.org/10.3390/microorganisms12122627
Chicago/Turabian StyleAcevedo-López, José, Gabriela González-Madrid, Claudio A. Navarro, and Carlos A. Jerez. 2024. "Role of Polyphosphate as an Inorganic Chaperone to Prevent Protein Aggregation Under Copper Stress in Saccharolobus solfataricus" Microorganisms 12, no. 12: 2627. https://doi.org/10.3390/microorganisms12122627
APA StyleAcevedo-López, J., González-Madrid, G., Navarro, C. A., & Jerez, C. A. (2024). Role of Polyphosphate as an Inorganic Chaperone to Prevent Protein Aggregation Under Copper Stress in Saccharolobus solfataricus. Microorganisms, 12(12), 2627. https://doi.org/10.3390/microorganisms12122627